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Evolution of computers with flexible architecture is considered. Distinctive features of the architectural

and structural organization of reconfigurable computer systems (RCSs) are described. Based on a

modified logical-informational method and a configuration file library, a general algorithm is proposed

to design RCSs. A new class of universal information processing means is proposed, namely, adaptive

logical networks.
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(EPLD), reconfigurable computing.

EVOLUTION OF A COMPUTER WITH FLEXIBLE ARCHITECTURE

Development of the technology of erasable electrically programmable logic devices (EPLD) and architectures of

modern computers and information and computing systems of all classes became a basis for intensive improvement of

reconfigurable computing (RC) technology and expansion of its application. This was due to the simplicity of RC-based

designing of computer aids, efficient problem orientation, real-time adaptation to changes of objective functions and

environment, modernization and extension of functionalities, and modification of the operation algorithm. Moreover,

architectural flexibility is a principal indicator of the internal intelligence and efficiency of a computer system; this is true for

both hardware and software. That is why RC allows solving a lot of methodological, technological, and applied problems of

constructing and designing knowledge-oriented information systems, especially as applied to sophisticated research that

efficiently supports the formation, development, and use of knowledge bases.

There are subject areas where reconfigurable computer systems (RCSs) got to their rightful place and continue

developing intensively [1, 2]. These are:

• survivable systems providing control safety for especially critical objects;

• sophisticated physical experiments with real-time simulation and control;

• efficient digital processing of high-frequency signals;

• improvement of computer design aids for new-technology objects;

• ontology-controlled intelligence systems serving the interface of various user’s systems with the Internet and

interdisciplinary cooperation;

• emulation and design of wireless communication systems, etc.

These application domains are important and promising, which indicates that reconfigurable computing and related

problems are topical.

During the evolution, computer systems, and first of all their processor component, were developed mainly to provide

flexibility (adaptivity) of the baseline architecture, which, in turn, met the requirements of problem-orientation of computer

equipment to increase their efficiency in specific applications. V. M. Glushkov Institute of Cybernetics continued famous

traditions of the computer-engineering pioneers and became an active participant of this process both in the development of

computer science theory in the large and in the elaboration and production startup of specific classes and models of

flexible-architecture computers.
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The advent of microprogram processors, computers, and systems is a historically important stage on this path.

Microprogramming simplified the design process. Its key features are regular structure of the stored control logic and

convenient verification and debug of microprograms. The world famous MIR computer became a prominent representative

of computers with microprogram interpretation of external programming languages. Noteworthy are dynamic

microprogramming aids, which permit changing microprograms in the modernization and reorientation of a computer system

(after its manufacture).

The second stage of the evolution is creating emulating computer systems, which can modify and completely change

the internal language. The concept of flexibility of CS architecture has been formulated:

� � �� �{ }a a k

a
a A; | | | | , , , . . . , ,� 1 2

where A is the number of possible architectures for a specific hardware, �
k

a
is the complete image of the kth level of

the architecture of type a.

The third stage is concerned with multilevel microprogram control systems and multioperational single-chip

microprocessors. V. M. Glushkov Institute of Cybernetics actively participated in creating this class of microcomputer as

well (“Elektronika Ñ5-01” (Ñ5-11, 12)) and contributed significantly to the development of the theory of their architectural

and structural organization and design [2, 3]. In particular, a logical-information method (LIM) of designing microprocessor

systems has been developed and tested in practice. It combines theoretical concepts of the theory of digital automata and

information theory and can be illustrated as follows:

(1)

where A R i Ni i i, , ( , )� � 0 are sets of algorithms, operators, and their information-code representations at the ith

programming level, respectively, and � is the set of generalized characteristics (hardware (Q), time (t ), etc.).

