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SOFTWARE–HARDWARE SYSTEMS

TRANSFORMATIONS OF FUZZY GRAPHS

SPECIFIED BY FD-GRAMMARS

I. N. Parasyuk
†

and S. V. Ershov
‡

UDC 681.3:517.11

The categorical approach is proposed to formalize transformations of FD-graphs that consist of

networks of distributed components whose nodes are specified by fuzzy graphs. Necessary and sufficient

conditions are formally defined for FD-graph transformations that do not violate structure integrity and

can be constructed componentwise. FD-grammars that generalize fuzzy graph grammars are proposed

to describe the admissible transformations of FD-graphs.

Keywords: category theory, distributed systems, fuzzy graphs, graph grammars, model-driven

architecture.

INTRODUCTION

Nowadays, considerable attention is focused on creating formal models of fuzzy information technologies that can be

a component of high-performance parallel cluster systems [1, 2]. Such systems logically develop the ideas underlying the

architecture of massively parallel systems. To develop formal models of distributed systems, some methods employing

graphs are proposed.

The method of L-systems, developed by Lindenmayer [3], is one of the most simple methods to create models of

distributed systems based on graphs. In this method, a formal grammar based on the rules of generation and transformation

of character strings is specified. Parts of a string correspond to states of distributed components, and parallelism occurs as

simultaneous application of rules to different parts of the string. The well-known graph method for the specification and

analysis of distributed systems is Perti net and its modifications [4].

Graphs can also be applied to describe the topological structure of a distributed system. The graph structure shows of

which components the system consists and how they interact with each other. It is convenient to introduce graph

transformations to simulate dynamic changes in system structures, for example, redistribution of several components of the

system, creating or eliminating communication channels.

The techniques available to specify local states of distributed components do not account for the possibility of

representing fuzzy information in separate components of a distributed system. To develop such techniques, fuzzy graphs

can be used that model complex relationships of objects inside local components of a software system, which occur, for

example, in simulating software architecture [5]. Transformations of fuzzy graphs are defined at this level to specify changes

in relations among objects [6–9].

However, formal models (introduced in [10, 11]) of transformation of distributed systems represented by graphs with

the nodes being, in turn, fuzzy graphs have not been studied.

In this paper, we attempt to construct and analyze such models. More exactly, the objective of the paper is to develop

conceptual fundamentals for the theory of fuzzy graph transformation of a distributed medium using methods of the theory of

categories. (See [12] for other applications of category methods in computer science.)
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CATEGORICAL APPROACH TO FUZZY GRAPH TRANSFORMATION

In this section, we consider concepts that continue the ideas of the original categorical approach to fuzzy graph

transformation introduced in [6, 7]. In contrast to [6], we define productions over fuzzy graphs by two morphisms that

correspond to eliminating and adding elements of a graph, which makes it possible to characterize more precisely the

applicability conditions for such productions. See [13, 14] for the other concepts of the theory of categories, including

definitions of pushout and colimit.

Definition 1. A fuzzy graph G G G s t
E N

G G GE GN� ( , , , , , )� � is a collection of sets of edges and nodes G
E

and

G
N

, mappings s t G GG G

E N

,

: � , called the source and target mapping, respectively, and truth mappings for arcs and

nodes �GE

E
G: [ , ]� 0 1 and �GN

N
G: [ , ]� 0 1 , where [0,1] is the interval of truth values for nodes and edges.

The authors showed in [6] that this interval of truth values for edges and nodes of the fuzzy graph G can be

generalized to a complete lattice of objects of category Fuzz( )Q , where Q is a partially ordered support set. Eliminating truth

values of nodes and edges of G, we obtain a nonfuzzy graph called the support graph of the fuzzy graph G.

A morphism of fuzzy graphs f G H: � is a pair of mappings ( : ,f G H
E E E

� f G H
N N N

: )� such that f
E

and

f
N

are compatible with the source and target mappings and retain truth values, i.e., � �e G
E

, � �n G f s e
N N

G: ( ( ))

� �s f e f t e t f eH

E N

G H

E
( ( )), ( ( )) ( ( )), f e e

E

GE HE( ( )) ( )� �� and f n n
N

GN HN( ( )) ( )� �� , where G and H are fuzzy

graphs. A morphism f f f
E N

� ( , ) of fuzzy graphs is called injective (surjective, bijective) if f
E

and f
N

are

simultaneously injective (surjective, bijective).

Definition 2. A fuzzy graph join D B C
I A

� �( )

/

is a set of all equivalence classes of the union of B and C, where

I B CA � � is the equivalence relation produced by the relation I f xA �{( ( ), g x x A A B( ) | , ,� } , and C are fuzzy graphs, and

f A B: � and g A C: � are morhisms of fuzzy graphs.

Morphisms h B D: � and k C D: � of fuzzy graphs transform each element B and C into the corresponding

equivalence class in D.

The lemma below shows that the concepts of a fuzzy graph, a morphism of fuzzy graphs, and a fuzzy graph join are

associated with the well-known concepts of the theory of categories.

LEMMA 1. Fuzzy graphs and morphisms of fuzzy graphs form a category FGraph. The disjoint union �

1

n

iG of the

fuzzy graphs G i ni , 1	 	 , with injective morphisms in i i

n

iG G: � �

1

is a coproduct of all Gi in FGraph. The join structure

presented in Definition 2 can be specified as a pushout in the category FGraph.

Let us describe a sequential transformation of fuzzy graphs performed by applying one production to the source

graph. The production describes the nodes and edges to be eliminated, preserved, and recreated. This is expressed by two

fuzzy graphs L and R, the left- and right-hand sides. Moreover, there exists an intermediate fuzzy graph I, we will call it a

fuzzy graph join. It shows the preserved elements. Their images in the L and R correspond to the preserved elements.

Moreover, the preserved elements can be disjoined or joined (united), which is specified by morphisms to the left and to the

right, not necessarily injective.

Definition 3. A production p I L I R
l r

� 
 �
 
 �
( ; ) is a set consisting of fuzzy graphs L I, , and R, called the

left-hand side, intermediate (or connecting) graph, and the right-hand side, respectively, of p, and of two morphisms,

I L
l


 �
 and I R
r


 �
 .

The production p is called l-injective (l-surjective) if the morphism l is injective (surjective); the production p is

injective if the morphisms l and r are injective. A production p I I I I
id idI I

� 
 �
 
 �
( ; ) consisting of two identical

morphisms is called identical production.

For each production to be fulfilled, it is necessary to find fuzzy matching of its left-hand side (�-matching [6]) in the

fuzzy graph to which it is applied. Nodes may be eliminated or disjoined if none context edges are pendant after the

elimination, i.e., are not connected to the source or target node. If the node is disjoined from a context edge, it is not clear

which of the new nodes should be connected to this edge. Matching should not be the isomorphic image of the left-hand side,

but it is necessary to ensure that there are no two identified elements, one of which is eliminated and another is preserved.

