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MULTIVALUED DYNAMICS OF SOLUTIONS

OF AN AUTONOMOUS DIFFERENTIAL-OPERATOR

INCLUSION WITH PSEUDOMONOTONE

NONLINEARITY

P. O. Kasyanov UDC 517.9

Abstract. This article considers a nonlinear autonomous differential-operator inclusion with

a pseudomonotone dependence between determinative problem parameters. The dynamics of all weak

solutions defined on the positive semi-axis of time is studied. The existence of trajectory and global

attractors is proved and their structure is investigated. A class of high-order nonlinear parabolic

equations is considered to be a possible application.

Keywords: differential-operator inclusion, global attractor, trajectory attractor, pseudomonotone

mapping.

INTRODUCTION

Qualitative investigations of nonlinear mathematical models of evolutionary processes and fields of different nature,

in particular, problems of dynamics of solving nonstationary problems, are performed by many collectives of

mathematicians, mechanicians, geophysicists (mainly theorists), and engineers. A list of relevant results that is far from

complete is presented in [1–17]. The latest data on the study of multivalued (in the general case) dynamics of solutions of

mathematical models with nonlinear nonsmooth discontinuous multivalued nonmonotone interaction functions are based on

the theory of global and trajectory attractors for m-semiflows of solutions [1, 5–7]. In this case, to solve the evolutionary

problem being considered, the properties connected with system dissipativity and closeness (in a sense) of the resolving

operator [1, 5–8, 11, 13, 14] must be fulfilled. Note that such properties of solutions are individually checked for each

inclusion on the basis of the linearity or monotonicity of the leading part of the differential operator appearing in the problem

[1, 6, 11, 13, 14]. In most cases, quasilinear equations are considered.

At the same time, energy extensions and Nemytskii operators for differential operators occurring in generalized

statements of various problems of mathematical physics, problems on a manifold with boundary and without boundary,

problems with delay, stochastic partial differential equations, and problems with degeneration, as a rule, possess (if the phase

space is properly chosen) common properties connected by growth conditions (the growth often is no more than

polynomial), sign conditions, and pseudo-monotonicity [2–4, 12, 15, 16]. Under such constraints imposed on key problem

parameters, it is possible to prove in the general case only the existence of weak solutions of a differential-operator

inclusion, but the proof is not always cons tructive [2–4, 12, 15, 16]. Thus, the problem of existence and investigation of the

structure of trajectory and global attractors for weak solutions of evolutionary inclusions in infinite-dimensional spaces with

multivalued interaction multifunctions of pseudomonotone type is an urgent problem.

800 1060-0396/11/4705-0800

©

2011 Springer Science+Business Media, Inc.

National Technical University “Kyiv Polytechnic Institute,” National Academy of Sciences of Ukraine and Ministry

of Education and Science of Ukraine, Kyiv, Ukraine, kasyanov@i.ua. Translated from Kibernetika i Sistemnyi Analiz,

No. 5, pp. 150–163, September–October 2011. Original article submitted August 12, 2010.



1. PROBLEM STATEMENT

For an evolutionary triple ( ; ; )

*

V H V of a multivalued (in the general case) mapping A V V:

*�
� and an external force

f H� , the problem of investigation of dynamics is considered as t � � � in the phase space H of all weak solutions of

a nonlinear autonomous differential-operator inclusion

y t A y t f� � �( ) ( ( )) (1)

that are given for t � 0 , where problem parameters satisfy the following conditions:

(1) p � 2 and f H� ;

(2) the embedding of V into H is compact;

(3) 	 
c 0 : � �u V, � �d A u( ), | | | | ( | | | | )
*

d c u
V V

p
� �



1

1

;

(4) 	 
� �, 0 : � �u V, � �d A u( ) , � � � 
d u uV
V

p
, | | | |� � ;

(5) A V V:

*�
� is (generalized) pseudomonotone [16], i.e.,

� for any u V� , the set A u( ) is nonempty, convex, and weakly compact in V
*

;

� since u un � weakly in V, d A un n� ( ) � �n 1, and lim

n
n n Vd u u

���

� 
 � �, 0, we obtain that � �� V 	 �d A u( ) ( )�

such that we have

lim

n

n n V Vd u d u

���

� 
 � � � 
 �, ( ),� � � .

Here, � � � � � �, :

*

V V V � is a pairing in V V
*

� ; it coincides with the scalar product ( , )� � on H V� in the Hilbert

space H.

Comment 1. Conditions (3)–(5) imply that the mapping A is upper semicontinuous since it maps an arbitrary

finite-dimensional subspace V into V
*

supplied with a weak topology.

A weak solution to evolutionary inclusion (1) on an interval [ , ]� T is understood to be an element u that belongs to

a space L T Vp ( , ; )� and is such that, for some d L T Vq� ( , ; )

*

� , we have

d t A y t( ) ( ( ))� for almost all (a.a.) t T� ( , )� , (2)


 � � � � �� � �( ( ), ( )) ( ), ( ) ( , ( ))

� � �

� � �

T T

V

T

t u t dt d t t dt f t dt � �
�

� �C T V
0

([ , ]; ) ,

(3)

where q 
1:

1 1

1

p q
� � .