The generalized characteristics of formal model (1) can easily be converted into engineering parameters of EPLDs

and information characteristics of automatic representations of each (i N� , 0) hierarchy level of programmable automata. A

technique for entropic estimation of the information complexity of an automaton in terms of probabilities of its transitions

and states was proposed in [1]. For example, to generate the matrix of transition probabilities, the probability of each

transition from a state a
�

to a state a M
�

� �( , , )� 1 is determined:

p a a x p( ) ( , )

� � ��
�� � . (2)

Given the transition matrix | | | | ( , , )

,

p M
� �

� � � 1 , the matrix of the probability P M
�

�( , )� 1 that the automaton is in

each ( , , )� � � 1 M state is determined by solving the system of linear equations

P P p M P

M M

�

�
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�

�
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� �

� �
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1 1; , , .
(3)

The total hardware scope (Q) of an automaton composition is estimated to be proportional to the sum of entropic

estimates of transition and output functions, each being calculated from the well-known entropy formula for the average

length of the �th control word:

H P p

M

�

�

� �
� �

�

�
1

2

log .
(4)
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In (2)–(4), the probability is the frequency of the �th state.

An example of a two-level microprogram control system is the Elektronika Ñ5-21 single-chip microcomputer [2]. The

evolution of microsystem architectures was supported by the creation of programmable logic arrays, which made it possible

to automatize both the design and production of sophisticated chip-based computer systems.

The design of microprogram systems [3] involved the solution of two optimization problems:

(i) microinstruction coding:

W A C n q x n

k m

km k� � � � �� � Ent(log )

min2

,

where W and A are the matrices of microinstructions and incidences of microoperations (ÌÎ), respectively,

C C m M M Cm c c� � �{ } Card{ }, , ,1 , is the set of ÌÎ compatibility classes, n is the length of a microinstruction word,

xk is an alternate covering (x x kk

k

k	 � ��{ }0 1 1 1 2, , , , , . . . , is the number of alternate coverings);

(ii) generating the address of microinstructions (determining the set of compatibility classes of input patterns, page

size of microprogram memory, etc.).

Modern EPLDs opened up a new stage of evolution — creation of high-performance RCSs.

The term “reconfigurable computing” combines two concepts: (i) reconfigurable computer structure (hardware) and

(ii) data handling. Reconfigurability is a natural requirement to complex systems that should be highly reliable and flexible to

adapt to the structure of problems being solved and external conditions.

To formalize the model of reconfigurable devices, the LIM method is modified as follows:

(5)

According to (1), Ri is the set of hardware realizations of ith level operators, with some levels being excluded in

synthesizing the optimal structure. The following programming levels are used in (5) for classical architectures: �
0

is physical

or “zero” level; �
1

is microprogram level; �
2

is program level; and �
3

is algorithmic level. Programming at the “zero” level

determines the physical structure of the device, which will finally implement the prescribed algorithm, i.e., program the device

structure. In contrast to (1), modification (5) implements not a microprogram but rather a hardware gate-level realization of

algorithms. This is how the reconfigurable devices with programmed structure differ from modern computers.

The reconfigurability principle means that the logical structure of a reconfigurable device can vary dynamically both

in preparing to problem solution and during computations.

The reconfigurability principle is peculiar to all complex systems. In particular, it contributes to the survivability,

expandability, and other properties of such systems. If one of the components fails, the complex system can continue

operating after changing logical connections among components. The reconfigurability principle allows one to easily

reprogram the structure of the device so that it would efficiently implement a prescribed algorithm, which determines the

structural universality of the device.

ARCHITECTURE OF RECONFIGURABLE COMPUTER SYSTEMS

Putting EPLDs and HDL-technologies to use (HDL stands for hardware description language) intensified the

development of a wide scope of digital modules, which are ready engineering solutions that substantially reduce the time

needed to design and manufacture new products [4]. These solutions called IP units (IP stands for “intellectual property”),
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cores, and parametric modules can be adjusted or initially prepared to meet specific requirements of a new project. They are

classed among soft cores or soft units described in an HDL-language at, say, the register transfer level. Such units can easily

be adjusted to a new project and they are generally independent of EPLD manufacturing technologies [5].

The most important property of a ready engineering solution is that its functions are guaranteed to be reproduced in a

new project according to the specification given by the developer of this solution and amended by the project developer.

Note that HDL-description allows not only making the model readjustable and technology-independent but also using

various commercial tools to perform simulation and synthesis. Owing to network technologies, the designer may get, via the

Internet, an optimized logical core according to technical requirements and include it in the project. The IP strategy is

introduced into many branches of technology such as DSP, communications, networks, and general-purpose computers.