Moreover, it is necessary to create isomorphic images of the eliminated and disjoined elements. These constraints are

formulated in the following join condition.
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Definition 4. Let a production p I L I R
l r

� 
 �
 
 �
( ; ) be given. A morphism of fuzzy graphs m L G: � satisfies

the join condition with respect to p if the following conditions are satisfied:

(i) the identification condition: � �x x L
1 2

, such that m x m x( ( )

)1 2

� , there exist unique y I
1

� and y I
2

� such that

l y x(

)1 1

� and l y x( )

2 2

� ;

(ii) the condition that there are no pendant edges (the no-pendant condition): � � �e G m L
E E E

( )

L x L s e m xe

N N

G

N
� � �{ | ( ) ( ) or t e m xG

N
( ) ( )� }is defined and � �x Le

N
there exists a unique y I

N
� such that l y x

N
( ) � .

The morphism m is called a matching if it satisfies the join condition with respect to p.

If the join condition holds, the production is applicable with respect to the corresponding fuzzy matching. At the first

step, all the elements of the current fuzzy graph G that have a pre-image in the left-hand side but not in the interface graph

are eliminated. Moreover, according to the production, parts of the fuzzy graph are disjointed, which results in a fuzzy

context graph. It shows a form of a transient transformation state where elimination and disjoint are carried out but creation

and join still should be done. Then the resultant fuzzy graph is constructed.

Definition 5. A fuzzy context graph C is defined as C G m L l I m l p p� � � � � � �( ( )) ( ( ( ))) ( ) , where

p I L I R
l r

� 
 �
 
 �
( ; ) is a production, m L G: � is a matching satisfying the join condition, and disjoint is given by

� � � 
 � � � � �( ) | : ( ) ( )p x I x x I l x l x{ }.

The step of elimination and disjoint can be described as the inverse to a fuzzy graph join. Join of the left-hand side L

and the context fuzzy graph C, which are superimposed in the fuzzy interface graph I, generates the initial fuzzy graph G. If

an l-injective production is applied to a fuzzy graph, a context graph can be described by using complement of pushout.

Moreover, application of an l-surjective production to a fuzzy graph can be specified by a so-called initial complement of

pushout. Since any morphism of fuzzy graphs can be decomposed into a surjective one followed by injective one, such an

operation can be performed for any left-hand side morphism of the production. Constructions over both parts are described

by pushouts; therefore, both the elimination as a whole and the step of disjoining can be modeled by a pushout.

LEMMA 2. Let p I L I R
l r

� 
 �
 
 �
( ; ) be an l-injective production and m L G: � be a matching of fuzzy graphs.

There exist a fuzzy context graph C and two morphisms of fuzzy graphs, g C G: � and c I C: � , such that ( , , )G m g is a

pushout over l and m in the category FGraph. The set ( , , )C c g is called a complement of the pushout ( , , )G m l .

Definition 6. A complement of the pushout ( , : , : )C a A C c C D� � is initial if for any complements

( , : ,C a A C� � � � c C D� � �: ) over the morphisms b A B: � and d B D: � , there exists a unique morphism h C C: � � such

that h a a� � � and c h c� �� (Fig. 1).

LEMMA 3. The initial complement of the pushout ( , : , : )C a A C c C D� � over the morphisms b A B: � and

d B D: � is unique up to isomorphism.

Proof. Assume that there exist two initial complements, ( , :C a A C c C D� �, : ) and ( , : , : )C a A C c C D� � � � � � � .

Then there exist morphisms h C C: � �, where h a a c h c� �� � � �, , and h C C� � �: , where h a a c h c� � � � � �� �, . Moreover,

there exists a morphism h h� � , where c h h c h c� � �� � � � and h h a h a a� � � � �� � � . Since there also exists id C CC : � , where

c id cC� � , id a aC � � , we obtain h h idC� �� . Similarly, we obtain h h idC� � �
�

. Thus, C and C� are isomorphic. �

LEMMA 4. Let p I L I R
l r

� 
 �
 
 �
( ; ) be an l-surjective production and m L G: � be a matching of fuzzy graphs.

There exist a fuzzy context graph C and two morphisms of fuzzy graphs, g C G: � and c I C: � , such that ( , , )C c g is the

initial complement of pushout over l and m in the category FGraph.
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Fig. 1. Diagram of the

initial complement of

pushout.

Fig. 2. Pushout composition.



LEMMA 5. Let the diagram in Fig. 2 be given, where (1) and (2) are pushouts, the morphism e is injective, and

( , , )C a c is the initial complement of b and d. The set ( , , )C a g c� is the initial complement of pushout in the category

FGraph.

Proof. A joined diagram (1), (2) is a pushout according to the general properties of pushouts. Let ( , , )C a g� � � be a

complement presented in Fig. 2. It is necessary to show that there exists a unique morphism h C C: � � such that h a a� � � and

g h c g� �� � . According to the assumptions, g a� � �� f e b g c a� � � �� . It is possible to determine that c g g g� � �

� �1 1

� ; is

givent for all g x� ( ), where x C� �, since g and f are surjective according to pushout (2); c � is well defined since for pushouts

in FGraph, g is injective if e is injective. According to the initial complement ( , , )C a c , we obtain a unique morphism h,

where h a a� � � and c h c� �� . From g c g� � � � we get g h g c h g c� � � �� � � � ; therefore ( , , )C a g c� is initial. �

LEMMA 6. Let p I L I R
l r

� 
 �
 
 �
( ; ) be a production and m L G: � be a matching of fuzzy graphs. Then there

exist a fuzzy context graph C and complete morphisms of fuzzy graphs g C G: � and c I C: � that form the initial

complement of pushout m and l.

Proof. It is possible to decompose the morphism l into a surjective morphism l I Ie :

/

�
�

and an injective morphism

l I Li :

/�

� (Fig. 3). Accounting for the morphisms m and li , we use Lemma 2 to construct the complement

( , : , : )

/

C g C G c I Ci � �
�

. Since m satisfies the join condition and c is some constraint of m, c also satisfies the join

condition. Moreover, there exists the initial complement ( , : , : )C c I C g C Ce� � according to Lemma 4. Let g g gi e� � .

According to Lemma 5, there exists the initial complement ( , , )C c g . �

It can be shown that C is a unique fuzzy complement graph of pushout. But C is not a unique possible fuzzy complement

graph. All the remaining fuzzy complement graphs are in a sense decompositions into elements of C. Therefore, we will determine

a unique morphism from C into another fuzzy complement graph that is described by the additional property of pushout

complement, namely, of being initial. Now it is possible to prove that the construction of C is unique up to isomorphism.

LEMMA 7. If ( , : , : )C g C G c I C� � is the initial complement of l I L: � and m L G: � , then m satisfies the join

condition with respect to the production p I L I R
l r

� 
 �
 
 �
( ; ) .

