
Cybernetics and Systems Analysis, Vol. 47, No. 6, November, 2011

SYSTEMS ANALYSIS

SOLVING UNCONSTRAINED BINARY QUADRATIC

PROGRAMMING PROBLEM BY GLOBAL

EQUILIBRIUM SEARCH

V. P. Shylo
a

and O. V. Shylo
b

UDC 519.854

Abstract. A new algorithm based on global equilibrium search (GES) is developed to solve an

unconstrained binary quadratic programming (UBQP) problem. It is compared with the best methods

of solving this problem. The GES algorithm is shown to be better both in speed and solution quality.

Keywords: binary quadratic programming, approximate methods, global equilibrium search,

computational experiment, comparative analysis of algorithms.

INTRODUCTION

We will analyze the well-known class of integer optimization problems of the form

max ( ) |{ }f x q x x x Bij i j

j

n
n

i

n

� �

��

��

11

,

(1)

where qij are elements of a symmetric real matrix Q of order n and B
n

is the set of n-dimensional vectors with

components 0 or 1. Such a problem is called an unconstrained binary quadratic programming (UBQP) problem. Since

x xi i

2

� for all variables x i ni � �{ , }, , ,0 1 1 � , linear function cx (if exists) can be transferred to the quadratic part of

the objective function in (1). A quadratic problem of the form max | ,{ }xQx Dx b x B
n

� � , where Q is the matrix from (1),

D R
m n

�

�

, b R
n

� , and R
n

is the set of n-dimensional real vectors, can also be reduced to (1).

Many fundamental scientific, engineering, financial, medical, etc. problems can be formulated as binary quadratic

programming problems. Quadratic functions with Boolean variables naturally arise in modeling of selections and

interactions. Let us consider a set of n objects, each of which can either be selected or not. Each pair ( , )i j of objects is

associated with the weight q
ij

, which measures the interaction between points i and j. If an object is selected, we assume that

xi � 1, otherwise xi � 0 . The sum of all interactions between the selected points, the so-called global interaction, can be

presented as a quadratic Boolean function q x xij i j

j

n

i

n

��

��

11

. The class of such problems was analyzed in solid state physics.

Moreover, versions of problem (1) with and without constraints can be applied in numerous branches such as medicine,

computer-aided design, planning, message control, chemistry [1, 2]. Many problems in graph theory can be presented in

terms of binary quadratic programming, including the well-studied maximum clique and maximum cut problems [3].

Moreover, UBQP problem is a general model for a wide range of discrete optimization problems [4]. The paper [5]

exemplifies its use in graph coloring, packing, splitting, linear ordering, and other problems.

The UBQP problem belongs to the class of NP-hard discrete optimization problems. There is a limited number of its

subclasses known to be polynomially solvable (for example, [6]). It is also known that the problem “whether an UBQP

8891060-0396/11/4706-0889

©

2011 Springer Science+Business Media, Inc.

a

V. M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine,

v.shylo@gmail.com.

b

University of Pittsburgh, Pittsburgh, USA, olegio@gmail.com. Translated from Kibernetika i

Sistemnyi Analiz, No. 6, pp. 68–78, November–December 2011. Original article submitted June 20, 2011.



890

problem has a unique solution?” is NP-hard [7]. Moreover, a binary quadratic programming problems remains NP-hard even

if the global optimum is known to be unique [7].

Since problem (1) is NP-hard, exact algorithms (such as [8, 9]) are applicable only for the dimension of several

hundreds of variables and moderately sparse matrix Q. For high-dimensional problems with dense matrices, only

approximate methods are applicable, which allow finding almost optimal solutions in a reasonable time. Among those are

algorithms based on tabu search [4, 10–12] and simulated annealing [11, 13, 14]. Moreover, evolutionary [15–18], memetic

[19], and scatter [20] algorithms, which employ populations are well-behaved.

The paper [21] proposes the global equilibrium search (GES) algorithm for the UBQP problem and compares it with

the MST2 algorithm [12], the best at that time. Though this comparison showed the advantage of the GES algorithm, it used

nonstandard tests because of a program error (with erroneously zeroed diagonal elements of the matrix). Since the

publication of the paper [21], new interesting algorithms (for example [4]) have been developed and we changed our

approach to constructing and comparing the algorithms.

In the present paper, we will use the GES method to develop a new solution algorithm for the UBQP problem,

analyze it, and compare with the well-known algorithms that use standard tests (with their dimension increased to n � 10000).