2. PRELIMINARY RESULTS

For fixed � �T, we consider

X L T VT p�
�

,

( , ; )� , X L T VT q�
�

,

* *

( , ; )� , W u X u XT T T� � �, , ,

*

|� � ��{ },

�
� � �, , ,

*

:T T TX X�
� , �

� �, ,

*

( ) | ( ) ( ( ))T Ty d X d t A y t� � �{ for a.a. t T� ( , )� },

f X f t fT T T� � �, ,

*

,

, ( )� � for a.a. t T� ( , )� ,

where u � is the derivative of an element u X T�
� ,

in the sense of the distribution space �([ , ]; )

*

� T V [2;

Definition IV.1.10]. We note that the space W T� ,

is a reflexive Banach space with the following derivative graph norm
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[15; statement 4.2.1]:

| | | | | | | | | | | | ,

, ,

,

*

,

u u u u WW X X TT T
T

� �
�

�
� � � � . (4)

It follows from [3; Lemma 7] and conditions (1)–(5) that �
� � �, , ,

*

:T T TX X�
� satisfies the following conditions:

(a) 	 
C
1

0 : | | | | ( | | | | )

,

*

,

d C y
X X

p

T T� �

� �



1

1

1 � �y X T� ,

, � �d yT�
� ,

( ) ;

(b) 	 
C C
2 3

0, : � � � 
d y C y CX X

p

T T

, | | | |

,

,

�
�

2 3

� �y X T� ,

, � �d yT�
� ,

( ) ;

(c) �
� � �, , ,

*

:T T TX X�
�

is (generalized) pseudomonotone on W T� ,

, i.e.,

� for any y X T�
� ,

, the set �
� ,

( )T y is nonempty, convex, and weakly compact in X T� ,

*

;

� �
� ,T is upper semicontinuous as such that maps from an arbitrary finite-dimensional subspace X T� ,

into X T� ,

*

supplied with a weak topology;

� since y yn � weakly in W T� ,

, d yn T n� �
� ,

( ) � �n 1, d dn � weakly in X T� ,

*

, and

lim

n
n n Xd y y

T
���

� 
 � �,

,�

0 ,

we obtain that d yT��
� ,

( ) and lim

n
n n X Xd y d y

T T
���

� � � � �, ,

, ,� �

. We note that the measurability condition is not

imposed on A.

Here, � � � � � �, :

,

,

*

,X T TT
X X

�
� �

� is a pairing in X XT T� �,

*

,

� ; it coincides with the scalar product in L T H
2

( , ; )� on

L T H X T2

( , ; )

,

�
�

� , i.e.,

� � � � � � � �u L T H v X u v u t v t dtT X

T

T2

( , ; ), , ( ( ), ( ))

,

,

�
�

�

�

.

Note also [2; Theorem IV.1.17] that the embedding W C T HT�
�

,

([ , ]; )� is continuous and dense and we have

� � 
 � � � ��u v W u T v T u v u t v tT

T

V, ( ( ), ( )) ( ( ), ( )) [ ( ), ( )

,�

�

� � � � � �v t u t dtV( ), ( ) ] .

(5)

The statement formulated below directly follows from the definition of the derivative in the sense of �([ , ]; )

*

� T V

and equality (3).

LEMMA 1. Each weak solution u X T�
� ,

of differential-operator inclusion (1) on an interval [ , ]� T belongs to the

space W T� ,

and, moreover, we have

u u fT T�� ��
� �, ,

( ) . (6)

On the contrary, if u W T�
� ,

satisfies inclusion (6), then u is a weak solution of inclusion (1) on [ , ]� T .

The existence of a weak solution to Cauchy problem (1) with the initial condition

y y( )�
�

� (7)

on the interval [ , ]� T for an arbitrary y H
�
� is guaranteed by condition (1), conditions (a)–(c), and also the results of

[15, Ch. 5]. Thus, the following result takes place.

LEMMA 2. For any �
�

� �T y H, , Cauchy problem (1), (7) has a weak solution on the interval [ , ]� T . Moreover,

each weak solution u X T�
� ,

of Cauchy problem (1), (7) on the interval [ , ]� T belongs to W C T HT�
�

,

([ , ]; )� and satisfies

inclusion (6).

Comment 2. Since W C T HT�
�

,

([ , ]; )� , initial condition (7) makes sense by virtue of Lemma 1 for each weak

solution of problem (1).

For fixed � �T, we introduce the following denotation: �
� �,

( ) ( ) |T u u u� �{ is a weak solution to inclusion (1) on

[ , ], ( )� �
�

T u u� }, u H
�
� .

It follows from Lemma 2 that �
� �,

( )T u � � and �
� � �, ,

( )T Tu W� � �� T, u H
�
� .
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Let us prove that a translation and a concatenation of weak solutions are also weak solutions.

LEMMA 3. If � �T, u H
�
� , and u uT( ) ( )

,

� ��
� �

, then v u s( ) ( )� � � � �

 


�
� �s T s u

,

( ) � s. If � � �t T, u H
�
� ,

u ut( ) ( )

,

� ��
� �

, and v u tt T( ) ( ( ))

,

� �� , then

z s
u s s t

v s s t T
( )

( ), [ , ] ,

( ), [ , ] ,

�

�

�

�

�

�

�

belongs to �
� �,

( )T u .

Proof follows from the definition of a solution to equality (3), Lemma 1, and the fact that z W T�
� ,

as soon as

v W t�
� ,

, u Wt T�
,

, and v t u t( ) ( )� . In proving the latter fact, one can use the definition of the derivative in the sense of

�([ , ]; )

*

� T V , formula (5), and Lemma IV.1.12 from [2] on the density of C t t V
1

1 2

([ , ]; ) in Wt t
1 2

,

when t t
1 2

� .

