
Cybernetics and Systems Analysis, Vol. 48, No. 6, November, 2012

GENERATING COMBINATORIAL SETS

WITH GIVEN PROPERTIES

I. V. Grebennik
a†

and O. S. Lytvynenko
a‡

UDC 519.85

Abstract. Special classes of combinatorial sets called k-sets are analyzed. An algorithm for the

generation of k-sets is proposed. It is based on a unified algorithm for generating base combinatorial

sets. The possibilities of using it to generate various base sets are considered. The complexity of the

algorithms is assessed. The results of computational experiments are analyzed.

Keywords: combinatorial set, generation, base set.

INTRODUCTION

Various combinatorial objects are generated in developing and implementing solution methods and algorithms for many

scientific and applied problems [1–6]. Generating them means constructing all combinatorial structures of certain type [3]. The

above-mentioned publications deal mainly with problems of generating rather simple combinatorial objects such as

permutations, combinations, partitions, trees, and binary sequences. The results of generation of combinatorial objects are

used to solve problems of modeling, combinatorial optimization, etc. [7–10]. A lack of special constructive means and high

computational cost due to redundant results of the application of well-known generation methods and algorithms make it

difficult to generate more complex combinatorial objects.

Rather complex combinatorial configurations can formally be described and generated using constructive means of the

description of compositional k-images of combinatorial sets (k-sets) proposed in [11, 12]. A combinatorial set is understood as

a set of tuples constructed from a finite set of arbitrary elements (so-called generating elements) according to certain rules [13].

Permutations, combinations, arrangements, and binary sequences are examples of classical combinatorial sets.

The apparatus of k-sets is analyzed in detail in [11–13] and the general principles of their generation are considered in [13];

however, the problem of generating k-sets remains unsolved in the general case, only one of its special cases [14] is

investigated.

In turn, the problem of generating k-sets requires problems of generating base combinatorial sets used in constructing

k-sets to be solved. The base sets may be combinatorial sets with the known descriptions and generation algorithms: both

classical combinatorial sets (permutations, combinations, arrangements, tuples) and nonclassical ones (permutations of

tuples, compositions of permutations, permutations with a prescribed number of cycles, etc.) [12–14]. Generation algorithms

are described for many base combinatorial sets [1–3, 5, 15]; however, in most cases, each generation algorithm is based on

the specific properties of the combinatorial sets.

In the paper, we propose a general approach to generating compositional k-images of combinatorial sets (k-sets)

based on a unified approach to generating various base combinatorial sets.

The purpose of the study is to solve the problem of generating compositional k-images of combinatorial sets.

890 1060-0396/12/4806-0890

©

2012 Springer Science+Business Media New York

a

Kharkov National University of Radio Electronics, Kharkov, Ukraine,

†

grebennik@onet.com.ua;

‡

litvinenko1706@gmail.com. Translated from Kibernetika i Sistemnyi Analiz, No. 6, November–December, 2012,

pp. 96–105. Original article submitted March 29, 2011.

1. COMPOSITIONAL k-IMAGES OF COMBINATORIAL SETS (k-SETS)

Let z z z z
n i

� � � �

�
� �{ }

1 2

, , ... , Z � , Z � i
be the sets of arbitrary elements, � � � i , i J k

k
� �

0

0 1 2{ , , , , }� , where

�
0

� {0},

� i j ij� �{ }� �, , ,... ,1 2 , � � � �j i� � �(,)

1 2

� ,

�
1

�J n , � �
� � �2

1 1 1

� � � �

�

J Jn i n
i

�

�

,

�
1

� n , �
2

1

�

�

�
n j

j

n

, �
� � �

� �i

n n n

i

i

i
n�

� � �

� � �

�

�

�

1 2

1

1

1 2

1 1

1 1 1

�

�

�

, i k� 3 4, ,... , . (1)

Let us consider the mappings [12, 13]

�� �
0 1

0

: Z Y
i�

	 , �� �i i

i i
: Y Z Y

�

 	

1

,

where Y
0

0

0

� �{ }Y z� �(),

� � , Y
i

iY Y z
i i

� �

�

{ }� � �(,),

1

� � , i J k� , J tt � { }1 2, ,... , , Y Y
i i i

i

� � �
�

� �

�

� (,)

