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ABSENCE SEIZURES AS RESETTING MECHANISMS

OF BRAIN DYNAMICS
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To understand the increase in age-related incidence and frequency of absence seizures in the rat brain,

we investigated the effect of these seizures on brain dynamics. This paper puts forward the hypothesis

that age-related differences in the expression of absence seizures are associated with the ability of the

seizures to reset brain dynamics.
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1. INTRODUCTION

Epilepsy is one of the most common neurological disorders, second only to stroke, affecting about 0.8% of the

world’s population [1]. Although epilepsy occurs in all age groups, the highest incidences are found in infants and the

elderly. Absence epilepsy is a subtype of generalized epilepsy manifested by seizures characterized by brief periods of

impaired consciousness (absence seizures). Human absence epileptic seizures are typically associated with bursts of

generalized 3 Hz spike-wave discharges (SWDs) in the electroencephalogram (EEG). The usual duration is 3–10 sec,

ranging up to a few minutes. The level of functioning during a SWD depends in part on the duration of the seizure, and the

recovery from such episodes is usually fast, in the order of a few seconds.

Animal modeling of absence seizures has been conducted in numerous studies. The defining EEG events in rodents are

7–12 Hz generalized SWDs (Fig. 1) of variable duration with an abrupt onset and abrupt termination, which usually occurs

during passive wakefulness or sleep [2, 3]. In the previous study [4], numerous spontaneous bilateral cortical 7–9 Hz

spike-wave discharges were recorded in control and brain-lesioned animals spanning an age range from 2 to 30 months. As

animals progress from mid-aged to aged periods, they can experience hundreds of absence seizures per day [5].

A central feature of epilepsy is that it is characterized by seizures that are transient in nature and occur spontaneously in a

recurrent fashion. Epilepsy has been described as a dynamical disease with pathological states characterized by the occurrence of

abnormal dynamics [6]. From a dynamical perspective, a seizure may represent self-organizing behavior in which widespread

cortical areas make an abrupt transition to an ordered state and reset to a normal state at the end of the seizure [7]. Nonlinear

time-dependencies have also been reported in the pattern of seizure occurrence, which indicate that seizures do not occur

randomly, but rather reflect determinism [8, 9].

In an effort to better understand the relationship between aging and the differential expression of SWDs, we studied the

dynamical EEG properties of the epileptic brain. The concept of “brain dynamical resetting” may provide some insights into the
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mechanisms underlying increased seizure susceptibility of the aged brain. One way to quantify the effect of an event, e.g.

a seizure, is to estimate how dynamical EEG properties change after the event. A nonlinear measure that is closely related to the

rate at which information is produced, the short-term maximum Lyapunov exponent (STL
max

), was utilized to extract a

dynamical profile of the EEG signal over time for each recording channel. This measure has been found to be useful in

capturing and predicting system (brain) dynamics associated with transitions into and out of epileptic seizures [10–15]. The

overall goal of this study was to establish a clear relationship between changes in the dynamical EEG properties of the brain

and differences in the age-related expression of SWDs.

2. STATE SPACE TOPOGRAPHY AND ANALYSIS OF iEEG

The state space portrait of a signal (time series) provides a visual representation of its evolution in a multidimensional

space over time. Its characteristics reflect the original characteristics of the signal, and ultimately the system that generates

the signal. The state space can be thought of as a collection of all possible states that a dynamical state visits during its

evolution. In general, the state space is identified with a topological manifold. A p-dimensional state space is spanned by a

set of p-dimensional “embedding vectors,” each of which defines a point in the state space, thus representing the

instantaneous state of the system.