Definition 7. Let a production p I L I R
l r

� 
 �
 
 �
( ; ) and a matching m L G: � be given. Direct transformation

G H� based on p and m (or G H

p m

�

,

) from the fuzzy graph G into the fuzzy graph H is given by pushout diagrams (1) and

(2) in the category FGraph, shown in Fig. 4, ( , , )C c cg being the initial complement.

LEMMA 8. Let p I L I R
l r

� 
 �
 
 �
( ; ) be a production and m L G: � be a matching of fuzzy graphs. A direct

transformation G H

p m

�

,

is unique up to isomorphism.

Proof follows from Lemma 6 based on the fact that pushouts are unique up to isomorphism.

CATEGORY OF FUZZY DISTRIBUTED GRAPHS

States of a distributed system can be described by fuzzy distributed graphs. To describe transformation of fuzzy

distributed graphs (FD-graphs), we introduce a morphism of FD-graphs, which is a special form of morphism. Moreover, it is

necessary to construct a pushout of morphisms of FD-graphs to analyze possibilities of joining FD-graphs. In this section, we

specify the sufficient and necessary existence conditions for componentwise construction of such a pushout in view of the

distribution of components of the graph.
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Fig. 3. Diagram of a transformation

of fuzzy graphs based on double

pushout with disjoint.

Fig. 4. Direct transformation.



Definition 8. A diagram

~

:G G � FGraph is called a fuzzy distributed graph (FD-graph), where G is a graph of the

category Graph, called a graph of a network of components, and FGraph is a category of fuzzy graphs and their complete

morphisms that preserve truth values.

Denote a fuzzy graph by

~

( )G i for any network node i G
N

� . For any network edge e G
E

� , the fuzzy graph

~

( ( ))G s e is a

graph of interface, or the source graph,

~

( ( ))G t e is called a target graph, and

~

( )G e specifies the complete morphism of fuzzy

graphs.

If it is obvious which mapping to the source or to the target is meant, we write

~

( ( )) ( ( ( )))

~

G s e G t e rather than

~

( ( )) ( ( ( )))

~

G s e G t eG G .

Definition 9. A morphism

~

( , ):

~ ~

f f G H� �� of FD-graphs is a natural transformation � �

�

(

~

)fi i G
N in the

category FGraph, where

~

G and

~

H are FD-graphs, f G H: � is the existing morphism of graphs in the Graph, called a

network morphism.

If f is injective (surjective), then

~

f is called n-injective (n-surjective). If, moreover, all

~

fi , where i G
N

� , are

injective, then

~

f is also called injective.

The morphism

~

f of FD-graphs associates each node i G
N

� with a morphism of fuzzy graphs

~

:

~

( )

~

( ( ))f G i H f ii � ,

called local morphism of graphs such that � �e G
E

, where s e i( ) � and t e j( ) � , the diagram in Fig. 5 commutes. In particular,

if fuzzy graphs

~

( )G i and

~

( )G j connected by an edge

~

( )G e are given, and they are mapped by local morphisms of graphs

~

fi

and

~

f j onto graphs

~

( ( ))H f i and

~

( ( ))H f j , then the edge

~

( )G e should be mapped onto

~

( ( ))H f e .

Definition 10. A composition

~

( ):

~ ~

,

f f G Hf� �� of two morphisms

~

( ):

~ ~

,

g g G Kg� �� and

~

( , ):

~ ~

h h K Hh� ��

of FD-graphs is defined as follows: f h g� � and � � �f h gg G K g H h g� � �( ) :

~ ~ ~

� � � � � .

LEMMA 9. All FD-graphs and morphisms of FD-graphs form the category FDGraph.

Proof. A composition

~

:

~ ~

f G H� of two morphisms

~

:

~ ~

g G K� and h K H:

~ ~

� of FD-graphs is a morphism of

FD-graphs. According to Definition 10,

~ ~

~

( )

f h gi g i i� � for all i G
N

� and for all e G
E

� such that s e iG ( ) � and t e iG ( ) �

diagrams in Fig. 6 commute. Since the composition of morphisms of FD-graphs is obtained from morphisms of fuzzy graphs,

it is associative.

Identical morphisms id id
G id GG

~

( , ):~ � �

~ ~

G G� for any FD-graph

~

G are defined by the identities id
G i

~

:~

( )

~

( )

~

( )G i G i�

for all i G
N

� . The equalities i d g g
G

~

~ ~

~ � � and

~ ~ ~

~f id f
G

� � hold for all morphisms

~

( , ):

~ ~

f f G Hf� �� and

~

( ):

~ ~

,

g g H Gg� �� of FD-graphs since id g gG � � and � � �g id gG
g� ( ) :� �

~ ~

H G g� � �

~

G g� . Moreover, f id fG� �

and � � �f f idG
� � :

~ ~ ~

G G H f� � � . �

LEMMA 10. Let

~

G be an FD-graph, �

~

( )G n be a coproduct of all

~

( ),G n n G
N

� , and i G n G nn :

~

( )

~

( )� � be the

corresponding injections. Let � G be the equivalence closure {( ( ), ( ( )( )))|

~

( ( )),

( ) ( )

~

i x i G e x x G s es e t e � e G
E

� }. Then

~ ~

( )

/

G G n
G

� �
�

� ;

~

:

~

( )

~

g G n G� � �� is a function of partition into equivalence classes, and the morphisms

~

:g in� �

~

( )

~

G n G�

� �n G
N

specify the colimit of

~

G.
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Fig. 5. Diagram of

morphism of FD-graphs.

Fig. 6. Composition of morphisms of

FD-graphs.



Proof. Let us construct a colimit of an arbitrary diagram in a category Set of sets and functions. This construction may

be valid for the FGraph category, which is described as a comma category over Set. �

Definition 11. The kernel of a morphism a is a set of pairs � � � � �a x y A A a x a y{ }( , ) | ( ) ( ) .

Denote by equiv a( )� the minimum equivalence relation generated by �a . For the equivalence relation � , let

~

[ ]

A x be

an FD-graph consisting of all fuzzy graphs

~

( )A y for y x�[ ] and all morphisms of fuzzy graphs

~

( )A e for s e t e x( ), ( ) [ ]� of each

class [ ]

/

x A
N

�

�

. The graph

~

[ ]

A x is called a choice of join [ ]x of the FD-graph

~

A.

We denote the equivalence relation � for nodes (edges) by � �

N E
( ) . Let a a x a y B B x y( ) ( ( ), ( ) )| ( , )� � � � ��{ }.

LEMMA 11. A morphism of fuzzy graphs

~

:

~ ~

f G H� is a composition of an n-surjective morphism

~

:

~ ~

g G K� of

FD-graphs and an injective morphism

~

:

~ ~

h K H� of FD-graphs such that

~ ~

~

f h g� � . Moreover, the fuzzy graph

~

K is unique

up to isomorphism,

~

g is an epimorphism, and

~

h is a monomorphism.