1

z

F Y
i i

i
(,

~

))� �
�

�1

� (z , i J k� , F Y
i i

i
(,

~

))� �
�

�1

� (z is a mapping implementing an n -replacement operation, which replaces

each generating element of the set with Y
i�
�1

elements of the base combinatorial sets Y
� �

�
�

~

()� z , � � � i ,

respectively,

~

() (

~

(),)� ��
�

�
i

i

iz z� ��
� � , z z

�
�i

i� �(,)

� � , and

~

()��
�

z are base mappings [12, 13]. This means

that (,)z z z Y
l l l
1 2

� � �
�

�
� � �� , z Y

lt

�
�� , l Jt l�

�
, � �

�

� i 1

, � � � i , i J k� .

Denote

� �i i
� { }� , i J k� . (2)

Definition. The compositional k -image of combinatorial sets Y
0

, Y
1

, Y Yn
2

, ,� , Y Y Y Yn

k

11 12 1 1 1

1

, , , , , ,� �

�

���

�

�

,Ynn nk1 1�

(k -set) generated by sets z k�
, �k k� � , is a combinatorial set [12, 13]

W zz k k�
�

� � �� ���

1 0

() , , (3)

where the mappings �i i� � , i J k� , are defined by (2).

The cardinality of set (3) is defined by [12, 13]

Card Wz

J i

k

r n

r

i

()

,

,

(

�

� � �

� �

� �

� �

{ }� � �
� � �

� � �

�

1 2

1 2

1 2

1�

�

��
�

i

i
Card Y

)

�
. (4)

Since generation of k-sets is based on generation of base combinatorial sets, an algorithm to generate the latter is

necessary.

2. GENERATING BASE COMBINATORIAL SETS

Let us associate each base combinatorial set T with a set p T() � { }A m S, , , where A a a an� � �{ }

1 2

, � ,

a a an1 2

 � , is the set of generating elements, m is the length of a tuple t T� (all the tuples of the set are assumed to be

of the same length), S is a set of the parameters that characterize the set T, for example, parameters n n nk1 2

, � �� for

permutations with repetitions and other parameters typical for different classes of combinatorial sets. By the class of

a combinatorial set we will mean its membership in permutations, combinations, etc.

Suppose we are given a base combinatorial set T and its parameters p T() . It is necessary to generate all the elements

t T� , each being a tuple of length m . Let us introduce the notation t t t t
i

i� � �(,)

1 2

� � �t Ai , A p T� () , i J n� . Then

t
0

� () is an empty tuple, t t T
m

� � . The result of the generation is the set T.

891

Let us first present the idea of the algorithm of generating base sets. The algorithm is recursive. At each level of

recursion i J
m

�

�1

0

, it supplements a current tuple t t t t
i

i� � �(,)

1 2

� with the next element t i�1

and obtains tuple

t t t t
i

i

�

�

� � �

1

1 2 1

(,)� at the level i � 1. At the level m n� , the algorithm adds tuple t t
m

� to the set T.

The membership of the set T to a certain class of combinatorial sets imposes some constrains on the element

t Ai�

�
1

. At each level i J
m

�

�1

0

, denote by F f f f A
i

k� � � �{ }

1 2

, � the set of all generating elements that satisfy these

constraints. Then in the input tuple t t t t
i

i� � �(,)

1 2

� the algorithm adds element t fi j�

�
1

for each j J k� and recursively

calls itself with parameter t t t f
i

j

�

� � �

1

1 2

(,)� .

Let us consider the features of constructing the set F
i

for some classes of combinatorial sets. For arrangements with

repetitions, the set F
i

contains all the generating elements: F A
i

� .

For arrangements without repetitions and permutations (as a special case), the set F
i

contains n i� generating

elements not involved in t
i
:

F f f f A f t j J l J
i

n i l j i n i� � � � � � � � �
� �

{ }

1 2

, : ,� .

Since the order of elements is of no importance in combinations, we will generate them as ordered sets for which

t t t i1 2

 � in the case of combinations without repetitions and t t t i1 2

� � �� for combinations with repetitions.

Then for combinations without repetitions the set F
i

contains generating elements that do not appear in t
i

and large t i :

F f f f A f t f t l J j J
i

k l j l i k i� � � � � � � � � �
�

{ }

1 2 1

, : , ,� .