The capabilities of the HDL-technology such as hierarchical design, library portability, and platform independence

allow using soft cores for macroelements to develop new engineering solutions.

The modern FPGA chip architecture is optimized to use both hard and soft cores and allows integrating them easily into

projects. For example, Virtex chips have internal multipliers and PowerPC processors as hard cores and other functional units.

A standard reconfigurable computer system (RCS) usually consists of two parts: constant (or “fixed”) H (host

computer) and variable R (reconfigurable subsystem (RSS)), which can be combined into various configurations. The

architecture of reconfigurable systems [6] depends on the potency of the set of algorithms (N):

N N NH R� 
 ,

where N H and N R are the potencies of the subsets of algorithms run on the H and R hardware, respectively. The

combination of these quantities determines the RCS classification being proposed:

• RCSs with functional orientation to the host computer, which carries major computing power; RSS increases the

performance for a narrow (yet important for the user) class of problems (N N N N NH R H R� � ��, ,0 ) and is a

coprocessor;

• RCSs with functional orientation to RSSs (N H � 0, N NR � , N NR H�� ) , where the host computer is used for

auxiliary functions (service, input-output) and all algorithms are mainly run on the RSS, which may have an independent

field of peripherals (via expansion cards) or a common field of peripherals with the host computer which are directly

accessed by the RSSs;

• RSS is a stand-alone device in the case of N H � 0, N NR � , the host computer being absent;

• combined RCSs, where the host computer and RSS have approximately similar functions (N NH R� ) .

In the computer systems under consideration (except for the stand-alone ones), the RSS is connected to the host

computer via a standard bus such as PCI and PCI-Express buses, which are most popular today.

GENERALIZED STRUCTURE OF RSS

The market offers now a wide range of modules for RSSs. They differ by a hardware controller (if any) of the bus

connected to the host computer and by other features.

RSSs or devices with programmable architecture [7–9] have a common functional processing field (FPF). It is

specially configured to implement some algorithm or its part in a way optimal according to given criteria.

The algorithm can be split into fragments run sequentially; therefore, the associated structures are also loaded into the

chip sequentially (in the order they are run), which saves resources substantially. The complexity of the fragments is limited

by the logical capacity of the chip, i.e., by the processing field dimension.

The reconfigurable computing technology is a variation of the central paradigm of modern computer aids design.

FPGA-type EPLDs are mainly used as elements for RSSs [5]. The configuration file can be stored in the ROM and

automatically loaded to the EPLD chip (upon powerup). In another mode, the configuration file is loaded to the EPLD chip

from the RAM. Configurability allows changing a product under operation or to use it to implement various algorithms.

Depending on the purpose and functions (network data processing, DSP, etc.), RSSs can have appropriate structure,

embodiment, and resources (logical capacity of the chip, the number of outputs, memory capacity, data bus width (16, 32, or

64), etc.). RSS nomenclature may be rather extensive; therefore, we will consider the most general features of RSS structure

regardless their embodiment and resources required. Figure 1 shows a flow chart of the base component of an RSS connected

the bus of the host computer.
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RSSs have FPF of certain dimension, which can be configured to implement a given algorithm or its part in a way

optimal in time and hardware.

Figure 2 represents the generalized structure of an RSS [10] and contains the FPF, the controller of the standard bus

of the host computer (BC), storage device (SD) for configuration files, data RAM, control unit (CU), data/address bus

(DB/AB), configuration bus (CfB), and control bus (CB). A pipelining mechanism assumes that the configuration file is

loaded into the current FPF in parallel with data processing in the current matrix.

The format of the configuration file is standard for FPGA and contains information on the FPF configuration, i.e.,

corresponds to the basic electric scheme, implements some algorithm. Each (i s� 1, ) FPF is a matrix of universal elements,

which are assigned a certain function according to the configuration file F
�

, followed by the formation of a connection

structure. Configuration files F
�

are written in the corresponding (i s� 1, ) FPF from the storage device for configuration files

via the CfB bus under the control of the CU.