GES ALGORITHM

The objective function of problem (1) generates a similar landscape for different tests. It is characterized by

individual peaks of approximately the same height and spaced rather far apart. If we call the domain of attraction of these

peaks a mountain system, all of them belong to different mountain systems, which makes it impossible to pass from one peak

to another by means of local search. This is indicative of extreme complexity of UBQP problems, especially if the

optimization criterion is obligatory finding of the best known solution (preferably in the least possible time). Therefore, to

create a good solution algorithm for these problems, it is necessary to take into account their special features. Let us consider

a modification of the GES principal scheme [22, 23] for problem (1).

The GES principal scheme includes two stages: generating the solution and searching for the local maximum near this solution.

Assume that set S is a subset of the set of feasible solutions of problem (1) found by the GES method and

S x S xj j

1

1� � �{ }| , S x S xj j

0

0� � �{ }| , j n� 1, , .�

The “temperature” cycle is a key point in the GES structure. It starts searchings for the best solution for increasing

temperature. This cycle allows flexible alternation of the diversification and intensification of the solution search domain,

which finally makes the GES method highly efficient. The following should be specified for the temperature cycle: the cycle

index K and the values of temperature � � �
0 1

� ��� K with subscripts that correspond to the numbers of the temperature

cycle. We additionally define the following quantities for k K j n� � � �0 1, , , , , , u �{ }01, :

E

S

f x f x f x

kj

u

j

u

x S

k

j

u
�

� �

	

�

�

0 if

{ }

{

,

( )exp ( ( ) ( ))

exp

�

�

max

k max

x S

j

u

f x f x
S

j

u

( ( ) ( ))

.

	


 �

�

�










�








 �

�
}

if

(2)

In the GES method, the set S is used to randomly generate the initial solutions for the search method. The vector of

temperature parameters � � �� � �( )

0

� K , � � �
0 1

� � �� K , allows controlling the distance between the generated initial

solutions and the best solution xmax in the set S . This is because the initial solution is generated by randomly changed

components of the vector xmax by the following rule: if the jth component of the vector xmax is equal to zero, it varies with

probability p j k( )� , otherwise with probability 1	 p j k( )� . The probabilities of the proposed version of the algorithm were

calculated by the formulas

p
p

p
E E

j k

j

j

i i ij i j

( )

( )

( )

exp ( )(

�
�

�
� �

�

�

	

	 �
�

�

1

1

1

1

2

0

0

1

0

1

0

	 	

�

�

�

�

�

�

�

�

	

�
E Eij i j

i

k
1

1

1

0

1

)

,

j n k K� � � �1 1, , , , , . (3)



It follows from (2) that E
kj

u
are equal to the weighed sum of the values of the objective function over the set of known

solutions whose jth components are equal to u. The weight of each solution depends on the value of its objective function

and the value of the temperature parameter �k . A new solution is not saved and is used to recalculate the values of E
kj

u
.

Let g f x x S j nj

u

j

u
� � � �max ( ) | , , ,{ }, 1 u �{ }01, . As follows from (2) and (3), lim ( )

�

�

k

p j k
��

� 1 as g j

0

� g j

1

,

otherwise lim ( )

�

�

k

p
j k

� �

� 0 . Relations (2) and (3) are obtained from the approximation of the Boltzmann distribution

[21–23]. Components �k of the temperature vector � are calculated from the formulas �
0

0� , � ��k k�

�
1

, k K� � 	1 1, , .

Let us consider the scheme of the GES algorithm for the solution of a UBQP problem.

Input data: � is the vector of temperature parameters, K is the cycle index of the temperature cycle, maxnfail is restart

parameter, and ngen is the number of solutions generated in each cycle.

Procedure GES:

1. EliteSet = �

2. while (stopping criterion = FALSE) do

3. x � construct random solution

4. x x x x
max best

� �;