2.1. State Space Reconstruction. The theoretical basis for the relationship between a signal and its state space

representation generated by earlier work [16, 17] was developed from the Whitney embedding theorem [18]. A state space

portrait is created by treating each time-dependent variable of the system as a component of a vector in a multidimensional

space. Each vector in the state space represents an instantaneous state of the system. These time-dependent vectors are

plotted sequentially in the state space to represent the evolution of the state of the system over time. For many systems, this

graphical mapping creates an object confined over time to a sub-region of the state space. The geometrical properties of

these confined objects, called “attractors,” provide information about the global state of the system. The vector

reconstruction is achieved as follows:

�

X x t x t x t p� � � �{ }( ), ( ),... , ( ( ) )� �1 ,

where x t( ) is the value at time t; � is a fixed time increment; and p is the embedding dimension. Every instantaneous

state of the system is therefore represented by the vector X, which defines a point in the p-dimensional state space. The

intracranial EEG (iEEG), being the output of a multidimensional system, has both spatial and temporal statistical
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Fig. 1. A sample of a generalized SWD

recorded from a rat. The F3, C3, and P3

abbreviations refer to skull screw electrodes

overlying left frontal, central, and parietal

regions of the animal’s brain, respectively;

F4, C4, and P4 refer to the brain areas on

the right. An “F3-C3” label corresponds to an

EEG channel produced by the output of one

differential amplifier with inputs from the F3

and C3 electrodes.



properties. Components of the brain (neurons) are densely interconnected and there exists an inherent relation between

the iEEG recorded from one site and the activity at other sites. This makes the iEEG a multivariate time series. The

state space reconstruction of the iEEG signal in a three-dimensional state space (Fig. 2) was done using the method of

delays [17].

2.2. Embedding Parameters for iEEG Reconstruction. An accurate representation of the system in a state space

depends upon making appropriate choices of the embedding dimension p and time delay �. The choice of p for experimental

data such as ours is not a straightforward issue. According to Takens [17], if d is the fractal dimension of the attractor in a

state space, the embedding dimension p should be at least equal to 2 1d � in order to correctly reconstruct the attractor.

Therefore, one of the first steps in characterizing the properties of a system is to estimate the fractal dimension of the

attractor. The dimension helps to determine the position of a point on the attractor to within a certain degree of accuracy. In

addition, it provides a lower limit to the number of variables necessary to model the system.

To ensure that the ictal (seizure) dynamics were captured, we calculated the fractal dimension and the time delay from

the iEEG recorded during the ictal period. For any attractor, the dimension can be estimated by looking at the manner in

which the number of points within a sphere of radius r scales as the radius shrinks to zero. The geometric relevance of this

observation is that the volume occupied by a sphere of radius r in the dimension d behaves as r
d

. The correlation function or

correlation integral C r( ) measures the probability that two vectors on the attractor, selected at random, lie within a distance r

of each other. This function of two variables is an invariant on the attractor, but it has become conventional to look only at

the variation of this quantity when r is small. In that limit, it is assumed that

C r r
d

( ) � ,

defining the generalized fractal dimension d when it exists. From the above equation, d can be estimated in the limiting

case as

d
C r

rr

�

�

lim

log[ ( )]

log[ ]0

.

In practice, we need to compute C r( ) for a range of small r over which we can argue that the function log [ ( )]C r is

linear in log[ ]r and then select the linear-like slope over the range. Figure 3 shows a plot of

d C r

d r

log[ ( )]

log[ ]

versus log [ ]r for an
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Fig. 2. (a) Ictal segment of a filtered iEEG recorded from the hippocampus of

a rat, (b) Reconstructed iEEG segment in 3-D state space.
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ictal segment where C r( ) denotes the correlation integral and r represents the attractor size. The curves correspond to

different values of the embedding dimension (p = 6, 7, 8, and 9) and a time delay of 15 msec. The objective is to find a

“middle” region in log [ ]r where the derivative (slope) is consistent. The figure illustrates the difficulties in establishing a

clean, unsullied value of the correlation dimension for experimental data.

Therefore, following the values used in human studies, we have used an embedding dimension p = 7 for the reconstruction

of the phase space. This value of p may be too small for the construction of a state space that can reconstruct all interictal

attractors of the brain, but it should be adequate for detection of the transition of the brain toward the ictal stage if the epileptic

attractor is active in its space prior to the occurrence of the epileptic seizure.