Data from the RAM or from other FPFs come to the FPF along the DB, and external input data through the BC. The

processed data can be transmitted from the FPF to the BC as processed data, to the RAM as intermediate results, or to other

FPFs (i s� 1, ) for subsequent processing. The set of configuration files F F� { }

�
is written into the storage device for

configuration files via the BC under the control of the CU.

The set s of FPFs allows hardware implementation of parallel data processing while the set of configuration files

allows conveyer programming of the structure that implements fragments of the algorithm.

FEATURES OF HIGH-PERFORMANCE RCSs

Creation of supercomputer systems is a promising domain of RCS application. The V. M. Glushkov Institute of

Cybernetics makes research efforts to develop the existing supercomputer using the RC technology. In this connection, it is

expedient to analyze the world experience to asses the prospect and the capabilities of this line of research.

Let us consider, in particular, the organization of the HERC (High-End Reconfigurable Computing) System

developed in Berkeley Wireless Research Center, which created the first BEE (Berkeley Emulation Engine) system prototype

with two modules intended to design, produce, and program an HERC system for a number of applications [11]. In

developers’ opinion, the BEE provides performance higher, by an order of magnitude, than that of a system based on DSP

processors with similar power consumption and cost, and by more than two orders of magnitude than that of systems based

on standard microprocessors. The principal components of the architecture are the computational node (CN) and global

communication networks.

The computational node in the BEE contains five Virtex-type chips directly connected to four memory modules with

a maximum capacity of 4 Gb per FPGA chip. The CN uses four FPGAs for computation (processing modules) and one chip

for control (controlling modulus). The generalized structure of the CN is shown in Fig. 3.
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A local network includes four FPFs connected in a 2D-pattern so that adjacent FPFs are directly coupled to each

other, and the FPGA controlling chip acts as a control unit and commutator, forming a common virtual computational

environment. Moreover, each FPF can communicate directly with FPF on other modules via the MGT (multigigabit

transceiver) serial interface and act as a high-capacity real-time input/output channel (such as gigaherz analog-to-digital or

digital-to-analog converters) for peripherals.

All external connections use FPGA-chip MGT. All MGT channels are program-configurable and are united into the

InfiniBand 4X (IB4X) physical connector.

Global Connections. The BEE project supports a variety of global connections represented in Fig. 4: the global

connection tree with a small idle time, an interconnection network with a high channel capacity (10 Gigabit Ethernet), and

100 Base-T Ethernet.

Each BEE computational node can be a global node of the connection tree, which connects up to 16 other

computational modules and up to two independent parent nodes (Fig. 5).

Using physical connections IB4X, computational modules can also form many other interconnection topologies. 100

Base-T Ethernet is accessible only to FPGA controlling chips and provides a communication network for the user interface,

control, and data archiving.

ADAPTIVE LOGICAL NETWORKS

Continuing the development of homogeneous computing systems and leaning upon the capabilities of modern EPLDs,

we propose a class of universal information processing means as a functional processing field of an RCS. These are adaptive

logical networks (ALN) intended to solve a wide range of problems by immediate structural realization of algorithms for

processing and mapping the input data set into output data set (with a preliminary functional adjustment) [8]. An adaptive

logical network is a discrete transducer such as an asynchronous combinational automaton, specified by a directed graph

whose nodes are logical functions and ribs are output/input-type links.
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From the topological standpoint, an ALN is a matrix of universal logical elements (LE) grouped into functional

nodes (FN) and blocks (FB) with fixed location, their operation depending on the class of problems and their purpose.

By a universal LE is meant a combinational automaton L n F� , , where n is the number of binary inputs or the

dimension of input variables of the LE; F f
n

� �{ }

�
�, [ , ]1 2

2

, is the set of Boolean functions realized by the LE. The LE is

universal in the sense that it can be adjusted to realize an arbitrary Boolean function.

Let us introduce some definitions. A vector is an ordered set of binary components (the number of components of the

vector is its length (dimension)).

By a mapping of a set of vectors X into a set of vectors Y is meant a rule that associates each vector from the set X

with a vector from the set Y . The vectors of the set X are called pre-images of the vectors of the set Y , and the vectors of Y

are called images of the vectors of X . A mapping J ( )X Y� is represented by a superposition of mappings

J J J J Jm s X Y( ( . . . ( ( )) . . . ))

2 1


 , where J s s m( , )� 1 determines the structure of connections and types of functions of

the sth level.