5. S x� { }

max
; nfail � 0 ; nrep = 0

6. while (nfail maxnfail� AND f x f x
best max

( ) ( )� ) do

7. x x
old max

� ; nrep nrep� � 1

8. for k � 0 to K 	1 do

9. calculate generation probabilities ( ( ), , )p Sk k� �

10. for g � 0 to ngen do

11. x � generate initial solution ( , ( ), )x p EliteSet
max

k�

12. R x gains x EliteSet� Tabu search method ( , ( ), )

13. S S R� �

14. x f x x S
max

� �arg max{ }( ) |

15. if f x f x
max best

( ) ( )� then x x
best max

�

16. end for

17. end for

18. S x� { }

max

19. if f x f x
max old

( ) ( )� then nfail nfail� � 1

20. else nfail � 0

21. end while

22. EliteSet EliteSet x
max

� �

23. end while

24. return x
best

The main loop (rows 2–23) repeats up to the stopping criterion. In the experiments, the algorithm stopped if the

running time exceeded some limiting value. As indicated above, the key element in the structure of the GES method is the

temperature cycle (rows 8–17). Its index K and the vector of temperature parameters � � �� �( , , )

0 K are predetermined.

The values of � � 0 and �
1

should be chosen so that the probability vector p K( )� is close to the best solution from the set S .

The probabilities with which new solutions are generated are calculated with the use of (2) and (3) in the beginning of

each temperature cycle (row 9). For each probability vector, ngen solutions are generated (row 11). They are used as the

initial solutions for the procedure Tabu search method (row 12). The set R of the solutions found by this procedure is used to

supplement the set S (row 13). As stated above, the set S is used in pseudocode to simplify the description of the algorithm.

In the implementation of the algorithm, it is not stored, only the values E
kj

u
are.

The only solutions the algorithm stores are so-called elite solutions, which constitute the set EliteSet (row 22). It is

assumed that due to the search intensification loop (rows 6–21), their neighborhoods are well investigated and do not contain

improving solutions. Thus, the further search is performed only among the solutions for which the Hamming distance from

the set EliteSet is no less than d p . Therefore, the algorithm does not search in the domains already analyzed.

891



In the tabu search algorithm used in the implementation of the second stage of the GES algorithm, neighborhood of

radius 1 is used. A solution y belongs to the neighborhood N x
1

( ) of radius 1 centered at the point x if the Hamming distance

d x y( , ) is equal to unity. In other words, if y N x�
1

( ) , then y xj j� 	1 for some j and y xk k� for k j
 . We assume that

such a solution y is found with the use of m y m xj j: ( )� . Let gains x( ) be a vector whose jth component is the increase in the

objective function obtained by m j . It can be calculated in a linear time

gains x q x x q x x xj jj j j ij i j j

i i j

n

( ) ( ) ( )

,

� 	 � 	

� 


�
2

1

, where x xj j� 	1 .

Let us now consider the scheme of the tabu search, which is used in the GES algorithm.

Input data: x is the initial solution, g x( ) is vector gains nbad, is the number of iterations without improvement of the

solution, tenure is a parameter, x
max

is the best solution in the set S , x
best

is the record found by the algorithm, and nrep is

the cycle index of the search intensification cycle (rows 6–21) in GES Procedure.

Procedure Tabu search method:

1. x x nfail step
good

� � �; ; ;0 0 R nbad n improve� � � �; / ;2 1

2. if nrep � 0 then mxnfail � 9

3. else mxnfail � 3

4. repeat

5. step step cimpr � �; 0

6. M n last used j tabu j tenure RANDO� � 	� � �{ }12, ,... , ; _ ( ) ; ( ) M j n( ); , ,10 1� �

7. repeat

8. Generate a random permutation RP of M

9. � � 	�

10. for k � 1 to n do

11. j RP k� [ ]

12. if ( _ ( ) ( ) ( ( ) ( ) ( )))step las used j tabu j OR f x g x f xj

max
	 � � � then

13. if ( ( ) ) ( ( ( ), ) )g x AND dist move x EliteSet dj j p� �� then

14. � � �g x ind jj ( );

13. end if

14. end if

15. end for

16. if (� � 0 AND c � 0) then

17. x x c
good

� �; 0

18. if f x f x( ) (�

max
) then

19. nbad n R R x nfail� � � �5 0; ;

20. if f x f x
best

( ) ( )� then

21. mxnfail � 9

22. end if

23. improve = 1; break;

24. end if

25. end if

26. last used ind step( ) ;� x xind ind� 	1 ; tabu ind tenure RANDOM( ) ( )� � 10

27. g x gains x c c( ) ( );� � �recalculate �; step step� � 1

28 until step step nbadimpr	 �

29. if step step nbadimpr	 � then

30. x x g x gains x
good

� �; ( ) ( )recalculate

31. nfail nfail� � 1

32. end if

33. end while

34. until ( ) ( )improve OR nfail mxnfail� �0

35. return x R
good

,

Let us consider the procedure of solution generation according to the probability defined by (3).