3. ADDITIONAL PROPERTIES OF SOLUTIONS

The proof of the existence of compact global and trajectory attractors of evolutionary inclusions and, in particular,

inclusions of type (1) is based on properties of a collection of weak solutions to problem (1) that are connected with the

absorbableness of a generated m-semiflow of solutions and its asymptotic compactness (see [5–8] and their references). The

following lemmas on a priori estimates of solutions and theorem on the dependence of solutions on initial data play the key

role in investigating the dynamics of all weak solutions to problem (1) as t � ��.

LEMMA 4. There are c c c c
4 5 6 7

0, , , 
 such that, for any finite time interval [ , ]� T , each weak solution u( )� to

problem (1) on [ , ]� T satisfies the following estimates: � �t s, t s T, [ , ]� � ,

| | ( )| | | | ( )| | | | ( )| | ( | | | |u t c u d u s c f
H

s

t

V

p

H

2

4

2

5

1� � � �� � �
H

t s
2

)( )
 ,

(8)

| | ( )| | | | ( )| | ( | | | | )

( )

u t u s e c f
H H

c t s

H

2 2

7

2

6

1� � �

 


.

(9)

Proof. The proof standardly follows from the conditions imposed on the parameters of problem (1) and the

Gronwall–Bellman lemma.

THEOREM 1. Let � �T, an let { }un n�1

be an arbitrary sequence of solutions to problem (1) on [ , ]� T that are weak

and such that un ( )� �� weakly in H. Then there are { } { }u un k n nk � �
�

1 1

and u T( ) ( )

,

� ��
�

� such that

� � 
 
 � � ��

� �

� �

� �

( , ) | | ( ) ( )| | ,

[ , ]

0 0T u t u t k
t T

n Hk
max . (10)

Proof. We assume that the conditions of Theorem 1 are satisfied. Then, by virtue of Lemma 1, for any n �1, we have

u W C T Hn T( ) ([ , ]; )

,

� � �
�

� . Moreover, from Lemma 4, condition (4), and relationship (6), we obtain

� � 	 � � � �n d u u t d t fn T n n n1 �
� ,

( ) : ( ) ( ) for a.a. t T� ( , )� , (11)

	 
 � � � � � �C n u u un X n X n C T HT
T

0 1: | | | | | | | | | | | |

,

,

*

([ , ]; )

�
�

�
| | | |

,

*

d Cn X T�

� . (12)

As a result, from the continuity of the embedding W C T HT�
�

,

([ , ]; )� [2; Theorem IV.1.17], conditions (2) and (a),

compactness of the embedding W L T HT�
�

,

( , ; )�
2

[4; Theorem 1.5.1], and also the reflexivity of the space W T� ,

with

derivative chart norm (4), we obtain that, up to a subsequence { } { }u d u dn n k n n nk k
, ,

� �
�

1 1

, the following convergences

take place for some u W T�
� ,

and d X T�
� ,

*

:

u unk
� weakly in X T� ,

,
� � �u unk

weakly in X T� ,

*

, d dnk
� weakly in X T� ,

*

,

u unk
� weakly in C T H([ , ]; )� , u unk

� in L T H
2

( , ; )� ,

u t u tnk
( ) ( )� in H for a.a. t T k� � ��( , ),� . (13)
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We will complete the proof of the theorem in several steps.

Step 1. Let us prove that

� � �t T u t u tnk
( , ] ( ) ( )� in H k, � ��. (14)

Lemma 4 implies that � �k 1, � �t s, t s T, [ , ]� � ,

| | ( )| | ( | | | | ) | | ( )| | ( | | |u t c f t u s c fn H H n Hk k

2

5

2 2

5

1 1
 � � 
 � | )

H
s

2

.

(15)

From convergences (13) we obtain that, for a.a. s T� ( , )� and for a.a. t s T� ( , ) , we have

| | ( )| | ( | | | | ) | | ( )| | ( | | | | )u t c f t u s c f
H H H H

2

5

2 2

5

2

1 1
 � � 
 � s.

Since u W C T HT� �
�

�
,

([ , ]; ), � �t s, t s T, [ , ]� � , we have

| | ( )| | ( | | | | ) | | ( )| | ( | | | | )u t c f t u s c f
H H H H

2

5

2 2

5

2

1 1
 � � 
 � s. (16)

Therefore, the functions

J t u t c f tk n H Hk
( ) | | ( )| | ( | | | | )� 
 �

2

5

2

1 , (17)

J t u t c f t
H H

( ) | | ( )| | ( | | | | )� 
 �
2

5

2

1

(18)

are continuous and monotonically nonincreasing on [ , ]� T .

Since u t u tnk
( ) ( )� in H for a.a. t T� ( , )� , we have

J t J t kk ( ) ( ),� � � � for a.a. t T� ( , )� . (19)

Let us show that

lim

k
kJ t J t t T

���

� � �( ) ( ) ( , ]� . (20)

It follows from convergence (19) that � �t T( , ]� , � 
� 0	 � 
 �t t J t J t( , ) : | ( ) ( )|� � and that lim

k
kJ t J t

���

�( ) ( ) .