By the procedure of separating out a subset X xk k� { } in a set of vectors X X Xk( )� at a level s is meant the

procedure of constructing a mapping J s so that J Js k s kX X X( ) ( / )� � 0 .

By the procedure of partitioning a set X into two disjoint equipotent subsets X
1

and X
2

at a level s is meant the

procedure of constructing a mapping J s such that

X X X X X X X Xs s1 1 2 2 1 2 1 2

1

* * * * *

( ), ( ); ( ) ( ) ,� � � � �J J Card Card

*

� 0.

The ALN structure can be described by the following system:

A n h F S L m D X Y� , , , , , , , , , (6)

where n is the length of input binary vectors (input ALN dimension); h is the output length (h n� 1, ) (output ALN

dimension); F fij� { } is the set of logical functions of the system; S is the structure of LE connections; L Lij� { } is the

set of LEs (i is the sequential LE number; j is the number of processing level); m is the number of mapping levels;

D d� { } is the set n-dimensional binary vectors (learning sample); X is the complete set of input binary vectors (D X� );

Y Yij� { } is the generalized function of the system, Y f Y Yij ij i j i j� � �( , )

, ( ) , ( )

1 2

1 1

is the value of the function fij

realized by the element Lij , Y 	{ }0 1, , whose structure is presented in Fig. 6 (i
1

and i
2

are the values of the index i for

inputs of an arbitrary LE).

Each ALN level is a register of �-input LEs, each of which can be adjusted to realize any (from the complete set of

2

2

�

) Boolean function of its input variables. At one level, the function type for each LE can be specified separately

(elementwise adjustment) or for all LEs (levelwise adjustment).

Functional block is a network of series-connected automata (a hierarchical assembly of functional nodes). We will

restrict the consideration to three topologically different ALNs: rectangular matrix (RM) (h n� ); triangular matrix (TM)

(h � 1); and trapezoidal matrix (TpM) ( , ( )h n� �2 1 , which consists of z composite TMs. These basic blocks can be used to

generate a set of alternate functional (combinational) schemes.
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FN and FB are adjusted to realize any function: partitioning a priori given sets of vectors into subsets, separating out a

class of vectors, generalization with respect to one or several vectors, vector coding and decoding, etc.

Depending on LE connections, there may be ALNs with dichotomic and honeycomb (symmetric and asymmetric)

connection structures.

ALN Synthesis Problem. This problem is reduced to determining the types of logical functions for a given (initial)

set of vectors. Let us synthesize a TpM as an example.

In the general case, the learning sample D D� { }

�
in system (6) is a set of pre-images (

�

�

� D � � � �� 1, k, � is an

empty set), where each (�th) pre-image D d
�

�

�
� { } (� � 1 2, , . . . ) is an n-dimensional binary vector;

h is the output dimension of the TpM (length of the output binary vectors y Y	 ) defined by h k� 
( )Ent{log }

2

1 . The

input vectors that do not pertain to the �th image are combined into one code representation.

The set of binary vectors d
�

�
of the pre-image D

�
is associated with an image g

�
(

�

�

� g � �) that is a binary vector.

Each image g
�

can be associated with a given output binary vector y
�

(

�

�

� y � �, y Y
�

	 ) . Thus, the solution algorithm

for the classification problem slits into the following steps:

— divide the TpM into h components TM z (z h� 1, );

— determine a set of learning samples for each TM z ;

— analyze the learning samples and the corresponding components of the output binary vector to determine the set of

logical functions for LEs of each TM z , which is the solution of the synthesis problem.

The output of each TM z is the component yz of the vector Y . ÒÌ partitions an arbitrary set of binary vectors

X xz� { }into two subsets for a given set of pre-images D Xz z� (Dz is a learning sample). Thus, the output yz is defined as

follows:

y
x D

z

z z
�

	�

�

�

1

0

if

otherwise.

Let us synthesize a TpM with symmetric honeycomb structure as an example. The learning sample is two subsets of

pre-images (D D D
1 2

, � ):

D
1

1000 1011 1101 1110� { } { } { } { }, , , ; D
2

0000 0011 0101 0110� { } { } { } { }, , , ;

D X\ , , , , , ,� { } { } { } { } { } { } {0001 0010 0100 0111 1001 1010 1100 1111} { }, .