Input data: x is the solution to which random perturbation is applied and p k( )� is the probability vector calculated

from formulas (2) and (3).

892



Function:

1. dist j� �0 1;

2. while ( )j n� do

3. if x j � 1 then

4. if p randomk( ) [ , ]� � 0 1 then

5. x dist distj � � �0 1;

6: end if

7. else

8. if p randomk( ) [ , ]� � 0 1 then

9. x dist distj � � �1 1;

10. end if

11. end if

12. j j� � 1

13. if dist distmax� then return x

14. end while

15. return x

Based on the vector x and with the use of the generation procedure, inversion operators are carried out (rows 2–16).

The variable random[ , ]0 1 uniformly distributed in (0, 1) determines the possibility of applying inversion operators to it

(rows 4 and 8). The procedure is terminated when the Hamming distance between x and the perturbed solution is equal to the

parameter distmax .

COMPARATIVE ANALYSIS OF THE ALGORITHMS

Let us describe the computational experiments on using the GES algorithm to solve high-dimensional test

problems (1) and compare the results with those produced by the best known algorithms.

1. Test Problems.

To carry out experimental calculations, 24 randomly generated high-dimensional (3000 10000� �n ) problems p3000.1,

..., p10000.3 with the sparsity of the matrix from 0.5 to 1 have been chosen [12]. The standard set of tests has been expanded

with problems of dimension n � 10000 because the experience gained since the paper [21] allowed improving the efficiency of

the algorithms. The codes to generate these problems are available at http://www.soften.ktu.lt/~gintaras/ubqop_its.html. It is

these problems that are actively used to test the efficiency of algorithms.

Note that we do not consider here the test problems from the ORLIB library for 50 2500� �n and similar problems

from http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html since the GES algorithm can solve them quickly not using all

of its capabilities.

2. Computing Plan. The GES algorithm was implemented in C++ language, all the computational experiments used

PC Intel®Core QUAD CPU Q9550 2.83 GHz and 3.0 GB RAM. The values of the key parameters of the GES algorithm are

presented in Table 1.

The initial probabilities p j nj ( ) , ,... , ,� �
0 0

1

2

1 0� � � . The following values are used for the temperature schedule:

�
1

�

	

10

7

, � �
�

k k

coef
�

	

	1

1

0003

4

log log. /

for k K� �2, , , coef f x
BKS

� 1 8 10

8

. * / ( ) , where f x
BKS

( ) is a record

known for the problem.

Note that the results of computational experiments presented below have been obtained without adjustment of the

parameters, i.e., all the parameters are constant for all the test problems. The values of the parameters tenure and nbad in the

tabu search algorithm from [4] confirm that it is the scheme of the GES method rather than the search techniques makes the

GES algorithm so efficient.

For the comparative experimental analysis with the GES algorithm, MST2 algorithm [12] is chosen since the MST2

implementation of the tabu search algorithm is currently one of the best to solve the UBQP problem. It demonstrates good and

stable operation of the algorithm for various sets of reference tests. This follows from the comparative study [12], where the

results with the use of other well-known approaches are presented, including tabu search, simulated annealing, and genetic

local search. Moreover, the original text of the algorithm is available at http://www.soften.ktu.lt/~gintaras/ubqop_its.html. This

made it possible to use one personal computer to start the algorithms. Hence, the problem time below can be one of the

parameters to compare the algorithms.

893



Each of the test problems was solved 20 times by each of the algorithms for various initial values of the

random-number generator. The MST2 algorithm performed 1000 iterations; the time it took to solve the problem (see

Table 2) was a stopping criterion for the GES algorithm. Such a plan of experiments also allows making a comparison with

the promising HMA algorithm developed recently [4].

3. Results of Experimental Calculations. Table 2 summarizes the results of the computational experiments

conducted to solve test problems (1) by the MST2 and GES algorithms.

