
Cybernetics and Systems Analysis, Vol. 43, No. 1, 2007

METHODS OF SEARCHING FOR GUARANTEEING

AND OPTIMISTIC SOLUTIONS TO INTEGER

OPTIMIZATION PROBLEMS UNDER UNCERTAINTY

N. V. Semenova UDC 519.8

The paper studies complex integer optimization problems with inexact coefficients of the linear

objective function and convex quadratic constraint functions. Exact and approximate decomposition

methods are developed and proved to search for guaranteeing and optimistic solutions to such

problems. The methods are based on approximation of initial problems by problems of a simpler

structure.
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perturbations in initial data.

INTRODUCTION

Mathematical models of discrete optimization envelop a wide range of applied problems that arise in making optimal

design, technological, and economic decisions. Moreover, a series of theoretical problems in mathematics can be formulated

as discrete optimization problems. Therefore, there is a pressing need to develop a theory and methods of searching for

solutions to discrete optimization problems [1, 2].

Real situations described by discrete optimization models are often of uncertain and random nature. In these cases, the

quality of decisions made and their consequences substantially depends on how completely all uncertain factors are taken

into account: inexact input information, inadequate mathematical models, round-off errors, computation errors, etc. The

modern optimization theory and practice are based on the classical formulation of optimization problems, which assumes that

all data are exact. But such a formulation is unsatisfactory for a large number of discrete optimization problems that arise, for

example, in economy, biology (genetics, DNA analysis, molecular biology), physics (high-energy physics, X-ray

crystallography), statistics (data analysis and reliability), cryptography (constructing error-control codes), mathematics

(theory of combinations, graph theory), policy (choice of electoral districts), and social sciences (control of health care,

education, and social safety systems). The initial data (the objective function and admissible domain) may vary during

optimization. Moreover, Academician V. M. Glushkov believed [3] that main informative essence of optimization for the

class of problems under consideration is in their purposeful change.

Continuing the studies reflected in [4–10], we present the results of developing and substantiating methods for exact

and approximate solution of problems originating in studying complex integer optimization models with controlled and

inexact initial data and based on their approximation by problems of a more simple structure. These methods are

decomposition ones, they combine and use the ideas of relaxation [12], linearization [13], and Kelley cutting plane [14]

methods.

We will construct and justify exact and approximate decomposition methods of searching for guaranteeing and

optimistic solutions to integer optimization problems with convex quadratic constraint functions under data uncertainty.

Some classes of uncertainty sets are proposed that describe the initial data of the problems under consideration.
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1. FORMULATION OF THE PROBLEM

An integer optimization problem with convex quadratic constraint functions is given by

max , | ( ) , , , , . . . ,{ { }� � � � � � � � � � � �c x f x D x x q x b i N mi i i i m0 1 }, (1)

where the vector of solutions x Z
n

� , Z
n

is a set of n-dimensional integer vectors from R
n

, the parameters c R
n

� ,

b b b Rm

m
� �( , , )

1

� , q Ri

n
� , and D Ri

n n
�

�
are symmetric nonnegative definite matrices for all i N m� . The statement

(1) assumes that data on the vector c and the quadratic constraint functions f xi ( ) , i N m� , are known exactly. However,

in practice, these parameters are estimated using data that are subject to noise, perturbations, measurement errors, and

various forms of uncertainties. Only sets of possible values can be known about them, and any stochastic characteristics

are absent. Since integer optimization problems are, as a rule, sensitive to perturbation of parameters, the errors of input

data tend to influence the solutions of these problems and often lead to results far from optimal ones.

Thus, let the parameters of model (1) be known not exactly but be defined, for example, by the statistical estimation

from available observations. Assume that the a priori information on the vector c R
n

� and the functions f x i Ni m( ), ,�

consists in representing the sets C and Fi such that c C� and f Fi i� , i N m� . The sets Fi can be specified by the sets S i to

which the data ( , , )D q bi i i , i N m� , of problem (1) belong.

An integer optimization problem of searching for guaranteeing solutions with convex quadratic constraint functions

under uncertainty can be presented as follows:

max min , | |{ { } }� � � �c x c C x X
1

, (2)

and the problem of searching for optimistic solutions with controlled data as

max max , | |{ { } }� � � �c x c C x X
2

, (3)

where

X X S i N x Z D x x q x bi m

n

i i i1 1

0� � � � � � � � � � �( , ) | , ,{ � � �( , , ) ,D q b S i Ni i i i m },

X X S i N x Z D q b Si m

n

i i i i2 2

� � � � 	 �( , ) | ( , , ) :{ � � � � � � � �D x x q x b i Ni i i m, , ,0 },

C is a convex closed set from R
n

, and Fi is the set of convex quadratic functions in R
n

, i N m� .