In case of combinations with repetitions, F
i

also contains generating elements equal to t i :

F f f f A f t f t l J j J
i

k l j l i k i� � � � � � � � � �
�

{ }

1 2 1

, : , ,� .

Let us describe the GenBase algorithm that implements these operations. The input data for GenBase are set T, set of

parameters p T() , and tuple t
i
. At each level of recursion i J

m
�

�1

0

, the algorithm forms set F
i
, then sequentially adds each

element of F
i
, beginning with the first one, into t

i
and recursively calls itself.

To generate all the necessary elements of the set, GenBase is called with parameters T, () , and p T() . Note that the

base combinatorial set may consist of a unique given tuple. Then GenBase adds nothing to the given tuple and stops:

function GenBase(T, t
i
, p T());

local F
i
;

if i m� , then T T t
i

: � � ; exit;

end if;

case T of

An

m
: F A

i
� ;

An

m
: F f f f A f t j J l J

i

n i l j i n i� � � � � � � � �
� �

{ }

1 2

, : , ,� ;

Cn

m
: F f f f A f t f t l J j J

i

k l j l i k i� � � � � � � � � �
�

{ }

1 2 1

, : , , ,� ;

Cn

m
: F f f f A f t f t l J j J

i

k l j l i k i� � � � � � � � � �
�

{ }

1 2 1

, : , , ,� ;

Tn : exit;

end case;

for j F
i

� 1 2, ,... , | | do

GenBase(t t t t f
i

i j

�

� � �

1

1 2

(, ,)�);

end for;

end function;

To generate combinatorial sets of other classes by this algorithm, it will suffice to define the corresponding rules of

forming the set F
i
.

892

3. GENERATING k-SETS

Suppose we are given combinatorial sets Y Y Y Y Y Y Yn n0 1 2 11 12 1

1

, , , , , , ,� � � , , ,Y Y

k

knn n1 1

1 1

�

���

�

�

�

and parameters

p Y p Y p Ynn nk
(), (),... , ()

...0 1

1 1�

. It is necessary to obtain a k-set W zz k k�
�

� � �� ���

1 0

() , z A p Y� �
0 0

() . Let us

introduce a notation.

A set Yi i in1 2

...

is called parent set of the set Y j j j jn n1 2 1

...

�

if i j i j i jn n
1

1 2 2

� � � � �, � . A set Y j j j jn n1 2 1

...

�

is called

a daughter set of the set Yi i in1 2

...

. For convenience sake, we will change the indexing of the base sets by passing from indices

of variable length to indices of fixed length. We will denote each base set at a level i J
k

�

�1

0

by Yij , where j J
i

� � is the

serial number of the base set and � i is defined (1). We will denote the set Y
0

by Y
01

in the formulas.

Example 1. Let the base sets Y
0

, Y
1

, Y
2

, Y
11

, Y
21

, Y
22

, Y
111

, Y Y
211 221

, and be given, and the relations among them

can be schematized as a tree (Fig. 1).

The sets Y
1

and Y
2

are at the first level of such a tree, Y
11

, Y
21

, and Y
22

are at the second level, and Y
111

, Y
211

, and

Y
221

are at the third level. According to the new indexing, we denote the sets of the first level by Y
11

and Y
12

, of the second

by Y
21

, Y
22

, and Y
23

, and of the third by Y
31

, Y
32

, and Y
33

. With the modified indexing, the base sets are related as in Fig. 2.

The proposed indexation allows specifying implicitly the relations between daughter and parent sets. Let the set Yij be

generated by elements of the set A p Yij ij� () whose cardinality is n Aij ij� | | . Then it follows from the construction of the

k-set that there are nij daughter sets of the set Yij at the level i � 1. Suppose that the first ni1 sets at the level i � 1are daughter

sets of Yi1, the next ni2

sets are daughter sets for Yi2

, etc., for all Yij , j J
i

� � . Then for each base set, all its parent and

daughter sets can be established uniquely. Suppose that during the operation of n-replacement, generating element a Al ij�

of the parent set Yij will be replaced with elements of its lth daughter set.

Example 2. Let a k-set be presented as a tree (Fig. 3), where Ð a b(,) is the set of permutations of elements à and b,

Ñ c d e
3

2

(, ,) is the set of combinations of two elements out of three, T (, ,)1 2 3 is a tuple ()123 , etc.