Therefore, � �k 1, we have

J t J t J t J t J t J t J t J tk k k( ) ( ) ( ) ( ) | ( ) ( )| | ( ) ( )| |
 � 
 � 
 � 
 � �� J t J tk ( ) ( )|
 .

Thus, we obtain

� � � 
 � �

���

t T J t J t
k

k( , ], ( ) ( )� � �0 lim ,

which implies inequalities (20) and, in particular, the inequality

lim

k
n H H

u t u t t T
k

���

� � �| | ( )| | | | ( ) | | ( , ]

2 2

� .

The weak convergence of u tnk
( ) to u t( ) in H as k � � � � �t T[ , ]� , inequality (20), and the result of [2;

Theorem ².5.12] implies convergence (14).

Step 2. Let us show that

u f dT� � 

� ,

. (21)

By virtue of Lemma 1, for any k �1 and � ��
�

C T V
0

([ , ]; ) , the following relationship is true:


 � � � � � � � � �� � �
� �

�
, , ,

, ,

,

u d fn X n X Tk T k T
. (22)

Passing to limit in relationship (22) as k � � �, we obtain

� � 
� � � � � � � � �
�

� � � � �
� �

�
C T V u d fX X TT T0

([ , ]; ) , , ,

, ,

,

.
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Thus, using properties of the Bochner integral, � �
�

	 �C T
0

([ , ]) , � �h V, we have


 �

�

�

�

�

�

 

!

!

� 
 �� �u s s ds h h u s s ds

T

H

T

( ) ( ) , ( , ( )) ( )

� �

	 	 � � 
 � � 
� �
�

�

�

	 	

T

V T

T

V

f d s h s ds f s d s s ds h( ), ( ) [ ( ) ( )] ( ) ,

,

.

Relationship (21) directly follows from the definition of the derivative of an element u X T�
� ,

in the sense of

�
* *

([ , ]; )� T V .

Step 3. We fix an arbitrary � �� 
( , )0 T and, using the pseudo-monotonicity of �
� �� ,T on W T� �� ,

, show that

d t A u t( ) ( ( ))� for a.a. t T� �( , )� � . (23)

Let us consider restrictions unk
( )� , dnk

( )� , u( )� , and d ( )� to the interval [ , ]� �� T . For simplicity, we denote them

by the same symbols unk
( )� , dnk

( )� , u( )� , and d ( )� , respectively. From convergences (13) and (14), we have

u unk
� weakly in W T� �� ,

, d dnk
� weakly in X T� �� ,

*

,

� � � �t T u t u tnk
[ , ] ( ) ( )� � in H, k � ��. (24)

Let us show that

lim

k
n n Xd u u

k k T
���

� 
 � �
�

,

,� �

0. (25)

In fact, we have

� � � 
 �

�

�k d s u s u s ds

T

n n Vk k
1

� �

( ), ( ) ( ) � 
 
 � � 


� �

� �( , ( ) ( )) , ( ), ( ) ( )

� � � �

T

n

T

n nf u s u s ds u s u s u s
k k k

�V ds. (26)

It follows from convergence (24) that

( , ( ) ( )) ,

� ��

� 
 � � ��

T

nf u s u s ds k
k

0 . (27)

From statements (5) and (24) we obtain

� � 
 �

�

�
� �

T

n n Vu s u s u s ds
k k

( ), ( ) ( ) � � � � 
 
 �

�

�
� �

� �

T

n V n
H

nu s u s u T u
k k k

( ), ( ) (| | ( )| | | | ( )| |

1

2

2

H

2

)

� � � � 
 
 � �

�

�
� �

� � �

T

V
H H

u s u s u u( ), ( ) (| | ( )| | | | ( )| | ) ,

1

2

0

2 2

k � ��.

(28)

Passing to limit in statement (26) as k � � �, we obtain statement (25) from statements (27) and (28).

Thus, we obtain relation (23) from statements (11), (24), and (25) and the pseudo-monotonicity of �
� �� ,T on

W T� �� ,

.

Step 4. The arbitrariness of � �� 
( , )0 T , convergences (13), relation (23), and definition of �
� ,T imply u T( ) ( )

,

� � �
�

� .

Step 5. We prove convergence (10) by contradiction. Let us assume that 	 
� 0 , 	 
L 0 , and 	 �
� �

{ } { }u uk j n kj k1 1

such that

� � 
 � 


� �

j u t u t u t u t
t T

k H k j jj j
1 max

[ , ]

| | ( ) ( )| | | | ( ) ( )| |

� �

H L� .

Without loss of generality, we can consider that t t Tj � � �
0

[ , ]� � , j � ��. Hence, by virtue of the continuity of

u T H: [ , ]� � , we have

lim

j

k j Hu t u t L
j

���


 �| | ( ) ( )| |

0

. (29)

At the same time, let us show that

u t u tk jj
( ) ( )�

0

in H, j � ��. (30)

Step 5.1. We first prove that

u t u tk jj
( ) ( )�

0

weakly in H, j � � �. (31)
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For a fixed h V� , it follows from convergences (13) that the sequence of real functions ( ( ), ):[ , ]u h Tnk
� �� � is

uniformly bounded and equipotentionally continuous. Taking into account inequality (12) and the density of the embedding

V H� , we obtain that u t u tnk
( ) ( )� weakly in H and uniformly on [ , ]� T , k � � �, which implies convergence (31).