The optimal solution of problem (2) (problem (3), respectively) is the pair ( , )c x (( , )c x ) whose elements c C� , x X�
1

,

(c C� , x X�
2

) satisfy the condition

� � � � � � 
 � � �c x c x c C c x c C, min , | min , |{ } { }, (4)

(� � � � � � 
 � � �c x c x c C c x c C, max , | max , |{ } { }) (5)

for all ( , )c x such that x X�
1

(x X�
2

).

If the solution ( , )c x of problem (2) (( , )c x of problem (3), respectively) exists, then it is guaranteeing (optimistic) in

the sense that � � � � � � � � �D x x q x b D q b Si i i i i i i, , ( , , )0 ,

( ( , , ) : , ,	 � � � � � � � �D q b S D x x q x bi i i i i i i 0), i N m� ,

and for any x X�
1

(x X�
2

) condition (4) ((5), respectively) is satisfied.

Denote by X X S i N
k k i m

0 0

� �( , ) , k � 1 2, , the sets of optimal (guaranteeing or optimistic) solutions, respectively.

Of interest is to determine uncertainty sets that possess a more simple structure than the sets C and S i , i N m� , do and

such that do not change the admissible X k and optimal X
k

0

, k � 1 2, , sets of problems (2) and (3), respectively. Here, for

example, the following problems arise.

Problem 1. For the given sets C and S i , i N m� , find sets C C� , S Si i� , i N m� , that have more simple structures

than that of C and S i , i N m� , and are such that the equalities X S i N X S i Nk i m k i m( , ) ( , )� � � and X C S i N
k i m

0

( , , )� �

X C S i N
k i m

0

( , , )� , k � 1 2, , hold.
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Problem 2. For the sets C and S i , i N m� , determine the sets C C� , S Si i� , i N m� , that have more simple

structures than that of C and S i , i N m� , and are such that the equalities X S i N X S i Nk i m k i m( , ) ( , )� � � ,

X C S i N
k i m

0

( , , )� � X C S i N
k i m

0

( , , )� , k � 1 2, hold.

The solution of the first problem yields boundaries for extending the sets C and S i , i N m� , without changing the sets

of admissible and optimal solutions of the initial problems (2) and (3), i.e., determines the domains of stability of their

solutions when the parameters of these problems are changed. The solution of the second problem allows reducing the

amount of calculations by reducing and simplifying the sets C and S i , i N m� , which is especially important for organizing

an efficient optimization solution of problems (2) and (3). Ramik and Rimanek [15] present some results concerning solution

of Problems 1 and 2 with linear constraints of the admissible domain.

The representation of the uncertainty sets C and S i substantially influences the degree of complexity of the

accompanying optimization problems in constructing an optimal or an approximate solution. Note that for some classes of

uncertainty sets, integer linear, quadratic, and semidefinite programming problems can easily be reduced to standard

optimization problems with exact data.

Let us describe some classes of uncertainty sets for which problems (2) and (3) can be reduced to optimization

problems with exact data. Let us consider the case where the set C is given as follows: C c c c� 
 � �{ }| | | ,

0

0� � , where c
0

and � are a vector given in space R
n

and a given number, respectively; then min , | ( ){ }� � � � 
 
c x c C f xC , max , |{� �c x

c C f xC� �} ( ), where f xC ( ) is the support functional of the convex set C. Since f xC ( ) for C is calculated analytically in this

case [11], the objective functions of problems (2) and (3) become max , | |{ }� � 
c x x
0

� and max , | |{ }� � �c x x
0

� , respectively.

Let us show that for some constraints on the uncertainty sets C and S D q bi i i i� { }( , , ) , i N m� , the solutions of

problems (2) and (3) can be found by solving once the integer optimization problem (1).

Given X , the set W is said to have a maximum element w W
*

� (minimum w W
*

� , respectively) if f x w( , )

*


 �f x w f x w f x w( , ) ( ( , ) ( , ))

*

� � � �x X w W, . If w
*

(w
*

) exists, then it is a solution w f x w

w W x X

*

max min ( , )�
� �

arg

( min max ( , )

*

w f x w

w W x X

�
� �

arg ) .

Let us present examples of sets that have maximum (minimum) elements on the assumption that S Di i� { }, i N m� .