Set Y
11

is generated by three elements: c d e, , and . During the operation of n-replacement, they will be replaced with

elements of the sets Y
21

, Y
22

, and Y
23

, respectively. The generating elements f and g of the set Y
12

will be replaced with

elements of the sets Y
24

and Y
25

, respectively.

893

Y
2

Y
0

Y
1

Y
11

Y
22

Y
21

Y
211

Y
221

Y
111

Fig. 1

Y
12

Y
0

Y
11

Y
21

Y
23

Y
22

Y
32

Y
33

Y
31

Fig. 2

Ð(a, b)

P(f, g)

Ò(1, 2, 3) Ò(4, 5, 6) T(7, 8, 9) T(x, y) T(w, z)

Y
12

Y
0

Y
11

Y
21

Y
22

Y
23

Y
24

Y
25

Fig. 3

Ñ ñ d e
3

2

(, ,)

4. ALGORITHM OF GENERATING k-SETS

Let us describe the algorithm of generating k-sets. In the beginning, the GenBase algorithm is used to generate

elements of each base set Yij , then mappings � � �i i z
�1 0

� ��� (), z A p Y� �
0 0

() are implemented sequentially for each

i J
k

�

�1

0

, i.e., the operation of n-composition is carried out, where generating elements of the parent set are replaced with

tuple elements of its daughter sets.

At the level i � 0 , the parent set is the set Y
0

, daughter sets are Y
11

, Y Y
12 1

1

� �� � . At the level i � 1the parent set is the

result of the composition of mappings � �
1 0

� ()z obtained at zero level, daughter sets are Y
21

, Y Y
22 2

2

, ,� � . At the level i the

parent set is the result of the composition of mappings � � �i i z� ���

�1 0

(), daughter sets are Y i()�1 1

, Y Yi i i() ()

, ,

� �
�

1 2 1

1

� � .

Let us introduce a set P
i
, which is the result of the application of the composition of mappings � � �i i� ���

�1 0

to

the original set z A p Y� �
0 0

() . Denote P z
i

i i�
�

� � �� ���

1 0

(), the set of its generating elements is A
i
, the length of

each its tuple element is m
i
. Since the set P

i
at the level i consists of tuple elements of the sets Y Yi i i1

� �� � , its generating set

has the form

A A
i

j

ij

i

�

�1

�

�

, A p Yij ij� () , (5)

and the length of each its tuple element is

m m
i

j

ij

i

�

�1

�

�

, m p Yij ij� () , (6)

where Aij is the set of generating elements, mij is the length of each tuple element of the base set Yij .

For zero level P Y
0

0

� , A A p Y
0

0 0

� � () , m m p Y
0

0 0

� � () .

To calculate � i for the new indexing, we can use the formula

�
�

i i j

j

i j i jA A p Y

i

� �
�

�

� �

�

�
| | , ()

() () ()1

1

1 1

1

, (7)

similar to (1).

Replacing one tuple with another is an elementary operation in the operation of n -replacement. Let us describe the

function replace, which carries out such a replacement. The input of the function is a tuple x x x xm� � �(,)

1 2

� , its length is m ,

the set of elements A ai� { } by which the tuple x is generated, and the set R ri� { }, i J n� , n A� | | , such that it is necessary

to replace each element a Ai � with r Ri � . The output of the function is the tuple x, where all the replacements are made.

The function replace is presented below:

function replace(x , m , A , R);

for i A: , ,... , | |� 1 2

for j m: , ,... ,� 1 2

if x aj i� then x rj i: � ;

end if;

end for;

end for;

return x ;

end function;

The input data of the algorithm Gen_ k-set of generating a k -set are the number k (the number of levels of the tree is

k � 1), classes of base sets Yij , and their parameters p Yij() , i J
k

�

0

, j J
i

� � . The output of the algorithm is the sequence of

elements of the generated k -set.