The embedding delay parameter � should be small enough to capture the shortest change (i.e., highest frequency

component) present in the data, but should also be large enough to generate (with the method of delays) the maximum

possible independence between the components of the vectors in the state space. These two conditions are usually addressed

by selecting � as the first minimum of the mutual information between the components of the vectors in the state space or as

the first zero of the time-domain autocorrelation function of the data [19]. Theoretically, because the time span ( )p � �1 � of

each vector in the state space represents the duration of a state of the system, ( )p � �1 � should be at most equal to the period of

the maximum (or dominant) frequency component in the data. For example, a sine wave (or a limit cycle) has � = 1, then a

p � � � �2 1 1 3 is needed for the embedding, and ( )p � �1 � should be equal to the period of the sine wave. Such a value of �

would then correspond to the Nyquist sampling of the sine wave in the time domain. In the case of the epileptic attractor, the

highest frequency present is 70 Hz (the iEEG data are low-pass filtered at 70 Hz), which means that if p � 3, the maximum � to

be selected is about 7 msec. However, because the dominant frequency of the epileptic attractor (i.e., during the ictal period) in

the animal iEEG was never more than 15 Hz, according to the above reasoning, the adequate value of � for the reconstruction

of the state space of the epileptic attractor with p = 7 is ( )7 1 67� � �� msec, that is, � should be about 11 mseñ [20].

2.3. Positive Lyapunov Exponent in the iEEG. The Lyapunov exponents of a system are a set of invariant

geometric measures that describe the dynamical content of the system. In particular, they serve as a measure of the ease of

predicting the future state of the system. Lyapunov exponents quantify the rate of divergence or convergence of two nearby

initial points of a dynamical system, in a global sense. A positive Lyapunov exponent measures the average exponential

divergence of two nearby trajectories, whereas a negative Lyapunov exponent measures exponential convergence of two

nearby trajectories. A zero Lyapunov exponent indicates the temporal continuous nature of a flow. If a discrete nonlinear

system is dissipative in nature, then a positive Lyapunov exponent quantifies a measure of chaos. Consequently, a system

with positive exponents has positive entropy in that trajectories that are initially close together move apart over time. The

more positive the Lyapunov exponents are, the faster they move apart. Similarly, for negative exponents, the trajectories

move together in time. A system with both positive and negative Lyapunov exponents is said to be chaotic. Stated
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Fig. 3. Derivative of the correlation function calculated for a rat iEEG ictal

segment (2000 points) created from vector spaces of dimension p=6, 7, 8, and 9,

with respect to ln ( )r . Consistency is observed in a broad range of ln ( )r with

slopes that lie in a range of values from 2 to 4.
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differently, Lyapunov exponents quantify the amount of linear stability or instability of an attractor or an asymptotically long

orbit of a dynamical system.

Wolf et al. [21] proposed an algorithm for calculating the largest Lyapunov exponent. First, the state space

reconstruction is made and the nearest neighbor is searched for one of the first embedding vectors. After the neighbor and

the initial distance (l) are determined, the system is evolved forward for some fixed time (evolution time) and the new

distance (
�l ) is calculated. This evolution is repeated, calculating the successive distances, until the separation is greater than

a certain threshold. A new vector (replacement vector) is searched as close as possible to the first one, having approximately

the same orientation of the first neighbor. The short term maximum Lyapunov exponent (STL
max

) used in this study was

estimated using the method proposed by Iasemidis et al. [23], which is a modification of Wolf’s algorithm. The measure was

termed “short-term maximum Lyapunov exponent” to distinguish it from those used to study autonomous dynamical

systems. Modification of Wolf’s algorithm was necessary to better estimate STL
max

in small data segments that include

transients, such as interictal spikes. The modification is primarily in the searching procedure for a replacement vector at each

point of a fiducial trajectory.