Proof. It is possible to decompose the morphism of graphs f into a surjective morphism of graphs g and an injective

morphism of graphs h, where f h g� � is such that K is unique up to isomorphism.

Let the set ( , :

~

( ) )

[ ] [ ] [ ]

C c G y Cx y x y x� �
�

be a coproduct for all [ ]

/

x G
f

N
�

�

. Moreover, � �

�

[ ]

/

x G
f

N
u x[ ]

:

C H f xx[ ]

~

( ( ))� are generated morphisms of the coproduct. Each of them can be decomposed into a surjective morphism

s C K g xx x[ ] [ ]

:

~

( ( ))� of graphs and an injective morphism h K g x H f xx[ ]

:

~

( ( ))

~

( ( ))� of fuzzy graphs.

~

( ( ))K g e is defined as

h H f e h
t e s e

[ ( )]

[ ( )]

~

( ( ))

�1

� � for each edge e G
E

� and

~

[ ]

g s c x Gx x x

N
� � �� . It remains to show that

~

g and

~

h are morphisms of

FD-graphs and

~

K is unique up to isomorphism. Moreover, it is necessary to show that

~

g and

~

h are an epi- and

monomorphism, respectively. �

A pushout over n-injective morphismsof FD-graphs

~

:

~ ~

a A C� and

~

:

~ ~

b A B� can be constructed componentwise in

the following steps. First, a pushout on morphisms of the network is created. For all nodes of the network in A, a pushout on

their morphisms of fuzzy graphs in

~

B and

~

C is constructed. All the other fuzzy graphs

~

B and

~

C are transferred into

~

D

unchanged. A network edge in D, which has a pre-image in A, is supplemented with a generated morphism between its

source and target fuzzy graphs of pushout. All the other morphisms

~

B and

~

C of fuzzy graphs are defined with respect to

their new target graphs. The source graphs should be mapped into structural-equivalent ones according to pushout

conditions.
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Fig. 7. Morphisms of FD-graphs with no join

possible.



It is possible to verify that a join of FD-graphs in which a join of corresponding graphs of the network is computed

first is not distributed. Graphs, especially with injective morphisms among them, can be joined elementwise. For example, a

node in B and a node in C that have a common origin in A are glued. All the remaining nodes are just copied into D. These

actions can be performed in parallel.

A componentwise construction of a pushout based on n-injective morphisms can always be performed if the following

two pushout conditions are satisfied. These conditions require, for each edge of the network having a source node glued to

another one, that a fuzzy graph of this node be mapped isomorphically to the pushout graph.

Definition 12. Pushout conditions (i) and (ii) are satisfied for n-injective morphisms

~

:

~ ~

a A C� and

~

:

~ ~

b A B� of

FD-graphs if:

(i) � � � � � � �e C a A y A a y s e b
E E N

y( ) : ( ) ( )

~

is surjective and � � �~ ~

b a
y

y
;

(ii) � � � � � � �e B b A y A b y s e a
E E N

y( ) : ( ) ( )

~

is surjective and � � �~ ~

a by
y

.

Figure 7 illustrates a situation where the pushout condition (i) (Definition 12) is not satisfied. All the morphisms of

fuzzy graphs are depicted by dashed arrows between the corresponding nodes. Mapping of edges can be obtained uniquely.

Morphisms of networks are not shown explicitly.

The morphism

~

b y is not surjective. A node with a closed loop and its adjacent edges in

~

( ( ))B b y , which are copied in

~

( ( ( )))D c a y , cannot be mapped as

~

( ( ))D c e .

THEOREM 1. Let

~

:

~ ~

a A C� and

~

:

~ ~

b A B� be n-injective morphisms of FD-graphs that satisfy the pushout

conditions (i) and (ii). Then the pushout of

~

a and

~

b in the FDGraph category exists and can be constructed componentwise.

Proof. Let D, c C D: � and d B D: � form the pushout of a and b in the FGraph. The way it is constructed is

specified as a fuzzy graph join according to Definition 2. The pushout graph

~

:D D � FGraph is constructed as follows.

Let PUSH(

~

,

~

)a by y be a pushout graph over

~

a y and

~

b y . For each node x D
N

� there exists at least one node y A
N

�

such that c a y x� ( ) � since a and b are injective. Therefore, we can uniquely denote PUSH(

~

,

~

)a by y by PUSHx . Let us define

the following mapping:

~

( )

, ( ) ,

~

( ) (

D x

y A c a y x

C z z C a A

x

N

N

�


 � �


 � �

PUSH if where

if

�

n

N n

c z x

B B b A d x

), ( ) ,

~

( ) ( ), ( ) ,

where

if where

GE

�


 � � �� � �

N PUSH PUSH if where( , ) , ( ) ,

~

~

( ) ( )

( )

s x t x

E

t x

e A c a e x

c


 � ��

�C e c e C a A c e x

d B e

s x

E E

t x

( )

~

( ), ( ) ,

~ ~

(

( )

( )

�

�

�


 � � �

1

if where

)

~

( ), ( ) .

( )

� d e B b A d e x
s x

E E�


 � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

1

if where

�

�

Here GEN PUSH PUSH( , )

( ) ( )s x t x is a generated morphism from the pushout graph

~

( ( ))D s x into the pushout graph

~

( ( ))D t x , where

~

~

( )

~

( ( ))

~

( ) ( )

a A e C a e at e s e� �� and

~ ~

( )

~

( ( ))

~

( ) ( )

b A e B b e bt e s e� �� . The morphisms of the pushout

~

:

~ ~

c C D�

and

~

:

~ ~

d B D� are defined as follows:

~

( ),~

( )

( )

c
id x C a A

x
C x

N
N

c x

�

� �if

morphism of PUSH otherwise,

�

�

�

�

�

~ ( ),~

( )

( )

d
id x B b A

x
B x

N
N

d x

�

� �if

morphism of PUSH otherwise.

�

�

�

�

�

It is easy to show that

~

D is an FD-graph according to the above definition, properties, and conditions of pushout. Then

we use generated morphisms of local pushouts PUSHx

N
x A� � to show that both

~

c and

~

d are morphisms of FD-graphs.
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It is necessary to show pushout properties. The commutativity

~ ~

~ ~

c a d b� �� follows immediately from the construction.

For an FD-graph

~

X and morphisms

~

:

~ ~

f B X� ,

~

:

~ ~

g C X� such that

~ ~

~ ~

f b g a� �� , the generated morphism

~

u consists of the

generated morphisms for those that underlie pushouts in the FGraph category, where they exist. Thus, for all y A
N

� , where

c a y x� ( ) � ,

~

ux is a morphism generated by PUSHx . For all z C a A
N N

� � ( ) such that c z x B b A
N N

( ) ( ( )� � �� , where

d x( ) ),� � the following holds:

~ ~

(

~

)

~

u g u fx z x
� �

�
.