894

Parameter Parameter location Meaning Value

K Procedure GES (row 8) The number of iterations of

the temperature cycle

6

ngen Procedure GES (row 10) The number of generated

initial solutions

45 0

80 0

,

,

nrep

nrep

�

�

�

�

�

maxnfail Procedure GES (row 6) Index of the search

intensification loop

(rows 6–21)

1

tenure Procedure Tabu search

method (rows 6, 26)

Initial value of the tabu

variable in the tabu search

algorithm

n/150

d p Procedure Tabu search

method (row 13), Procedure

generate initial solution (row

4, 8)

The minimum admissible

distance to the set of elite

solutions EliteSet

200

distmax Procedure generate initial

solution (row 12)

Maximum number of

random perturbations

n nrep

d nrepp

,

,

�

�

�

�

�

0

0

TABLE 1

TABLE 2

Problem f x
BKS

( )

tmax ,

sec

success gavr tavr t
best

MST2 GES MST2 GES MST2 GES MST2 GES

p3000.1 3931583 580 20 20 0.0 0.0 19.5 7.60 4.17 2.83

p3000.2 5193073 890 20 20 0.0 0.0 21.4 6.98 7.69 0.36

p3000.3 5111533 890 20 20 0.0 0.0 130.7 9.70 7.69 0.44

p3000.4 5761822 1120 20 19 0.0 19.25 40.4 9.12 12.92 0.47

p3000.5 5675625 1120 18 20 2.7 0.0 416.6 75.75 18.53 7.03

p4000.1 6181830 930 20 20 0.0 0.0 19.8 9.59 7.83 1.11

p4000.2 7801355 1400 20 20 0.0 0.0 262.1 86.40 16.44 6.55

p4000.3 7741685 1400 20 20 0.0 0.0 95.7 36.12 19.23 1.39

p4000.4 8711822 1720 20 20 0.0 0.0 119.5 16.67 24.13 0.97

p4000.5 8908979 1720 20 20 0.0 0.0 430.1 72.90 48.25 17.11

p5000.1 8559680 1320 0 6 396.9 234.75 408.37 391.70 – 325.27

p5000.2 10836019 1960 1 19 552.9 29.1 234.5 519.53 1228.11 25.14

p5000.3 10489137 1960 17 20 37.8 0.0 916.0 413.16 42.7 21.49

p5000.4 12252318 2360 1 8 700.3 291 1099.1 927.61 1778.45 219.45

p5000.5 12731803 2360 13 20 307.1 0.0 885.5 227.62 46.75 11.19

p6000.1 11384976 1740 20 19 0.0 12.15 232.8 125.21 68.23 28.11

p6000.2 14333855 2550 8 17 58.8 15.2 717.8 915.80 74.25 38.13

p6000.3 16132915 3060 10 20 1024.6 0.0 1566.9 738.75 253.48 17.08

p7000.1 14478676 2210 2 16 1447.6 123.5 1150.7 1196.4 1094.31 184.83

p7000.2 18249948 3170 0 6 1399.8 251.25 1481.40 1617.6 – 616.95

p7000.3 20446407 3170 20 20 0.0 0.0 296.8 215.37 109.26 50.33

p10000.1 24197906 3740 0 9 4023.9 1427.2 1719.08 2219.1 – 487.88

p10000.2 30627637 5260 0 3 4635.7 1068.85 2030.64 2584.0 – 2105.00

p10000.3 34690255 6330 0 1 3100,7 2326,85 3016.58 3253.25 – 5400,78

Average 12.1 16.0 681.9 189.3 721.3 652.8 1033.1 399.00



Let x i
max

( ) and t i
max

( ) (sec) be the best solution found by the algorithm and the time it took to find it for the ith

i � �1 20, , , solution attempt, respectively. The following notation is used in Tables 2 and 3: g f xavr

BKS
� 	( )

1

20

1

20

f x i
max

i

( ( ))

�

�
; t t iavr

max

i

�

�

�

1

20

1

20

( ) ; t t ibest
i

max
�

� �

min ( )|

1 20

{ f x i f x
max BKS

( ( )) ( )� }; I i
max

� { | f x i
max

( ( )) � f x
BKS

( )};

success I
max

� | | is the number of problem solutions found by the algorithm, with the value of the objective function no less

than the record f x
BKS

( ) , and tmax is the maximum admissible time for the problem solution.

As is seen from Table 2, the GES algorithm is better than the MST2 algorithm in all the parameters. Noteworthy is

the complete failure of the MST2 algorithm with the test problems for n � 10000 since it cannot even approach the results of

the GES algorithm. Then the HMA recently developed was used for comparison purposes. As indicated in [4], the main

advantage of this algorithm is that it finds the best solution for each test problem. Let us determine how important this

parameter is. Recently, the quantities g avr and t avr were the main characteristics of sequential optimization algorithms in

their development and analysis. There was a need for an algorithm with the minimum values of these parameters, which, in

turn, required it to be somehow stable, i.e., regularly and quickly find solutions with the objective function close to records.