Below is the algorithm Gen_ k-set for generating a k-set:

procedure Gen_ k-set;

�
0

1: � ;

for i k: , ,... ,� 0 1 do

894

if i � 0 then �
�

i i j

j

A

i

: | |

()

�
�

�

�

� 1

1

1

;

for j i: , ,... ,� 1 2 � do

Y Yij ij: ((),� Gen_ Base , p Yij());

end for;

end for;

P Y
0

0

: � ; A A p Y
0

0

: ()� � ; m m p Y
0

0

: ()� � ;

for i k: , ,... ,� �0 1 1 do

P
i�

� �

1

: ;

A A
i

j

ij

i

�

�1

�

�

;

m m
i

j

ij

i

�

�1

�

�

;

foreach x P
i

� do

foreach p Y i1 1 1

�
�()

foreach p Y i2 1 2

�
�()

��

foreach p Y
i ii� �
� �

�
�

1 1

1()

P P
i i� �

� �

1 1

: replace(x , m
i
, A

i
, { })p p p

i1 2

1

, � �

�

� � ;

end for;

��

end for;

end for;

end for;

if i k� �1 then print P
i�1

;

end for;

end procedure;

At each level i J
k

�

�1

0

in each tuple of the current parent set P
i
, its tuple elements are replaced with all possible

combinations of tuple elements of the daughter sets Y Y Yi i i i() () ()

, ,.. ,

� � �
�

1 1 1 2 1

1

� . Traversing all the tuple elements of the

current daughter set in the cycle, we obtain a set of tuples { }p p p
i1 2

1

, ,... , �
�

each time, where p Yj i j�
�()1

is the current

tuple of the jth daughter set, and use the replace function in the tuple x P
i

� to replace each generating element a Aj

i
� with

p Yj i j�
�()1

.

A significant advantage of the algorithm is that it is possible to obtain intermediate results, i.e., sets P
i

at each level

i J k�
�1

, which can be considered as k sets, where k i� .

Example 3. Let it be necessary to generate the set of permutations of two given tuples, T
1

1 2� (,) and T
2

3 4� (,) .

Then k � 1and Y
0

is the set of permutations of two elements or arrangements of two elements out of two, and m
0

2� . The

generating elements Y
0

may be arbitrary; therefore, suppose A a b
0

� { }, . Then Y a b b a
0

� { }(,), (,) . The sets Y
11

1 2� { }(,) ,

Y
12

3 4� { }(,) , i.e., the given tuples T
1

and T
2

, have the parameters A
11

1 2� { }, , A
12

3 4� { }, , and m m
11 12

2� � . Let us

present the structure of the k -set for Example 3 (Fig. 4).

In the operation of n-replacement in the parent set Y
0

, the first generating element a will be replaced with the unique

element of the set Y
11

, i.e., with the tuple (1,2), and element b with the tuple (3,4).

895

Let us consider the process of deriving the set W z Pz � �� �
1 0

1

� () :

1. x ab� ()

1.1. p
1

1 2� (,)

1.1.1. p
2

34� ()

P
1

:� � � replace(() , , ,ab a b2 { }, { }(), ()12 34);

// P
1

1234� { }()

2. x ba� ()

2.1. p
1

12� ()

2.1.1. p
2

34� ()

P
1

1234: ()� �{ } replace((), , ,ba a b2 { }, { }(), ()12 34);

// P
1

1234 3412� { }(), ()

As a result, we obtain W z Pz � � �� �
1 0

1

1234 3412� () (), (){ }.

4. ESTIMATING THE COMPLEXITY OF THE ALGORITHM Gen_ k-set

The complexity of this algorithm depends on the complexity of the generation of the base sets and on the complexity

of the operations of n-replacement and the number of levels of the k-set.

To generate the base sets, both well-known algorithms with the known estimates of complexity (for example, [1–3, 15])

and the GenBase algorithm described in the present paper can be used. In any case, each base set Yij , i J
k

�

0

, j J
i

� � , should

be generated by one of the algorithms. Then the complexity of the generation of the base sets is defined as

O Yij

ji

k i

()

��

��

10

�

, (8)

where O Yij() is the complexity of the generation of the base set Yij dependent on the algorithm being used. Let us

estimate O Yij() for the GenBase algorithm.

Based on the estimates of the complexity of the recursive algorithm, following [5], by the complexity of an algorithm

we will mean the number of variations in the intermediate data from the call of the algorithm till its termination. In the

GenBase algorithm, the input tuple t
i

at each level of recursion i J
m

�

�1

0

is supplemented with elements of the set F
i

and

recursive call of the GenBase follows, i.e., the intermediate data (tuples t
i
) vary, thus the complexity can be estimated as the

number of recursive calls of GenBase at the levels i J
m

�

�1

0

.