The fact that

~

u can be determined follows from the universal property of local pushouts and the pushout condition. It

is necessary to show that

~

u is completely defined. This is true in our case since c and d are jointly surjective. Therefore, there

exists a morphism ux for all x D
N

� . Moreover,

~

~

( )

~

( ( ))

~

u D e X u e uj i� �� , where s e i( ) � and t e j( ) � , can be proved based

on the universal property of local pushouts and the pushout condition.

Then we should show that

~ ~ ~

u c g� � . The equality u c g� � holds by virtue of the properties of the pushout of D.

According to the definition of

~

u, we obtain

~ ~ ~

( )

u c gc x x x� � for all x C
N

� . The properties of the composition

~

~

u d� can be

proved in a similar way.

The uniqueness of

~

u, which means that

~ ~

u u� � for all

~

:

~ ~

u D X� � such that

~ ~ ~

u c g� �� and

~

~ ~

u d f� �� , can be obtained

immediately from the definition of

~

u. Assume there exists a node y D
N

� such that

~ ~

u uy y� � and there exists x C
N

� , where

c x y( ) � . Then

~ ~ ~ ~ ~

u c g u cy x x y x� �� � �
. Therefore, the morphism

~

u is unique. The proof is completed. �

Figure 8 shows an example of a pushout on two n-injective morphisms of FD-graphs in the FDGraph category. The

pushout conditions are satisfied since

~

:

~

( )

~

( )a A j C lj � is bijective. All the other morphisms of fuzzy graphs cannot be

injective or surjective. A morphism of fuzzy graphs between

~

( ( ))D c k and

~

( ( ))D c l is constructed as a generated morphism

between both pushout graphs. Since

~

a j is bijective, it clear how the morphism of fuzzy graphs

~

( ( ))D d e � should be

constructed. Such a morphism is defined as

~

( ( ))

~ ~

( )D d e d B e dx w� � �

�

� �

1

. If, for example,

~

( )C l contains an additional node,

the morphism

~

:dw

~

( )

~

( ( ))B w D c l� is not bijective and cannot be inverted. The morphism

~

( ( ))D c e of fuzzy graphs is

constructed as

~

( ( ))D c e �

~

~

( )

~

c C e cl m� �

� 1

.

Figure 7 shows the case where a pushout cannot be constructed componentwise. The theorem below states that

pushout conditions (i) and (ii) are not only sufficient but also necessary for componentwise construction of a pushout in the

FDGraph category for n-injective morphisms of an FD-graph.
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THEOREM 2. Let

~

:

~ ~

a A C� and

~

:

~ ~

b A B� be n-injective morphisms of FD-graphs. The pushout of

~

a and

~

b in

FDGraph can be constructed componentwise if and only if pushout conditions (i) and (ii) are satisfied.

Proof. Theorem 1 states that pushout conditions (i) and (ii) are sufficient to construct the pushout

~

a and

~

b

componentwise. It remains to show that the pushout conditions are also necessary for componentwise construction of a

pushout. Assume that pushout condition (i) is not satisfied. Then there is a network edge e C a A
E E

� � ( ) such that there

exists y A
N

� , where a y s e( ) ( )� , and

~

b y is not bijective. If

~

b y is not surjective, then there exists a node x B b y�

~

( ( )) that has

no pre-image in

~

( )A y . Since

~

( )

db y should be complete, there also exists a node x D d b y D c s e�� �

~

( ( ( )))

~

( ( ( ))). Since

~

( ( ( )))D c s e is constructed as a graph of pushout of morphisms

~

a y and

~

b y , the fuzzy graph

~

( ( ))C s e does not contain a

pre-image of x �. According to the componentwise construction, fuzzy graphs such as

~

( ( ))C t e , not having pre-images in

~

A, do

not change, i.e.,

~

( ( ( )))

~

( ( ))D c t e C t e� . Therefore, it is possible to select a fuzzy graph

~

( ( ))

~

( ( ( )))C t e D c t e� such that a

morphism of the fuzzy graph

~

( ( )):

~

( ( ( )))

~

( ( ( )))D c e D c s e D c t e� does not exist.

If � �� �~ ~

b a
y

y
, then there exists a node x B b y�

~

( ( )) that has two pre-images, z z A y,

~

( )�� , where z z� �. Moreover,

there exist two nodes, � �,

~

( ( ))��C s e , such that

~

( )

~

( )a z a zy y� � � � �� � . According to the construction of pushout, x should

be mapped onto the node x D c s e��

~

( ( ( ))) . If

~

( )( )

~

( )( )C e C e� �� � , then it is possible to select a morphism of fuzzy graphs

~

( ( )):

~

( ( ( )))

~

( ( ( )))D c e D c s e D c t e� such that the node

~

( ( ( )))D c s e cannot be projected onto a node in

~

( ( ( )))D c t e . �

Further let us consider a join of FD-graphs by arbitrary morphisms of distributed FD-graphs. This means that fuzzy

graphs inside one distributed graph may be joined. Such a complicated operation is constructed in two steps: first, all local

joins are carried out, then FD-graphs that precisely correspond to the structure of pushout over n-injective morphisms of

FD-graphs are joined. To perform the construction considering its modularity, we need an additional pushout condition (it is

presented below in Definition 14).

Definition 13. The join condition for a network is satisfied for the equivalence relation � on an FD-graph

~

D if

� �x D
N

, where x s e�[ ( )] , �
 ��e e[ ] for an edge e D
E

� , where s e x( )� � . Let

~

[ ( )]

D s e be a choice of join, and

~

([ ( )])D s e� is

the corresponding graph of the colimit, then � �[ ]

~

([ ( )])y D s e 
 ��y y[ ]: y D s e��

~

( ( )) .

Definition 14. An additional pushout condition is satisfied for the morphisms

~

:

~ ~

a A C� and

~

:

~ ~

b A B� of FD-graphs

if:

(a)

~

A together with equiv a b( )� �� satisfies the join condition for the network;

(b)

~

B together with equiv b a( ( ))� satisfies the join condition for the network;

(c)

~

C together with equiv a b( ( ))� satisfies the join condition for the network.

Construction of a pushout over morphisms of FD-graphs that may not be n-injective stipulates the same construction

over n-injective morphisms. All the requirements of the morphisms that connect the network are first met. This means that all

the fuzzy graphs in

~

A should be joined whose network nodes in A are in the same equivalence class generated by �ab , i.e.,

the network node indicating this equivalence class is supplemented with respectively joined graphs. Fuzzy graphs are so

joined in

~

B and in

~

C. Since the same equivalence relation �ab is used in

~

A,

~

B, and

~

C, there appears a one-to-one relationship

between the corresponding classes and the joined graphs. Therefore, morphisms of fuzzy graphs can be selected as those

generated according to the joined graphs. The same ideas are followed in connecting network edges supplemented with

morphisms of graphs. The resultant edge class is supplemented with a morphism generated with respect to the source graph

join and all the morphisms belonging to edges in this class. By virtue of the additional pushout condition, all the equivalence

classes in the source graph join should contain an element in the source graph, which is mapped by a morphism that belongs

to the edge in the corresponding class.