The first step in the calculation of STL
max

is to divide the iEEG signal recorded from each electrode (a

one-dimensional time series) into sequential, non-overlapping segments of length 5.12 sec (1024 data points) and embed

each segment in a 7-dimensional state space with a time delay � � 3 (15 msec), using the method of delays. The computation

of the largest Lyapunov exponent (L
max

) involved the iterative selection of pairs of points on the state space portrait and the

estimation of the convergence or divergence of their trajectory over time. More specifically, the largest Lyapunov exponent

is defined as the average of local Lyapunov exponents Lij in the state space, that is

L
N

Lij

N

max

� 	



1

,

where N is the necessary number of iterations for the convergence of the L
max

estimated from a data segment of n

points (n N t� 	� ), and

L
t

X t t X t t

X t Y t
ij

i j

i j

� 	

� � �

�

1

2

�

� �

log

| ( ) ( )|

| ( ) ( )|

,
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Fig. 4. STL
max

values estimated from a single bipolar channel of EEG from

a 4-month (a) and 20-month (b) old animals, before, during, and following an

absence seizure (SWD), each lasting approximately 5 sec. The estimation of the

STL
max

values was made by dividing the signal into non-overlapping segments of

5.12 sec each and using p = 7 msec and � � 15 msec for the phase space

reconstruction. The onset of the seizure, at time point 0, is associated with a drop

in STL
max

. In the immediate postictal period, STL
max

has been reset to a value

exceeding that of the preictal period. Note: STL
max

values are reset to a higher

average postictal value compared to the average preictal value

in the 4-month old animal.

a

b



where �t is the evolution time allowed for �
0

( ) | ( ) ( )|x X t X tij i j� � , the vector difference, to evolve to

�
�

( ) | ( ) ( )|x Y t t Y t tk i j� � � �� � , the new vector difference, where �t k dt� 	 and dt is the sampling period of the data

u t( ) . If �t is given in seconds, L
max

is in bits/sec. Details of this method, including the selection of parameters for

calculating STL
max

, and a variation of L
max

for nonstationary signals like iEEG, have been described previously by

Iasemidis and colleagues [23, 24].

Figure 4 demonstrates the STL
max

profile derived from a single bipolar EEG channel for a 4-month old animal and a

20-month old animal. The figure shows a drop in the STL
max

value during the SWD (both at time 0), and a postictal increase

in values compared to the average preictal value. Note that this postictal increase is more significant in the younger (4-month

old) animal.

3. SEIZURES AS INTRINSIC MECHANISMS OF CONTROL

It has been postulated that seizures may be intrinsic mechanisms that serve to reset the brain from an abnormal state

back to a more normal state [25, 26]. This theory suggested that epileptic brains, being chaotic nonlinear systems, repeatedly

make abrupt transitions into and out of the ictal (ordered) state based on the following observations: (i) a positive Lyapunov

exponent in the EEG; (ii) presence of nonlinearities in the ictal EEG; (iii) existence of spatiotemporal transitions (from chaos

to order); and (iv) resetting of spatiotemporal dynamics by the seizure (to a more chaotic state). It follows intuitively that

failure to sufficiently reset the brain by a seizure may increase the susceptibility of the epileptic brain to a subsequent

seizure.

3.1. Resetting of Spatiotemporal Chaos: From Order to Chaos. A seizure can be characterized by a significant

drop in the value of the Lyapunov exponent associated with it, thereby suggesting a sudden and brief transition to a highly

ordered state. Following the seizure, these values are reset to a larger value compared with the immediate preictal values,

suggesting that the seizure promotes the brain to revert to a normal functioning state that is more chaotic. The above

observations constitute further support for the working model of dynamical state transitions underlying the evolution of

epileptic seizures proposed in early literature [23–26]; this working model explained the temporal evolution of the maximum

Lyapunov exponent in terms of a modified “cusp catastrophe model” [27–29] wherein a sudden bifurcation in system dynamics

occurs when the system enters the local cusp of singularity of a folded surface S, due to a change in intrinsic parameters.

A plausible hypothetical intrinsic feedback and resetting mechanism in the brain is shown in Fig. 5.