D
1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

�

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

; D
2

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

�

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

.

Let the images g
�

be encoded as follows:

g
1

1 1� { }, , y
1

1� , y
2

1� ; g
2

1 0� { }, , y
1

1� , y
2

0� ; ( & ) ( \ )y y y y D X
1

2 1 2

� � . (7)

In this case, TM

1

uses the components of the input vector with the index i � 1 3, :

D D
1

1

1

2

0 0 0

0 1 1

1 0 1

1 1 0

0 0 0

0 1

�

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

�,

1

1 0 1

1 1 0

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

;

TM

2

— i � 1 4, :

D D
2

1

2

2

1 0 0

1 0 1

1 1 0

1 1 1

1 0 0

1 0

�

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

�,

1

1 1 0

1 1 1

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

.
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Learning samples for TM

1

and TM

2

are formed based on the matrices Dz

�
.

Considering (7), we unite D
1

1

and D
1

2

for the TM

1

and D
2

1

and D
2

2

for TM

2

and obtain generalized learning samples

used to find the functions of logical elements TM

1

and TM

2

:

D D
1 2

0 0 0

0 1 1

1 0 1

1 1 0

1 0 0

1 1 0

1

�

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

�,

0 1

1 1 1

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

�

�

�

�

��

.

To determine the unknown set of logical functions F fij� { }, the TM structure can be described by polynomials based

on Hadamard’s matrices [12].

For any Boolean function f of n variables that take values from the set { }1 1, � , there exists an equivalent polynomial

Pf n( )

with coefficients from the set of real numbers: f X P Xf n( ) ( )

( )

� .

A polynomial of n variables has the following form:

P P z x Pf n f n n n f n( ) ( ) ( )

� 
� �1 1

.

A function of two variables can be represented by a polynomial

P z z x z x z x xf ( )2 0 1 1 2 2 3 1 2

� 
 
 
 .

The coefficients of the polynomial for Pf ( )2

are defined by

z y y y y
0 0 1 2 3

1 4� 
 
 
/ ( );

z y y y y
1 0 1 2 3

1 4� � 
 �/ ( );

z y y y y
2 0 1 2 3

1 4� 
 � �/ ( ) ;

z y y y y
3 0 1 2 3

1 4� � � 
/ ( ) .

An analysis of asymptotic estimates of the complexity of combinational schemes [8, 13] reveals rather high

performance of ALN. The TpM for the above-mentioned example is shown in Fig. 7.

DESIGN OF RECONFIGURABLE COMPUTER SYSTEMS

Figure 8 presents an algorithm for the design of an RSS of arbitrary form and purpose. The design technique

developed leans upon this algorithm and the underlying logical and information model of an RSS. It allows accomplishing
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Fig. 7. TpM with symmetric honeycomb structure.



the main task of the design: to formalize searching for an optimal “algorithm–structural realization” pair. The technique is

intended to design problem-oriented coprocessors and stand-alone devices that operate with a specified set of algorithms;

reconfigurable processors with data pipelining; parametric IP-core to implement given algorithms represented by elements of

the library of configuration files; chip-based systems, etc. It can be modified depending on the initial task, class of problems,

elements and technologies, etc.

In the known methods of formalized design of computer devices, the process is a sequence of stages, at each of which

the system is represented by a set of mathematical models that describe its different parts [14]. There are three main forms of

models: functional, dynamic, and structural.

The first decomposition level is related to the analysis of the initial algorithm and its partition into fragments. The

fragments are used to obtain the final result — the description (behavioral or structural) of the computer system operation in

the CAD source language (for example, VHDL).

The model of the computing device being designed complies completely with the flow chart in Fig. 8 and can be

represented by the quadruple

S M A B D� � �, , , ,

where M is the set of mathematical methods applicable to solve the problem posed by the user; A is the set of
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Fig. 8. RSS design algorithm.
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algorithms implementing the method; B b� { } is the alphabet of constructs used to synthesize the structure; and D is the

project description procedure (object description). Thus, the design process consists of the synthesis of the structure

based on constructs { }b of the alphabet B to implement a certain alphabet A implementing the method M, according to

specifications. The result of the procedure D is a project description in the CAD source language.