In the general case, pushouts exist for each of the two morphisms

~

:

~ ~

a A C� and

~

:

~ ~

b A B� of FD-graphs in the

FDGraph category; however, if they do not satisfy the pushout conditions, they cannot be constructed componentwise, i.e.,

strictly modularwise. We propose here a technique for constructive construction of such a pushout since it is most suitable

for the analysis of transformations of distributed systems.
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TRANSFORMATIONS OF FUZZY DISTRIBUTED GRAPHS

Let us use a double pushout approach to transformations of fuzzy graphs to analyze transformations of fuzzy

distributed graphs. Let us consider transformations of such graphs that do not destroy the structure of distributed graphs and

do not cause side effects.

Transformation of fuzzy distributed graphs, where the distributed graph structure varies due to transformations of

isolated fuzzy graphs, can be specified by a double pushout over the distributed graphs and morphisms of graphs, i.e., in the

FDGraph category.

Definition 15. A production over distributed graphs (production of FD-graphs)

~

(

~

;

~ ~

)

~

~

~

p I L I R
l r

� 
 �
 
 �
 consists

of FD-graphs

~

:L L � FGraph,

~

:R R � FGraph, and

~

:I I � FGraph (called the left-hand side, the right-hand side, and the

intermediate FD-graph) and morphisms

~

l and

~

r of FD-graphs.

If all the

~

( ( )

~

( ( ));

~

( )

~

( ( )))

~

~

~

p I x L l x I x R r xx

l rx x
� 
 �
 
 �
 for x I

N
� are left-injective, i.e., all the

~

lx are injective, then

~

p is also called left-injective. If L I, , and R are the network graphs each consisting of precisely one node, then

~

p is called

local. If L I R� � , then

~

p is called synchronized. If

~

px is identical (see Definition 3) � �x I
N

, then

~

p is called a production of

network transformation.

A local production describes local action, communication and synchronization can be modeled by synchronized

productions. A network of components is controlled by productions of network transformation.

Definition 16. A distributed join condition is satisfied for a production

~

(

~

;

~ ~

)

~

~

~

p I L I R
l r

� 
 �
 
 �
 of FD-graphs and

a morphism

~

:

~ ~

m L G� of FD-graphs, which is called the case of matching of FD-graph, if the following conditions are

satisfied:

(i) the global join condition: m L G: � satisfies the join condition with respect to

~

(

~

;

~ ~

)

~

~

~

p I L I R
l r

� 
 �
 
 �
 (the join

condition in Definition 4);

(ii) the local join condition: � �x I m
N

l x:

~

( )

satisfies the join conditions with respect to

~

(

~

;

~ ~

)

~

~

~

p I L I Rx

l rx x
� 
 �
 
 �


and all the

~

px are l-injective;

(iii) the context condition: let Context q n H n L n l I( , ) ( ) ( ( ))� � � � � � be a context graph for the production

q I L I R
l r

� � 
 �

 � � 
 �

 �

� �

( ; ) and matching n L H: � � , then:

(à) � � � � �x y I e m l x m l y Context p m
N

, : ( ( )) ( ( )) ( , ) :

~

( )( (

~

,

~

)) (

~

,

~

)

( ) ( )

G e Context p m Context p mx l x y l y� ,

� � � � � �y I e z m l y G G e G z Context p m
N E

y l: ( ( )) :

~

( ) ( ( )) (

~

,

~

~

( y)

) ;

(b) � � � � � �x I e m l x z G m L l
N E E

y: ( ( )) ( ):

~

and

~

ry are bijective;

(iv) the network condition: (à) � � �x L l I m
N N

x( ):

~

is bijective

� � � � � �x I e l x y L l I m
N E E

x: ( ) ( ):

~

is bijective;

(b) � � � � � �x I e r x y R r I m
N E E

l y: ( ) ( ):

~

( )

is bijective.

Assume that

~

m satisfies all the local no-pendant conditions if

~

( )

ml x satisfies the no-pendant conditions with respect to

~

~

p x Ix

N
� � .

Let

~

I � be a subgraph of

~

I such that I p� ��( ) and � � � � �
�m x y I I m l x{( , ) | ( ( )) m l y x y x y p( ( )) ( , ( ))� � � �� }. A

morphism

~

:

~ ~

m L G� of FD-graphs is an FD-matching for the

~

p if the following distributed-join conditions are satisfied

additionally:

(i) the global join condition: m L G: � satisfies the join condition with respect to p I L I R
l r

� 
 �
 
 �
( ; ) (see

Definition 4);

(ii) the disjoint condition: (a) � � �x l p mx( ( )):

~

is bijective or (b)

~

I �, where equiv l( )� satisfies the network join

condition, and the graph of the network

~

[ ]

I y should be connected for all y p�� ( ), where l y x( ) � and [ ]

/

y I
l

N
�

�

;
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(iii) the local parallelism condition: � �x L
N

, where m x m y( ) ( )� for some y L m
N

x� :

~

is bijective or (a)

~

I , where

equiv m( )�
�

satisfies the network join condition; (b)

~

L, where equiv m( )� satisfies the network join condition; (c)

~

R, where

equiv r m( ( ))�
�

satisfies the network join condition;

(iv) the union condition: (a)

~

I , where equiv m r( )� ��
�

satisfies the network join condition; (b)

~

G, where

equiv m l r( ( ( )))� satisfies the network join condition.

The context condition implies the following: (a) an action on the target graph cannot eliminate local elements if some

of their copies are not eliminated in coupled source graphs; (b) a local action on the source graph cannot extend it if new

elements cannot have images in connected target graphs. Such an action cannot eliminate local elements without eliminating

references to the elements in target graphs. Local objects in the source graph cannot be connected if this is not reflected in

connected target graphs.

The network condition can be interpreted as follows: (a) network nodes can be eliminated if the fuzzy graph of the

node is eliminated as a whole in the same production, i.e., if the current fuzzy graph corresponds to the graph in the

production; if a network edge is to be eliminated, its source graph should bijectively correspond to the graph in the

production; (b) otherwise, if it is necessary to establish a new connection from the existing source graph, this graph should be

a structural equivalent to its correspondent given in the production.

The disjoint condition describes situations of disjoint allowed. Fuzzy graphs to be disjoined are determined

completely by a matching or are disjoined in such a way that fuzzy graphs that are copied into the disjoined graphs are

connected by interface graphs.

The local parallelism condition expresses a situation where local productions can be applied in parallel. The

productions applied to a fuzzy graph in parallel should cover it completely or applications of various parallel productions on

graphs of the interface should correspond to each other.

The union condition establishes when fuzzy graphs can be united.

Figure 9 describes the situation that allows no disjoint. The fuzzy graph

~

L with one node should be disjoined into

two independent fuzzy graphs in

~

I such that the node is copied. Using the matching

~

m, which builds in the node into a

greater context, this context is copied in the both fuzzy graphs of the FD-graph

~

C. Following the construction of pushout for

~

l and

~

c, we obtain an FD-graph

~

G� rather than G.