In other words, a good algorithm was not required to find a solution x
BKS

or to have an extremely small time t i
max

( ) . As an

example, let us consider the results of the solution of problem p5000.1. Although the MST2 algorithm has not found

a known record, its g avr � 396 9. , while g avr � 5068. for the HMA algorithm.

We believe that there is another approach to the comparison of the algorithms, which becomes more and more

important in view of the development of multiprocessor systems. Let us use the following example to clarify the idea of such

an approach. Given P processors, it is required to solve test problems with some algorithm, whose copies [23] are assigned

to each processor. A problem is assumed to be solved if its solution with the value the objective function no less than

f x
BKS

( ) is found. If a problem is solved by one processor, then the solution stops on all of the processors. Obviously, the

results of such an experiment will in many respects be similar to the results obtained in each test P times by one processor.

For example, the time it takes to solve a test problem is the respective t best . Note that such an approach requires the

algorithm to solve the problem at least once in P trials; therefore, success and t best become the most important parameters

for the algorithm. It is insufficient to solve the problem only once in a reasonable time, using the other trials to

diversify/intensify the search since this changes the view on the design of algorithms.

895

Problem
success t

best

HMA MST2 GES HMA MST2 GES

p3000.1 20 20 20 3.63 5.88 3.99

p3000.2 20 20 20 5.52 10.84 0.51

p3000.3 17 20 20 8.58 10.84 0.62

p3000.4 20 20 19 7.78 18.22 0.66

p3000.5 15 18 20 22.60 26.13 9.91

p4000.1 20 20 20 4.99 11.04 1.57

p4000.2 17 20 20 34.40 23.18 9.24

p4000.3 19 20 20 35.40 27.11 1.96

p4000.4 18 20 20 53.10 34.02 1.37

p4000.5 12 20 20 89.70 68.03 24.13

p5000.1 4 0 6 153.20 > 1200 458.63

p5000.2 6 1 14 98.70 > 1200 35.45

p5000.3 14 17 17 364.50 60.21 30.30

p5000.4 3 1 5 789.60 > 1200 309.42

p5000.5 16 13 20 212.30 65.92 15.78

p6000.1 12 20 19 727.70 96.20 39.64

p6000.2 6 8 12 965.30 104.69 53.76

p6000.3 3 10 16 676.50 357.41 24.08

p7000.1 5 2 15 987.30 1542.98 260.61

p7000.2 2 0 5 1254.70 > 3000 869.90

p7000.3 7 20 20 1868.50 154.06 70.97

Average 12.2 12.1 15.0 398.3 438.9 105.80

TABLE 3



We used the test program machine.zip at http://www.cs.qub.ac.uk/itc2007/benchmarking/benchmark to test our

computer and the computer Pentium 2.66GHz CPU with 512M RAM used in [4]. It was established that the ratio of the

computer speeds is 1.41. The time for our computer was estimated as 315 sec. Then the results of Table 2 were recalculated

and summarized in Table 3 together with the results from [4]. As follows from Table 3, the GES algorithm is better than the

HMA and MST2 algorithms both in the success parameter and in the time t best for the majority of test problems.

Table 4 summarizes the time (in seconds) of solving all the test problems of one dimension. The problems were

supposed to be solved by the copies of the corresponding algorithms on 20 Pentium 2.66GHz processors.

An analysis of Tables 3 and 4 shows that though the HMA algorithm has found records for all the test problems

within the framework of the proposed approach to the comparison of the algorithms, its speed is less than that of not only the

GES algorithm but also the MST2 algorithm on a series of tests for n � 4000 and n � 6000.

CONCLUSIONS

A new algorithm based on global equilibrium search has been developed to solve an unconstrained binary quadratic

programming problem. The algorithm has been compared with the best solution algorithms for this problem and has shown

to be better both in speed and in the capability of finding the best solutions.

REFERENCES

1. B. Alidaee, G. Kochenberger, and A. Ahmadian, “0–1 quadratic programming approach for the optimal solution of

two scheduling problems,” Intern. J. Syst. Sci., 25, 401–408 (1994).