Step 5.2. We prove that

lim

j
k j H Hu t u t

j
���

�| | ( )| | | | ( )| |

0

. (32)

Let us consider the continuous monotonically nonincreasing functions J k j
and J , j �1, defined as functions (17)

and (18). We fix an arbitrary �
1

0
 . It follows from convergence (19) and the continuity of J that

	 � �

���

t t J t J t
j

k j
( , ): ( ) ( )�

0

lim , | ( ) ( ) |J t J t
 �
0 1

� .

Then, for sufficiently large j �1, we have

J t J t J t J t J t J t J t Jk j k kj j j
( ) ( ) | ( ) ( )| | ( ) ( )| | ( )
 � 
 � 
 � 


0 0

( )|t � �
1

.

Hence, we have lim

j
k jJ t J t

j
���

� �( ) ( )

0 1

� . From the arbitrariness of �
1

0
 and since t t
j
�

0

and j � � �, we obtain

inequality (32).

Step 5.3. Convergence (31), inequality (32), and [2; Theorem ² .5.12] directly imply convergence (30).

Step 5.4. To complete the proof of the theorem, we note that convergence (30) contradicts inequality (29).

The theorem is proved.

COROLLARY 1. Let � �T, let { }un n�1

be an arbitrary sequence of weak solutions to problem (1) on [ , ]� T , and let

the sequence be such that un ( )� �� in H, n � � �. Then there are u T( ) ( )

,

� ��
�

� and { } { }u un k n nk � �
�

1 1

such that

u unk
� in C T H([ , ]; )� , k � � �.

Proof. The unique vital difference from the proof of Theorem 1 consists of checking the inequality

lim

j
k jJ t J t

j
���

�( ) ( )

0

when t
0

� �, t tj �
0

, j � � �, and { }t Tj j� �
1

[ , ]� (see step 5.2 of the proof of Theorem 1). In this

case, � �j 1, J t J J Jk j kj j
( ) ( ) ( ) ( )
 � 
� � � . Since u un ( ) ( )� �� in H, n � � �, we have J Jk j

( ) ( )� �� , j � � �. Hence,

we obtain lim

j
k jJ t J t

j
�� �

�( ) ( )

0

.

4. GLOBAL ATTRACTORS

Let us consider constructions introduced in [7]. We denote by P H( ) (�( )H ) the collection of all nonempty (nonempty

bounded) subsets of the space H. We recall that an m-semiflow is understood to be a multivalued mapping G H P H: ( )�� �

for which

� G Id( , )0 � � (identity mapping);

� G t s x G t G s x( , ) ( , ( , ))� � � � �
�

x H t s, , � ;

an m-semiflow is strict if G t s x G t G s x( , ) ( , ( , ))� � � � �
�

x H t s, , � .

It follows from Lemmas 3 and 4 that any weak solution can be extended to a global solution defined on [ , )0 � � . Let,

for an arbitrary y H
0

� , �( )y
0

be a collection of all weak solutions (defined on [ , )0 � � ) to problem (1) with the initial data

y y( )0

0

� .

We define the m-semiflow G as follows: G t y y t y y( , ) ( ) | ( ) ( )

0 0

� � �{ }� .

LEMMA 5. The m-semiflow G is strict.

Proof. Let y G t s y� �( , )

0

. Then y u t s� �( ) , where u y( ) ( )� ��
0

. Lemma 3 implies that v u s u s( ) ( ) ( ( ))� � � � �� .

Hence, we have y v t� ( )� �G t u s G t G s y( , ( )) ( , ( , ))

0

.

Conversely, if y G t G s y� ( , ( , ))

0

, then 	 � �u y( ) ( )�
0

, v u s( ) ( ( ))� �� : y v t� ( ). Let us define the following

mapping:

z
u s

v s s t s
( )

( ), [ , ],

( ), [ , ].

�

� �

� �

�

�


 � �

�

�

�

0
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It follows from Lemma 3 that z y( ) ( )� ��
0

. Hence, y z t s� �( )� �G t s y( , )

0

.

We recall that a set � is called a global attractor of G if

� � is negatively semiinvariant (i.e., � �� G t( , ) � �t 0);

� � is an attracting set, i.e.,

dist ( ( , ), ) , ( )G t B t B H� �� � �� � �0 , (33)

where dist sup inf( , ) | | | |C D c d

c C d D
H

� 


�
�

is the Hausdorff hemimetric;

� for any closed set Y H� satisfying property (33), we have � � Y (minimality).

A global attractor is called invariant if � ��G t( , ) � �t 0 .

Let us prove the existence of an invariant compact global attractor.

THEOREM 2. An m-semiflow G possesses an invariant global attractor � compact in the phase space H.

Proof. It follows from Lemma 4 that

	 
 � � � � � �



R y H y y t y t y e
H H

,

~

: , ( ) ( ), | | ( )| | | | | |

~

� 0 0

0 0

2

0

2

�
�t

R� .

(34)

Thus, a sphere B u H u RH0

1� � � �{ }| | | | | is an absorbing set, i.e., � �B H�( ) 	 
T B( ) 0 : � �t T B( ) G t B B( , ) �
0

.

In particular, inequality (34) implies that the set "
�t G t B

0

( , ) is bounded in H � �B H�( ) .

We also note that, by Theorem 1, a mapping G t H( , ):� � �( )H assumes compact values and is compact when t 
 0 in

the sense that it translates bounded sets into precompact sets.