1. Let for some i N m� Di

0

be known symmetric nonnegative definite matrices, and S i be closed spheres, with centers

in Di

0

, of radius �i � 0 : S D D D D Di i i i i i S i� � 
 �{ }

T

| , | | | |

0

� , where | | | | max , |B By yS � � �{ | | | |y � 1} is the spectral norm

of the matrix B. Then for 0

0

� �� �i

i

iD
min

]{ , where �
min

[ ]

i
A is the minimum eigenvalue of the matrix A, S i is a convex

compact set of symmetric nonnegative definite matrices. It is easy to verify that for D D Ei i i

max

� �
0

� , D D Ei i i

min

� 

0

�

(where E is a unit matrix), the inequalities f x D f x Di i i i( , ) ( , )

max


 and f x D f x Di i i i( , ) ( , )

min

� hold for any x Z
n

� and

D Si i� ; therefore, Di

max

and Di

min

are the maximum and minimum elements for any X Z X Z
n n

1 2

� �( ) , i N m� .

2. Let S i , i N m� , be given by elementwise constraints for the matrices Di , S D D D Di i i i i� � �{ }| , where the

matrices Di and Di are known and nonnegative definite. If the sets X k , k � 1 2, , contain only nonnegative elements, then

( , , )D q bi i i and ( , , )D q bi i i are the maximum and minimum elements, respectively, since f x D q bi i i i( , , , ) 


f x D q bi i i i( , , , ) and ( ( , , , ) ( , , , )) ( , , )f x D q b f x D q b D q b Si i i i i i i i i i i i� � � for any x 
 0. Note that the sets S i , i N m� ,

thus defined arise, for example, in the confidence-interval estimation of the elements of the unknown covariance matrix D

from empirical data.

2. DECOMPOSITION APPROACH TO SEARCHING FOR EXACT

AND APPROXIMATE SOLUTIONS AND ITS SUBSTANTIATION

Since each matrix D i Ni m, � , is nonnegative definite, to solve problem (2) it is possible to apply the decomposition

methods proposed in [4]. According to these methods, the problem solution can be reduced to sequential solution of integer

optimization problems with linear constraints and linear programming problems.

We develop this approach here to solve problem (3), whose admissible domain X
2

is a union of convex sets and thus

can be nonconvex. Following [4], let us consider the MP problem for some x Z
j n

� , j � 1 2, , . . . .
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maxx
0

, (6)

under the following conditions:

x c x c C k
j N

j j

k

0

1 2� � � � �
�
max , , , , , . . . , (7)

min max ( ( ) ( ), )

( , , )D q b S j N
i

j j

i

j j j

i i i i l

f x f x x x
� �

� �� 
 � � 0,

f F
i

j

i� , i I N m� � , l � 1 2, , . . . ,

(8)

x Z
n

� , (9)

where � f x
i

j j
( ) is the gradient of the function f x

i

j
( ) at the point x

j
.

Let us define the sets

Q x Z D q b S D x x q x bi

n

i i i i i i i� � 	 � � � � � � � �{ }| ( , , ) : , , 0 , i N m� .

Obviously, X Q

i N

i

m

2

�

�

�

. We assume that the set X
2

is bounded.

The quantity r x D x x q x b D q b Si i i i i i i i( ) min , , | ( , , )� � � � � � � �{ }, i N m� , is called the deviation of the point x Z
n

�

from the boundary of the set Qi , and the quantity r x r x i Ni m( ) max ( ) |� �{ } the deviation of the point x Z
n

� from the

boundary of the set X
2

. Let us define the sets

P x R f x f xi

l n

D q b S j N
i

j j

i

j j

i i i i l

� � � ��
� �

| min max ( ( ) ( )

( , , )

, ) ,x x f F
j

i

j

i
 � � �
�
�
�

�
�
�

0 ,

i I N m� � , l � 1 2, , . . . , (10)

P P
l

i I

i

l
�

�

�

, (11)

S x x R x c x c C
k n

j N

j j

k

� � � � � �
�
�
�

�
�
�

�

�
( , ) | max , ,

0

1

0

, k � 1 2, , . . . . (12)

Thus, we can write the MP problem as follows:

max |( , ) |{ }x x x S x P Z
k l n

0 0

� � � .

THEOREM 1. An admissible (optimal) solution ( , )x x
0

of an MP problem is an admissible (optimal) solution of

problem (3), where x
0

is the value of the objective function and x is a solution of this problem, if and only if the conditions

r x( ) � 0 and x c x c C
0

� � � �max , |{ } (x c x c C
0

� � � �max , |{ }) are satisfied.