Such a situation is a general problem of disjoining. If a fuzzy graph is not completely disjoined, the remaining context

can also be disjoined arbitrarily, which leads to some form of nondeterminacy. Otherwise, the context should be copied into

all the parts involved. At the same time, information on this operation is lost if there is no interface graph for the part

disjointed, which preserves the information.
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Definition 17. An FD-graph

~

:C C � FGraph is called a graph of FD-context of

~

p and

~

m if

~

( )

~

( ( ))

~

| ( )

C x

G g x my z c z x

�

� �
� �

the greatest subgraph

{ } l y

y

N

t x

L l y

l I y x C

g G g x

( )

~

~

( )

( ( ( ))

~

( ( ))) ,

~

~

( ( ))

� �

�

if

1

� �

~

,

( )

g x Cs x

E
if �

�

�

�

�

�

�

�

�

�

where

~

(

~

;

~ ~

)

~

~

~

p I L I R
l r

� 
 �
 
 �
 are productions of FD-graphs,

~

:

~ ~

m L G� is an FD-matching,

C G m L l I m l p p� � � � � � �( ( )) ( ( ( ))) ( ) is the context graph of p and m in the Graph category, and the morphisms of

the FD-graphs

~

:

~ ~

g C G� and

~

:

~ ~

c I C� are defined as shown below. Let c m l� � and g idG C�
|

, the morphism of

FD-graphs

~

c is defined as

~ ~

~

( )

c m l y Iy l y y

N
� � �� , and the morphism of FD-graphs

~

~

( )|

~

( )

g idx G x C x
� � �x G

N
, otherwise

~ ~

~

( )

g m lx l x x� � .

The complement (

~

( ( )),

~

,

~

)

( )

C c y g cc y y for

~

( )

ml y and

~

l y in the FGraph category is constructed for all y I
N

� .

LEMMA 12. Let

~

(

~

;

~ ~

)

~

~

~

p I L I R
l r

� 
 �
 
 �
 be a left-injective production of an FD-graph,

~

:

~ ~

m L G� be an

FD-matching,

~

C be a graph of an FD-context, and

~

g and

~

c be morphisms of FD-graphs, defined according to Definition 17.

Then ( ,

~

,

~

)

~

G m g is a pushout of

~

c and

~

l in FDGraph.

Proof. In this case, C G m L l I� � �( ( )) and � �y I
N ~

( )

~

( )

~

( ( ( ))

~

( ( )))

( )

~ ~

C x G x m L l y l I yl y y� � � , where m l y x� ( ) � .

The graph

~

C is an FD-graph since the join condition for all local transformations and the context condition are satisfied. This

means that

~

( )C x is a fuzzy graph for each x C
N

� since the join condition is satisfied for the application of each local

production

~

px with respect to the matching

~

( )

ml x . For each e C
E

� ,

~

( )C e is a complete morphism of a fuzzy graph since the

context condition is satisfied for e with respect to

~

,

~

,

~

( ) ( ) ( )

p p ms e t e s e and

~

( )

mt e . Therefore, � �x C s e
~

( ( )) there exists

y C t e�

~

( ( )) , where

~

( )

~

( )

( )

G e g x ys e� � . It is easy to show that

~

g are morphisms of an FD-graph.

Further, it is necessary to show the properties of the pushout ( ,

~

,

~

)

~

G m g . The commutativity

~

~

~ ~

m l g c� �� follows

from Lemma 2. Let us construct the pushout of

~

l and

~

c (this is possible since the distributed join conditions contain the

pushout conditions, which are a part of network condition (a) and context condition (b)). We get (

~

,

~

:

~ ~

,

~

:

~ ~

)X f L X h C X� � .

Then it is necessary to show that the resultant pushout graph

~

X is isomorphic to

~

G . According to the pushout properties,

there exists a unique morphism

~

:

~ ~

u X G� of FD-graphs, where

~

~

~

u f m� � and

~

~

~

u h g� � . Vice versa, an appropriate morphism

~

:

~ ~

w G X� of FD-graphs can be defined as shown below. For any node x m l I w
N

x� ( ( )),

~

is a generated morphism

according to ( ( ),

~

,

~

)

~

G x m gx x . For all z C c I
N N

� � ( ) , where g z x w hx z( ) ,

~

~

� � , and � � �� L l I
N N

( ) where m x( )� � , the

following holds:

~

wx �

~

f m
� �

�

� 1

. We may use network condition (a) to show that

~

w is defined correctly.

277

Fig. 10. Diagram of direct

transformation of an FD-graph.



It is easy to show that

~ ~

~

w g h� � and

~ ~

~

w m f� � . Validity of

~ ~

~

w g h z Cz z z

N
� � � � and

~ ~

~

w m f L
N

� � �
�� � � � follows

immediately from the pushout properties or definition of

~

w. It is easy to show that

~ ~

~u w id
G

� � and

~ ~

~w u id
X

� � . Therefore,

~

G

and

~

X are isomorphic. The proof is completed. �

Definition 18. The complement of the pushout (

~

,

~

:

~ ~

,

~

:

~ ~

)C c I C g C G� � for the morphisms

~

:

~ ~

l I L� and

~

:

~ ~

m L G�

in the FDGraph category is semiinitial if:

(i) ( , , )C c g is the initial complement of the pushout of l and m in FGraph;

(ii) � �x I C c x c g
N

x c x
: (

~

( ( )),

~

,

~

)

( )

is the initial complement of the pushout over

~

( )

ml x and

~

lx in FGraph;

(iii) � � �x C c I g
N N

x( ):

~

is an identical morphism.

THEOREM 3. A complement of the pushout (

~

,

~

:

~ ~

,

~

:

~ ~

)C c I C g C G� � for the morphisms

~

:

~ ~

l I L� and

~

:

~ ~

m L G� is

unique in the class of all semiinitial complements of the pushouts of

~

l and

~

m .

Proof. It is easy to show that (

~

,

~

:

~ ~

,

~

:

~ ~

)C c I C g C G� � is semiinitial. Assume there exists another semiinitial

complement of the pushout (

~

,

~

:

~ ~

,

~

:

~ ~

)C c I C g C G� � � � � � � for the

~

l and

~

m. There exist morphisms of the graphs h C C: � �

and h C C� � �: , where h h idC� � � and h h idC� �
�

� by Definition 18. Therefore, the graph C is isomorphic to the graph C�.