The choice of the method and the algorithm implementing it is the subject of separate study, as regards both the

general methodology and practical techniques and guidelines. Note that the solution of the initial problem is iterative, and the

efficiency criteria for the desired method (algorithm) are the generalized performance characteristics, hardware scope,

solution accuracy, algorithm complexity, reliability of the system being designed, or special criteria such as real-time

operation, labor input, etc.

The general approach to the optimal solution of an arbitrary problem in an arbitrary data domain is hardly possible. It

seems to be more realistic to create a well-structured library of methods and corresponding architectures of the computing

system being designed (stored as program files in the external memory of the base computational subsystem) and to choose

an appropriate pair (method–architecture) for a specific problem situation.

Thus, the optimal synthesis problem is reduced to optimal choice of a solution from a pre-generated and constantly

expanded set of solutions from the configuration-file library (CFL). This process can be formalized rather strictly. The

approach proposed not only allows obtaining the optimal solution to the problem but also facilitates its formulation and

interaction of the user with the computer system.

Let a sequence of algorithms be given. The CFL uses one library element to implement an algorithm, and a

method/problem (M) is represented by a sequence of algorithms (A i ni � � 1, ,): M A

i

i�� .

The base (zero) architecture of reconfigurable devices is implemented on EPLD as a functional processing field of

constant dimension, the bus controller of the host computer, memory field, and a well-structured CFL of structural

realizations of methods (algorithms) mapping an algorithm into a structural realization (F A Bi i: 
 ). A structural realization

(Bi ) is a configuration file for EPLD chip. There are several alternate algorithm realizations in the general case (for example,

sequential, series-parallel, and parallel):

B B zi

z

iz� �� ( , )1 � .

Each alternative is characterized by speed parameters (run time t iz ) and hardware scope (qiz ). If the required

realization of the ith algorithm is absent in the library (Bi � �), it is necessary to use CAD EPLD tools to create it and

incorporate into the library as a standard element. Thus, the optimization problem is reduced to an ordered assignment of a

certain (Biz )th element of the library to each ith node of the graph of the algorithm, which results in a structure that realizes

this graph.

In the general case, the optimization problem for an integral performance criterion can be presented as follows:

� � �

i z

iz iz

i z

iz izq x t x i n z� � � �
 � � � � �min ( , , , )1 1

under the constraints

i z

iz iz

i z

iz iz

z

n

izq x Q t x T x i n z� � � � �� � � � �

�

0 0

1

1 1 1, , , , , , �,

where � and � are weight coefficients, which can be determined, for example, by the judgment method; T
0

is the

admissible run time for all algorithms; and Q
0

is admissible hardware scope. The problem can be solved by an

appropriate method of integer mathematical programming [15].

CONCLUSIONS

We have proposed an approach to constructing a comparatively new class of computing systems — RCSs. The RCS

architecture differs from the traditional Von Neumann architecture (universal for all algorithms) by the following principles:

— allows the developer (user) to create a custom structure for any arbitrary algorithm (problem being solved);

— the algorithm can be partitioned into sequentially run fragments, which saves hardware; the complexity of

fragments is determined by the logical capacity of the FPGA chip.
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The configuration files allow designers of algorithm-implementing hardware to make efficient use of functional

blocks in developing modern computer aids.

It appears important to create RCSs oriented to the following:

— sophisticated specialized structures, including automata networks;

— ontology-controlled architectures dealing with knowledge systems;

— high-performance computing systems;

— hybrid computer systems combining procedure-algorithmic and network components;

— fail-safe control systems.

We have used a modified logical and information method for designing reconfigurable devices and systems. The

method is oriented to the functional capabilities of EPLDs. It allows us to synthesize optimal structures represented by

hierarchical systems with an unlimited number of information levels for the class of “speed–realization complexity” criteria.

The structure of a standard reconfigurable computing system with an open file-configuration library for base library

blocks has been synthesized. It includes a number of functional blocks developed by the authors and verified on real stands.
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