Let us prove that the mapping u G t u
0 0

� ( , ) is upper semicontinuous [9; Definition 1.4.1]. To this end, it suffices to

show [10; p. 48] that � �u H
0

, � 
� 0	 

 �( , )u
0

0 : � �u B u



( )

0

G t u B G t u z H z G t u( , ) ( ( , )) | ( , ( , ))� � � �
�

�
0 0

{ dist }.

If this is not the case, then there are u H
0

� , � 
 0, { }
n n�
� � �

1

0( , ), and { }u Hn n�
�

1

such that � �n 1 u B un n
�



( )

0

,

G t u B G t un( , ) ( ( , ))#
� 0

, and 
n � 0 , n � � �. Then we have � �n 1 	 � �v un n( ) ( )� : v t B G t un ( ) ( ( , ))$
� 0

. Since

u un �
0

in H, n � � �, Theorem 1 implies that v t v t G t un ( ) ( ) ( , )� �
0

in H, n � � � , for some v u( ) ( )� ��
0

. This

contradicts the fact that � �n 1 | | ( ) ( )| |v t v tn H
 � �.

Thus, the existence of a global attractor with required properties directly follows from [7; Proposition 2, Theorem 3,

and Remark 8].

The theorem is proved.

5. TRAJECTORY ATTRACTORS

Let us consider the family � �
� �

� " y H y
0

0

( ) of all weak solutions to inclusion (1) that are defined on [ , )0 � � .

Note that �
�

is translationally invariant, i.e., � � �
�

u( ) � , � �h 0 uh ( )� �
�

� , where u s u h s
h

( ) ( )� � , s � 0. We specify

a semigroup of translations { }T h h( )

�0

, T h u uh( ) ( ) ( )� � � , h � 0, u �
�

� on �
�

. By virtue of the translational invariance of

�
�

, we conclude that T h( )� �
� �

� when h � 0 .

We construct an attractor of the translational semigroup { }T h h( )

�0

acting on �
�

. On �
�

, we consider the topology

induced from the Frechet space C H
loc

( ; )�
�

. Note that

f fn ( ) ( )� � � in C H M fM n

loc

( ; ) ( )�
�

% � 
 �0 & � �&M f ( ) in C M H([ , ]; ),0

where &M is the restriction operator on an interval [ , ]0 M [6; p. 18]. We denote by &
�

the restriction operator on

[ , )0 � � .

We recall that a set � � '
� � �

C H L H
loc

( ; ) ( ; )� � is called attracting for the space of trajectories �
�

of

inclusion (1) in the topology of C H
loc

( ; )�
�

if, for any set � ��
�

bounded in L H
� �

( ; )� and an arbitrary number M � 0 ,

the following relationship is satisfied:

distC M H M MT t t
([ , ]; )

( ( ) , ) ,

0

0& &� � � � ��. (35)
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A set � ��
�

is called a trajectory attractor in the space of trajectories �
�

with respect to the topology of

C H
loc

( ; )�
�

[6; Definition 1.2] if

� � is compact in C H
loc

( ; )�
�

and is bounded in L H
� �

( ; )� ;

� � is strictly invariant with respect to { }T h h( )

�0

, i.e., T h( )� �� � �h 0 ;

� � is an attracting set for the space of trajectories �
�

in the topology of C H
loc

( ; )�
�

.

Let us consider inclusion (1) on the entire number axis. By analogy with the space C H
loc

( ; )�
�

, the space

C H
loc

( ; )� is supplied with the topology of local uniform convergence on every interval [ , ]
 �M M � [6; p. 198].

A function u C H L H� '
�

loc

( ; ) ( ; )� � is called a complete trajectory of inclusion (1) if � �h � &
� �

� �uh ( ) � [6; p. 198].

Let � be the totality of all complete trajectories of inclusion (1). We note that

� � � � � � �h u uh�, ( ) ( )� � . (36)

LEMMA 6. The set � is nonempty, is compact in C H
loc

( ; )� , and is bounded in L H
�

( ; )� ; moreover, we have

� � � � � �y t y t( ) , ( )� �� , (37)

where � is the global attractor from Theorem 2.

Proof. Step 1. Let us show that � � �. It may be noted that [15] and also conditions (1) and (3)–(5) imply that

	 �v V: A v f( ) � . We put u t v( ) � � �t � . Then u � � �� .

Step 2. Let us prove statement (37). For any y�� 	 
d 0 : | | ( )| |y t dH � � �t �. We put B y t Ht� " �
�� { }( ) ( )� .

Note that, � �� � , � �
�

t � y y tt( ) ( )�
�

�



� �



G t y G t Bt( , ( )) ( , )

�
0 . It follows from Theorem 2 and convergence (33)

that � 
� 0 	 
T 0 : � �� � dist dist( ( ), ) ( ( , ), )y G T B� �� �� � . Therefore, taking into account the compactness of � in H,

for any u( )� �� and � ��, we have u( )� ��.

Step 3. The boundedness of � in L H
� �

( ; )� follows from statement (37) and the boundedness of � in H.

Step 4. We check the compactness of � in C H
loc

( ; )� . To this end, is suffices to check its precompactness and

closedness.