Since one element is added to the tuple t
i

at each level of recursion, to generate each of the N tuples t t T
m

� �

GenBase is called no more than m times. Then the complexity of generating elements of one base set does not exceed mN ,

N Card T� () .

Thus, if the GenBase algorithm is used to generate all the base sets, formula (8) becomes

m Card Yij ij

ji

k i

()

��

��

10

�

, m p Yij ij� () . (9)

896

P(a, b)

T(1, 2) T(3, 4)

Fig. 4

Following the chosen way of estimating the complexity, we will determine the complexity of operations of

n -replacement in the algorithm Gen_ k-set depending on the number of calls of the replace function, which changes the

intermediate data of the algorithm, namely, tuples x P
i

� . As follows from the Gen_ k-set algorithm, at each level i J
k

�

�

0

1

of the k-set the replace function is called

M Card P Card Y Card Y Card Y
i

i i i i
�

� � �

() () () (

() () ()1 1 1 2 1

� �
� 1

) (10)

times. The value of Card P
i

() can be obtained from (4) in the substitution of k i� . The quantities Card Y i j()�1

,

j J
i

�

�

�
1

, are the cardinalities of the base sets defined by the formulas known for each class of combinatorial sets.

At all the levels i J
k

�

�

0

1

the replace function is called

Card P Card Y
i

j

i j

i

k i

() ()

()

�

�

�

� �

��

�

�

�

�

�

�

�

�

1

1

0

1
1

�

(11)

times.

Note that the complexity of the algorithm of constructing a k-set does not depend on the complexity of the algorithms

used to generate the base sets.

Thus, the following statement is true.

THEOREM. The computational complexity of the algorithm Gen_ k-set for generating k-sets is defined as

O Y Card P Card Yij

ji

k
i

j

i j

i i

() () ()

()

�� �

��� �
�

�

�

�

�

10 1

1

1

� �

�

�

�

�

�

�

�

�

i

k

0

1

. (12)

The case where all the base sets are permutations is defined in [13] as a k-composition of permutations, a formula is

obtained for the number of elements in the k-set. From [13] it is possible to derive a formula for Card P
i

() . If all the sets Yij

are permutations of nij elements, then Card Y nij ij() !� and

Card P n
i

u

i

j

uj

i

() ()!�

� �

� �

0 1

�

. (13)

Then for the k-composition of permutations formula (10) becomes

u

i

j

uj i

i

k i i

n n

� � �

�

�

�

� � �
�

�

�

�

�

�

�

�

�

�

0 1 1

1

0

1
1

�

�

�

�()! ()!

()�
. (14)

COROLLARY. The computational complexity of the algorithm of generating the k-composition of permutations is

O Y n nij

ji

k

u

i

j

uj i

i i i

() ()! (

(

�� � � �

��� � � �
� �

�

10 0 1 1

1

1

� �

�

�

)

)!�

�

�

�

�

�

�

�

�

�

�

�

i

k

0

1

, (15)

where nij is the number of generating elements of the set Yij .

5. COMPUTATIONAL EXPERIMENTS

The proposed solution algorithm was used to develop a software to generate k-sets of different structure and

complexity. Let us show the result of the program for the k-set from Example 2.

At the end of the zero iteration of the algorithm Gen_ k-set we obtain

P cdfg cdgf cefg cegf defg degf fgc
1

� {(), (), (), (), (), (), (d

gfcd fgce gfce fgde gfde

),

(), (), (), (), () .}

.

The last six tuples are permutations of pairs in the first six tuples, which corresponds to permutations of elements a

and b in the set Y
0

.

897

At the end of the first iteration in the Gen_ k-set we obtain

P W xywz wzxy xywzz

2

123456 123456 123789 123� � {(), (), (), (789

456789 456789 123456

wzxy

xywz wzxy xywz w

),

(), (), (), (zxy

xywz wzxy xywz

123456

123789 123789 456789

),

(), (), (), ()wzxy456789 }.

As follows from (8), () (2 2 2 3� � � � 2 2 3 1 3 1 3 1 3 1 3 1 29� � � � � � � � � � � �) () calls of the GenBase function are necessary

to generate the base sets. By formula (10), the replace function was called (()) (())2 3 2 12 1 1 1 1 1 24� � � � � � � � � times. The

obtained k-set contains 12 elements, which coincides with the calculations by formula (4).