2. G. Gallo, P. L. Hammer, and B. Simeone, “Quadratic knapsack problems,” Math. Program., 12, 132–149 (1980).

3. P. M. Pardalos and J. Xue, “The maximum clique problem,” J. Global Optimiz., 4, 301–328 (1994).

4. Z. Lü, F. Glover, and Hao Jin-Kao, “A hybrid metaheuristic approach to solving the UBQP problem,” Eur. J. Oper.

Res., 207, No. 3, 1254–1262 (2010).

5. G. A. Kochenberger, F. Glover, B. Alidaee, and C. Rego, “A unified modeling and solution framework for

combinatorial optimization problems,” Oper. Res. Spectrum., 26, 237–250 (2004).

6. K. Allemand, K. Fukuda, T. M. Liebling, and E. Steiner, “A polynomial case of unconstrained zero-one quadratic

optimization,” Math. Program., Ser. A, 91, 49–52 (2001).

7. P. M. Pardalos and S. Jha, “Complexity of uniqueness and local search in quadratic 0–1 programming,” Oper. Res.

Letters, 11, 119–123 (1992).

8. C. Helmberg and F. Rendl, “Solving quadratic (0, 1)-problems by semidefinite programs and cutting planes,” Math.

Program., 82, 291–315 (1998).

9. G. A. Palubeckis, “Heuristic-based branch and bound algorithm for unconstrained quadratic zero-one programming,”

Computing, 54, 283–301 (1995).

10. J. E. Beasley, “Heuristic algorithms for the unconstrained binary quadratic programming problem,” Working Paper,

The Management School, Imperial College, London (1998).

11. F. Glover, G. A. Kochenberger, and B. Alidaee, “Adaptive memory tabu search for binary quadratic programs,”

Manag. Sci., 44, 336–345 (1998).

896

TABLE 4

Problem HMA MST2 GES

p3000 48.11 71.91 15.69

p4000 217.59 163.39 38.25

p5000 1618.30 – 849.58

p6000 2369.50 558.30 117.48

p7000 4110.50 – 1201.48

p10000 – – 11194.77



12. G. Palubeckis, “Iterated tabu search for the unconstrained binary quadratic optimization problem,” Informatica, 17,

No. 2, 279–296 (2006).

13. T. M. Alkhamis, M. Hasan, and M. A. Ahmed, “Simulated annealing for the unconstrained binary quadratic

pseudo-boolean function,” Eur. J. Oper. Res., 108, 641–652 (1998).

14. K. Katayama and H. Narihisa, “Performance of simulated annealing-based heuristic for the unconstrained binary

quadratic programming problem,” Eur. J. Oper. Res., 134, 103–119 (2001).

15. A. Lodi, K. Allemand, and T. M. Liebling, “An evolutionary heuristic for quadratic 0–1 programming,” Eur. J. Oper.

Res., 119, 662–670 (1999).

16. I. Borgulya, “An evolutionary algorithm for the binary quadratic problems,” Advances in Soft Computing, 2, 3–16

(2005).

17. K. Katayama, M. Tani, and H. Narihisa, “Solving large binary quadratic programming problems by an effective

genetic local search algorithm,” in: Proc. Genetic and Evolutionary Computation Conference (GECCO99), Morgan

Kaufmann (2000), pp. 643–650.

18. P. Merz and B. Freisleben, “Genetic algorithms for binary quadratic programming,” in: Proc. Genetic and

Evolutionary Computation Conference (GECCO99), Morgan Kaufmann (1999), pp. 417–424.

19. P. Merz and K. Katayama, “Memetic algorithms for the unconstrained binary quadratic programming problem,”

BioSystems, 78, 99–118 (2004).

20. M. Amini, B. Alidaee, and G. A. Kochenberger, “A scatter search approach to unconstrained quadratic binary

programs,” in: New Methods in Optimization, McGraw-Hill, New York (1999), pp. 317–330.

21. P. M. Pardalos, O. A. Prokopyev, O. V. Shylo, and V. P. Shylo, “Global equilibrium search applied to the

unconstrained binary quadratic optimization problem,” Optimization Methods and Software, 23, 129–140 (2008).

22. V. P. Shilo, “The method of global equilibrium search,” Cybern. Syst. Analysis, 35, No. 1, 68–74 (1999).

23. I. V. Sergienko and V. P. Shilo, Discrete Optimization Problems: Challenges, Solution Methods, Analysis [in

Russian], Naukova Dumka, Kyiv (2003).

897


	Abstract
	INTRODUCTION
	GES ALGORITHM
	COMPARATIVE ANALYSIS OF THE ALGORITHMS
	CONCLUSIONS