Step 4.1. We check the precompactness of � in C H
loc

( ; )� . If this is not the case, then, by virtue of statement (36),

	 
M 0 : &M � is not a precompact set in C M H([ , ]; )0 . Hence, there is a sequence { }vn n M�
�

1

& � that does not have

a subsequence converging in C M H([ , ]; )0 . At the same time, we have v un M n� & , where un � � , v un n( ) ( )0 0� �� ,

n �1. Since � is a compact set in H (see Theorem 2), by virtue of Corollary 1, 	 �
� �

{ } { }v vn k n nk 1 1

, 	 �� H,

	 � �v M( ) ( )

,

�
0

� : vnk
( )0 � � in H and v vnk

� in C T H([ , ]; )0 , k � � �. We arrive at a contradiction.

Step 4.2. We check the closedness of � in C H
loc

( ; )� . Let { }vn n�
�

1

� , v C H�
loc

( ; )� : v vn � in C H
loc

( ; )� ,

n � � �. The boundedness of � in L H
�

( ; )� implies v L H�
�

( ; )� . From Corollary 1 we obtain that, � 
M 0 , the

restriction v( )� to an interval [ , ]
M M belongs to �




M M v T
,

( ( )) . Hence, v( )� is a complete trajectory of inclusion (1).

Thus, v�� .

LEMMA 7. Let � be the global attractor from Theorem 2. Then

� � 	 � � �y y y y
0 0

0� �( ) : ( ) . (38)

Proof. Let y
0

� �, and let u y( ) ( )� ��
0

. From inequality (9) and convergence (33) we obtain � �
�

t � y t( )�� .

Theorem 2 implies that G( , )1 � �� . Therefore, we have

� � 	 � 	 � � �� � 	 � 	 �
� �

� � �, ( ) ( ) : ( )

,0 1

1 .

For any t ��, we put

y t
u t t

t k t k k ky k

( )

( ), ,

( ), [ , ), .

( )

�

�

� � 
 
 � �

�

�

�

�


 �

�

�	
1

1

We note that y C H�
loc

( ; )� and y t( )�� � �t � (hence, y L H�
�

( ; )� ) and, by virtue of Lemma 3, y�� and, at the

same time, y y( )0

0

� .
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THEOREM 3. Let � be the global attractor from Theorem 2. Then there is a trajectory attractor � ��
�

in the

space �
�

. In this case, we have

� � � �� � � � � �
� �

& & { }y y t t| ( ) � . (39)

Proof. It follows from Lemma 6 and the continuity of the operator &
�

: ( ; )C H
loc

� �
�

C H
loc

( ; )� that the set

&
�

� is nonempty, is compact in C H
loc

( ; )�
�

, and is bounded in L H
� �

( ; )� . Moreover, the second equality in formula

(39) is fulfilled. The strict invariance of &
�

� follows from the autonomy of inclusion (1).

Let us prove that &
�

� is an attracting set for the space of trajectories �
�

in the topology of C H
loc

( ; )�
�

. Let

B �
�

� be a bounded set in L H
� �

( ; )� , and let M � 0. Let us check the fulfillment of relationship (35). If it is not

fulfilled, then there are sequences t n � � �, v Bn ( )� � such that

� � � � �n v tC T H M n n M1

0

dist

([ , ]; )

( ( ), )& & � �. (40)

At the same time, the boundedness of B in L H
� �

( ; )� implies that 	 
R 0 : � � �v B( ) , � �
�

t � | | ( )| |v t RH � . Thus,

	 �N 1: � �n N v tn n( )� � 
 �G t v G G t v G Bn n n n R( , ( )) ( , ( , ( ))) ( , )0 1 1 0 1 , where B u H u RR H� � �{ }| | | | .

Hence, taking into account convergence (33) and the compactness of the mapping G H( , ):1 � � �( )H (see the proof

of Theorem 2), we obtain 	 �
� �

{ } { }v t v tn n k n n nk k
( ) ( )

1 1

, 	 �z �: v t zn nk k
( ) � in H, k � � �. Next, � �k 1, we put

	k n nt v t t
k k

( ) ( )� � , t M�[ , ]0 . Note that, � �k 1, 	
k M n nv t

k k
( ) ( ( ))

,

� ��
0

. Then, from Corollary 1, we obtain

a subsequence { } { }	 	k j k kj � �
�

1 1

and an element 	( ) ( )

,

� ��
0 M z ,

	 	k j
� in C M H j([ , ]; ),0 � � �. (41)

In this case, taking into account the invariance of � (see Theorem 2), � �t M[ , ]0 	( )t ��. By Lemma 7, there are

y v( ), ( )� � �� such that y z( )0 � and v M( ) ( )0 � 	 . For any t ��, we put

� 	( )

( ), ,

( ), [ , ] ,

( ), .

t

y t t

t t M

v t M t M

�

�

�


 �

�

�

(

�
(

0

0

By Lemma 3, �( )� �� . Hence, from statement (40), we obtain

� � � � 
 � � 
k v tM n n M C M H k Ck k
1

0 0

| | ( ) ( )| | | | | |

([ , ]; ) ([

& & � 	 	
, ]; )M H � �,

contrary to convergence (41).

Thus, the set � in the construction of attractor (39) is a trajectory attractor in the space of trajectories �
�

with respect

to the topology of C H
loc

( ; )�
�

.

The theorem is proved.

EXAMPLES

We consider the class of nonlinear boundary problems in which the dynamics of solutions can be investigated as

t � � �, making no pretense to the generality of the presentation.