CONCLUSIONS

We have proposed a general approach to generating compositional k-images of combinatorial sets (k-sets) based on

a unified approach to generating base combinatorial sets.

The algorithm to generate the base sets allows generating all possible combinatorial sets for which the rules of

formation of the set F
i

can be specified. If it is impossible to specify such rules, the algorithm of generating k-sets admits

the application of other well-known algorithms to generate the base sets.

An advantage of the proposed algorithm of generating k-sets is that intermediate results of the generation can be

obtained, i.e., sets P
i

at levels lower than k.

It is rather difficult to determine an explicit dependence of the time of the generation algorithm on the input data since

the base sets can belong to different classes with different properties and dependence of dimensions on the input data.

However, such a dependence can be obtained for typical cases such as the composition of permutations. The software

developed allows generating k-sets of different complexity.

REFERENCES

1. D. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 2: Generating All Tuples and Permutations,

Addison-Wesley, Boston (2005).

2. D. Knuth, The Art of Computer Programming, Vol. 4, Fascicle 3: Generating All Combinations and Partitions,

Addison-Wesley, Boston (2005).

3. D. L. Kreher and D. R. Stinson, Combinatorial Algorithms: Generation Enumeration and Search, CRC Press (1999).

4. M. Bona, Combinatorics of Permutations, Chapman Hall-CRC, Boston (2004).

5. F. Ruskey, Combinatorial Generation, Dept. of Comput. Sci. Univ. of Victoria, Canada, 1j-CSC 425/20 (2003).

6. J. F. Korsh and P. S. LaFollette, “Loopless array generation of multiset permutations,” The Comput. J., 47, No. 5,

612–621 (2004).

7. N. V. Semenova and L. N. Kolechkina, “ A polyhedral approach to solving multicriterion combinatorial optimization

problems over sets of polyarrangements:,” Cybern. Syst. Analysis, 45, No. 3, 438–445 (2009).

8. O. A. Yemets and Ye. M. Yemets, “A modification of the method of combinatorial truncation in optimization

problems over vertex-located sets,” Cybern. Syst. Analysis, 45, No. 5, 785–791 (2009).

9. G. A. Donets and L. N. Kolechkina, “Method of ordering the values of a linear function on a set of permutations,”

Cybern. Syst. Analysis, 45, No. 2, 204–213 (2009).

10. I. V. Grebennik, A. V. Pankratov, A. M. Chugay, and A. V. Baranov, “Packing n-dimensional parallelepipeds with

the feasibility of changing their orthogonal orientation in an n-dimensional parallelepiped,” Cybern. Syst. Analysis,

46, No. 5, 793–802 (2010).

11. Yu. G. Stoyan and I. V. Grebennik, “Compositional images of combinatorial sets and some of their properties,”

Problemy Mashinostr., 8, No. 3, 56–62 (2005).

12. Yu. G. Stoyan and I. V. Grebennik, “Describing classes of combinatorial configurations based on mappings,” Dop.

NANU, No. 10, 28–31 (2008).

13. Yu. G. Stoyan and I. V. Grebennik, “Description and generation of combinatorial sets having special characteristics,”

Intern. J. of Biomed. Soft Comput. and Human Sci., Spec. Vol. “Bilevel Programming, Optimization Methods, and

Applications to Economics,” 18, No. 1, 85–90 (2011).

14. I. V. Grebennik, “Description and generation of permutations containing cycles,” Cybern. Syst. Analysis, 46, No. 6,

945–952 (2010).

15. W. Lipski, Combinatorics for Programmers [in Polish], Polish Sci. Publ. (PWN), Warsaw (1982).

898

	Abstract
	INTRODUCTION
	1. COMPOSITIONAL k-IMAGES OF COMBINATORIAL SETS (k-SETS)
	2. GENERATING BASE COMBINATORIAL SETS
	3. GENERATING k-SETSSuppose
	4. ALGORITHM OF GENERATING k-SETS
	4. ESTIMATING THE COMPLEXITY OF THE ALGORITHM Gen_ k-set
	5. COMPUTATIONAL EXPERIMENTS
	CONCLUSIONS
	REFERENCES