3.2. Resetting and Age-Related Seizure Expression. In animal studies, several investigations using models of aging

have shown an enhanced seizure susceptibility associated with older animals. We postulated that the functional anatomy of

the brain changes as it ages resulting in global changes of brain operation that are reflected in part by a changed expression

of SWDs. One approach to characterize these global changes is to employ dynamical measures of brain activity, which

offers the possibility to understand how changes in the dynamics of neuronal networks could result in SWDs - sudden

manifestations of paroxysmal widespread oscillations. To compare and contrast the dynamical EEG properties of 4- and
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20-month old male rats as a means to delineate differences in age-related expression of SWDs, we estimated STL
max

values

to test for differences in peri-ictal (surrounding a seizure) dynamical properties of the EEG.

Four young adult (4-month old) and four aged (20-month old) male rats were included in the study. Fifty SWDs from

each animal were used to estimate the dynamical properties during the peri-ictal period. We estimated the STL
max

values for

a 2-min EEG epoch recorded before and after each SWD using the algorithms described above. The values were computed

for each EEG channel and averaged across electrodes to calculate overall pre-ictal, post-ictal, and difference

(STL
max

post ictal�

–STL
max

pre ictal�

) values for each SWD in each animal. A statistical comparison (by a nested two-way ANOVA

test, where the random factor (rats) is nested within an animal group) of dynamical values during the pre-ictal period (2 min

before a SWD) showed no significant difference between the 4- and 20-month old animals in STL
max

values (p > 0.05).

However, the same statistical test performed on post-ictal dynamical values (2 min after a SWD) revealed a significant

difference between the two groups in STL
max

values (p < 0.05). To compare how effective each SWD was in resetting the

animal’s brain to a normal interictal state, we computed the difference between average pre-ictal and post-ictal dynamical

values. The test of these “resetting” values suggested that the “resetting” was significantly more effective in the 4-month old

cohort compared with the 20-month old cohort, evident from STL
max

values (p < 0.05). Figure 6 illustrates the comparison

of the differences between pre-ictal and post-ictal periods between animals in the two age groups.

4. CONCLUSION

As in human epilepsy, transitions from the interictal to the ictal state in the rat involve a transition from a chaotic

(high STL
max

) to a more ordered (lower values of STL
max

) state. The transitions observed in the iEEG in human and rat

temporal lobe epilepsy are consistent with early publications that introduced the concept of “dynamical diseases” [30–34].

This concept was introduced to explain how biological systems can make transitions between normal and pathophysiological

states. Periodic state shifts observed in biological disorders, such as Cheyne–Stokes respiration, periodic hematopoiesis, and

penicillin-induced neuronal spiking, were demonstrated to be similar to state transitions that occurred in certain

mathematical models of low-dimensional nonlinear systems [31, 35].

The mean STL
max

difference values (post seizure–pre seizure) were significantly different between 4-month old and

20-month old naive animals (4 months > 20 months; p < 0.05), which suggested that the age-related increase in SWD

expression is associated with a decrease in seizure-related dynamical effect (resetting), as the animal ages. The results of this

study suggest that the recovery of the brain back to its normal interictal state following SWDs was better in young adult

animals compared with aged animals. This interpretation is supported by higher post-ictal dynamical values as well as a

larger difference between post-ictal and pre-ictal dynamical values.

Mackey and Glass [30] speculated that certain periodic diseases arose because of a bifurcation in the behavior of a

control system. Even in simple mathematical models of such systems, transitions between normal and pathological states, or

between ordered and chaotic states, can result from small changes in the value of a control parameter [6, 30, 31, 33]. If

dynamical diseases can be explained on this basis, then it may be possible to use this information to construct optimal

therapeutic responses based on manipulation of a control parameter [33] or by external perturbations using techniques

developed for the control of chaotic systems. Furthermore, models of coupled chaotic oscillators have given several insights

into prediction of seizures and the resetting phenomenon [36]. Other studies modeling dynamical transition in nonlinear

coupled map lattice systems have also shown similarities with the transitions in an epileptic brain [37]. Techniques applied

for controlling chaos in dynamical systems, such as coupled map lattice systems, may also prove to be useful in controlling

spatiotemporal chaos in the epileptic brain.
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