We assume that n � 2 , m �1, p � 2 , 1 2� �q ,

1 1

1

p q
� � , and ) � �

n
is a bounded domain with a sufficiently smooth

boundary * )� + . We denote by N
1

(respectively, by N
2

) the number of derivations of order � 
m 1(respectively, of order

� m) with respect to x. Let also A x
�

� �( , ; ) be a family of real functions ( | |� � m) defined in )� �� �
N N

1 2

and satisfying

the conditions

(a) for a.a. x�), a function ( , ) ( , , )� � � �
�

� A x is continuous in � �
N N

1 2

� ;

(b) � � �( , )� � � �
N N

1 2

, a function x A x�
�

� �( , , ) is measurable in );

809



(c) there are c
1

0� and k Lq1

� ( )) such that, for a.a. x�), � ( , )� � � �� �
N N

1 2

, we have

| ( , , )| [| | | | ( )]A x c k x
p p

�
� � � �� � �


 


1

1 1

1

;

(d) there are c
2

0
 and k L
2 1

� ( )) such that, for a.a. x�), � �( , )� � � �
N N

1 2

� , we have

A x c k x

m

p

�

�

�
� � � �

| |

( , , ) | | ( )

�

, � 

2 2

;

(e) for a.a. x�), � �� �
N

1

, � �� �,

*

�
N

2

, and � ��
*

, we have

( ( , , ) ( , , ))( )

| |

* *

A x A x

m

�

�

� � �
� � � � � �

�

, 
 
 
 0 .

We introduce the denotations D u D u k
k

� �{ }

�
�, | | and 
u u Du D u

m
�



{ }, ,... ,

1

[4; p.194].

We investigate the dynamics of all weak (generalized) solutions defined on [ , )0 � � for an arbitrary fixed external

force f L�
2

( )) as t � � � in the following problem:

+

+

� 
 �

�

,
y x t

t
D A x y x t D y x t

m

m( , )

( ) ( ( , ( , ), ( , )))

| |

| |

�

� �

�

1 f x( ) in )� � �( , )0 ,

(42)

D y x t
�

( , ) � 0 on *� � � � 
( , ), | |0 1� m . (43)

We introduce the following denotations [4; p. 195]: H L�
2

( )) , V W
m p

�
0

,

( )) is the Sobolev space of real-valued

functions, and

a u A x u x D u x D x dx u V

m

m
( , ) ( , ( ), ( )) ( ) , ,

| |

� 
 � �

�

�

�
� �

�

, �
)

.

Condition (2) takes place according to the Sobolev theorem on the compactness of embedding. Taking into account

conditions (a)–(e) and the reasoning from [4; pp. 192–199], the operator A V V:

*

� defined by the formula

� � �A u a uV( ), ( , )� � � �u V, � satisfies conditions (3)–(5). Hence, it is possible to pass from problem (42), (43) to the

corresponding problem in “generalized” statement (1). We note that

A u D A x u D u u C

m

m
( ) ( ) ( ( , , )) ( )

| |

| |

� 
 � �

�

�

,
�

� �

�

1

0

) .

Thus, for weak (generalized) solutions of problem (42), (43), all the statements from the previous sections, in

particular, Theorems 1–3 and Lemmas 1–7 are fulfilled.

Comment 3. New classes of problems can also be considered as applications such as problems with degeneration,

problems on manifolds with boundary and without boundary, problems with delay, stochastic partial differential equations, and

other problems with differential operators of pseudomonotone type with the corresponding choice of phase spaces [4, 11–13].

CONCLUSIONS

It follows from the results of Secs. 4 and 5 that an m-semiflow G constructed over all weak solutions to problem (1)

has a compact invariant global attractor � . For all weak solutions to problem (1) that are defined on [ , )0 � � , there is a

trajectory attractor �. At the same time, we have � � �� � �( ) ( ) |0 0{ }y y , � ��
�

& , where � is the totality of all

complete trajectories of differential-operator inclusion (1) in C H L H
loc

( ; ) ( ; )� �'
�

. Thus, the equality of global attractors

is proved both in the sense of [7; Definition 6] and in the sense of [6; Definition 2.2]. The questions of connectedness and

dimensionality of the constructed attractors remain open in the general case. We note that the approaches proposed in [6, 7]

are based on properties of solutions of evolutionary objects, in particular, in this work, on properties of the interaction

function A from problem (1) and properties of phase spaces.
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Analyzing the proofs of the presented results, the following weaker condition imposed on the mapping A V V:

*�
�

can

be considered instead of condition (5): since u un � weakly in V, d A un n� ( ) � �n 1, d dn � weakly in V
*

, n � � �, and

lim

n
n n Vd u u

�� �

� 
 � �, 0 , we have d A u� ( ) .

For the class of autonomous differential-operator inclusions with a pseudomonotone nonlinear dependence between

key problem parameters, the dynamics of all global weak solutions defined on [ , )0 � � is investigated as t � � �. The

existence of a global compact attractor and a compact trajectory attractor is proved, their structures are studied, and the

equality of global attractors is checked both in the sense of Definitions 6 from [7] and in the sense of Definition 2.2 from [6].

The obtained results allow one to investigate the dynamics of solutions of new classes of evolutionary inclusions from

nonlinear mathematical models of geophysical and sociotechnical processes and fields with a pseudomonotone interaction

function satisfying the condition of no more than polynomial growth and standard sign condition.
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