There exist morphisms of the fuzzy graphs

~

:

~

( )

~

( ( ))h C x C h xx � � and

~

:

~

( ( ))

~

( )

( )

h C h x C xh x� � � � �x c I
N

( ) . Due to property

(ii) in Definition 18,

~ ~

( )

~

( )

h h idx h x C x
� � � and

~ ~

( )

~

( ( ))

� �

�

h h idh x x C h x
� for all the pairs

~

hx and

~

( )

h h x� . Property (iii) in the same

Definition and the properties of initial complements of pushouts are used to show that

~

h and

~

h� are morphisms of

FD-graphs. There hold

~ ~

~h h id
C

� � � and

~ ~

~h h id
C

� �

�

� . Therefore,

~

C and

~

C � are isomorphic. �

Definition 19. Direct transformation of an FD-graph

~ ~

G Hdi� by means of the production of FD-graphs

~

(

~

;

~ ~

)

~

~

~

p I L I R
l r

� 
 �
 
 �
 and the FD-matching

~

:

~ ~

m L G� (or

~ ~

,

G H

p m

di� ) from the FD-graph

~

G into the FD-graph

~

H is

specified by pushout diagrams (1) and (2) in the FDGraph category as shown in Fig. 10.

A sequence of transformations

~ ~
*

G H

P

di� of FD-graphs is a sequence of n �0 transformations of FD-graphs

~ ~ ~

. . .G G Gdi di� � �
0 1

� �di nG H
~ ~

in terms of productions of FD-graphs from the set P;

~

H is also called FD-deducible

from

~

G with respect to P.

THEOREM 4. Let

~

(

~

;

~ ~

)

~

~

~

p I L I R
l r

� 
 �
 
 �
 be productions of FD-graphs and

~

:

~ ~

m L G� be an FD-matching. The

transformation

~ ~

~

,

~

G H

p m

di� of FD-graphs exists and is unique.

Proof. According to Lemma 11, the morphism

~

l of FD-graphs can uniquely be decomposed into the epimorphism

~

:

~ ~

l I Ie �
�

and the monomorphism

~

:

~ ~

l I Li �

� . Since all the

~

lx are injective for x I
N

� , all the

~

lex are bijective. By Lemma

12, there exists a complement (

~

,

~

:

~ ~

,

~

:

~ ~

)C g C G c I Ci� � � � � �
�

for the morphisms

~

m and

~

li of FD-graphs. Since

~

m satisfies

the distributed join condition with respect to

~

p, it can be shown easily that

~

c � also satisfies it with respect to

~

(

~

;

~ ~

)

~

~

~

p I I I R
l re

� � 
 �
 
 �

�

. Therefore, according to Theorem 3, there exists a semiinitial complement. Thus, the

pushout ( ,

~

,

~ ~ ~

~

)

G m g g gi e� � for

~

l and

~

c exists and is defined uniquely.

There exists a pushout of

~

c and

~

r, and pushout condition (i) is a part of the context condition, pushout condition (ii)

corresponds to the network condition, and the additional pushout condition, to the local-parallelism condition and the join

condition. Since pushouts in arbitrary categories are unique up to isomorphism, it is arguable that

~ ~

,

G H

p m

di� is unique. The

proof is completed. �

We assume that distributed actions are performed simultaneously. Such parallel distributed actions can be expressed

by a parallel production on FD-graphs.

Definition 20. A production

~ ~

(

~ ~ ~

;

~

~ ~

p p I I L L
l l

1 2
1

2 1 2

1 2

� � � 
 �


 �

�
~ ~ ~ ~

)

~ ~

I I R R
r r

1 2 1 2

1 2

� 
 �


 �

�

of FD-graphs is

called a parallel production of FD-graphs that consists of

~

p
1

and

~

p
2

, where

~

(

~

;

~

~

p I L
l

1
1

1

1

� 
 �


~ ~

) ,

~

I R
r

1 1

1


 �


~

(

~ ~

;

~ ~

)

~

~

p I L I R
l r

2 2 2 2 2

2 2

� 
 �
 
 �
 are productions of FD-graphs,

~ ~

,

~ ~

,

~ ~

L L I I R R
1 2 1 2 1 2

� � � are coproducts of the

graphs, and

~ ~

l l
1 2

� and

~ ~

r r
1

2

� are generated morphisms.
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Construction of a parallel production is associative since it is based on deriving coproducts. Denote a parallel production

(( . . . (

~ ~

) . . . )

~

)p p pn1 2

� � � by �

1

n

ip
~

, which simplifies the notation but does not imply that coproducts are unique.

Construction of parallel productions can repeat, which results in productions

~ ~

. . .

~

p p pn1 2

� � � , where n �1, that are

also called parallel productions, which can be written as

� � �

�

1 1 1

n

i

n

i

l n

ip I Li~

~ ~

;

~

� 
 �



�

 

!

!

� �

�

1 1

n

i

r n

iI Ri
~ ~

~


 �



"

#

$

$

.

Definition 21. A grammar of fuzzy distributed graphs FDG S P� (

~

, ) is a set consisting of the source FD-graph

~

S

and the set P of productions of the FD-graphs.

Let P
�

be the least extension of the set P, including all parallel productions

~ ~

p p
1 2

� of FD-graphs for

~

,

~

p p P
1 2

�

�

.

The operational semantics OS( )FDG of the grammar FDG is represented by the class of all possible transformations that

begin with

~

S and use the set P
�

of productions of FD-graphs, i.e., OS {( )

~ ~

}

*

FDG S G

P

di� �

�

.

As an operational semantics, we take all possible transformations of FD-graphs for which distributed productions can

be applied in parallel.

CONCLUSIONS

A transformation approach to fuzzy distributed graphs provides a powerful and flexible resource for modeling

dynamic distributed systems, which is based on applying transformations to network structures of fuzzy components. Their

interaction and synchronization can be modeled by combining a fuzzy graph and transformations on common parts of such a

graph.

The categorical approach is used in the paper to formalize transformations of FD-graphs that are structured

transformations of fuzzy graphs. We formally defined the necessary and sufficient conditions for the transformations of

FD-graphs that do not violate the integrity of their structure and a constructive (componentwise) construction of pushout in

the FDGraph category is possible. Such a structure of pushout is used to analyze a direct transformation of FD-graphs that

specifies the result of application of productions (including parallel ones) to fuzzy distributed graphs. We have introduced

distributed graph grammars, which generalize fuzzy graph grammars. They make it possible to describe admissible

transformations of FD-graphs.

Changing the form of network during a transformation step allows modeling dynamic network structures of software

systems. We have shown that nodes and edges of fuzzy graphs can not only be united but also be disjoined into isolated

nodes and edges during a step of transformation of FD-graphs. We have formalized the distributed operations “disjoin” and

“join,” as well as parallel transformations of FD-graphs, by corresponding morphisms of networks of components. A parallel

transformation of a fuzzy graph is considered as a special case of a transformation of an FD-graph for which the graphs

subject to transformations are undistributed, i.e., unstructured.

The results presented in the paper can be applied, in particulars, to the design and analysis of models of fuzzy

information technologies based on MDA (Model Driven Architecture) [15], which can function within a high-performance

parallel medium of the SKIT cluster system created at the V. M. Glushkov Institute of Cybernetics, National Academy of

Sciences of Ukraine.
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