Proof. An admissible solution of the MP problem is an admissible solution of problem (3) if and only if r x( )� 0 and

x c x c C
0

� � � �max , |{ }. The necessity of this statement is obvious. The sufficiency follows from the construction of the MP

problem and the definition of the r x( ). Since the MP problem is equivalent to problem (3) provided that the conditions of

Theorem 1 are satisfied, this statement is proved with respect to the optimal solution.

Developing the decomposition approach to the solution of problem (3) proposed in [4], we reduce problem (3) to a

sequential solution of MP problems of partially integer optimization with linearized constraints and of linear programming

problems max , |{ } }� � �c x c C
j

.

The main idea of the exact and approximate methods proposed here consists in the following. If the solution ( , )x x
0

of

the MP-problem is inadmissible in problem (3), i.e., r x( ) � 0 , then it is eliminated from the subsequent consideration by

adding a new linear constraint to constraints (8) of the MP problem. Thus, constraint (8) now cuts off an inadmissible

solution x and a part of the inadmissible domain of problem (3) from all the subsequent considerations. All the added

constraints are correct cutting planes, i.e., those that do not cut off any part of the admissible domain of the nonlinear

problem (3). If according to Theorem 1 the solution ( , )x x
0

is optimal for the MP problem and r x( ) � 0,

x c x c C
0

� � � �max , |{ }, then the solution obtained is optimal for problem (3) too.
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Algorithm

1. Select c C
1

� , assume k l, � 1, P x Z
n1

� �{ }, S x x
1

0

� { }, | x c x x R x Z
n

0

1

0

1

� � �, , }.

2. Solve the partially integer MP optimization problem. If it is inadmissible, then based on the fact that constraints (8)

are a relaxation of the constraints 	 � � � � � � � �( , , ) : , ,D q b S D x x q x bi i i i i i i 0, i N m� , of problem (3), conclude that

problem (3) is also inadmissible. This case is possible only for k � 1. Otherwise obtain the admissible (optimal) solution

( , )x x
l l

0

or the information that the objective function is not bounded on the admissible set. Then take sufficiently large

values that satisfy the constraints as the coordinates of the vector x
l
.

3. Find the deviation r x
l

( ) from the boundary of the set X
2

. If r x
l

( ) � 0 , then according to Theorem 1 ( , )x x
l l

0

is the

admissible (optimal) solution of problem (3). Go to Step 4 assuming that ( , ) ( , )x x x x
k k l l

0 0

� . Otherwise find an element

f Fi

l

i I

i�

�

�

for which r x
l

( ) � 0 and include it in the formation of the set P
i

l � 1

, i I� , according to (10). Replace l with l � 1

and go to Step 2.

4. Solve the linear programming problem { }� � �c x c C
k

, | . Let c
k � 1

be the optimal solution.

5. If

� � 

�

c x x
k k k1

0

, , (13)

( , )� � �
�

c x x
k k k1

0

, (14)

then stop. According to Theorem 1, the point ( , )x x
k k

0

is an admissible (optimal) solution of problem (3). Based on

Theorem 1, conclude that ( , )c x
k k� 1

is an approximate (optimal) solution of problem (3) with the value x
k

0

of its

objective function. Otherwise, form the set S
k � 1

according to (12), replace k with k � 1, and go to Step 2.

Remark. When using this algorithm to derive an optimal solution of problem (3), one may weaken the optimality

requirement for the solution of the MP problem. The optimality is only necessary at the final step. Intermediate solutions for

constructing new cutting planes should only be the admissible solutions of the MP and inadmissible in problem (3), i.e.,

should not belong to the admissible domain X
2

. In this case, deriving the optimal solution of the initial problem will

probably need more steps of the algorithm; however, it is possible to apply approximate methods to solve an MP

subproblem.

THEOREM 2. The above algorithm converges to an approximate (optimal) solution in a finite number of steps or

ends at the first step with the conclusion that problem (3) is inadmissible.

Proof. Since the set X
2

is bounded, problem (3) has a finite optimal solution; thus, beginning with a number k
0

, the

sequence of points { }x
k

is contained in a bounded set. Therefore, there exists a converging sequence { }x
kl

. Taking into

account the condition x Z
i n

� , i � 1 2, , . . . , we conclude that the point set { }x
kl

is finite. Therefore, it is possible to select a

stationary sequence, i.e., 	l
*

such that � 
 �l l x x
kl

*

, and no new constrain is added to (8) in the MP problem beginning

with an l
*

. This is possible only when x X�
2

. In Step 5 of the algorithms, if either condition (13) or (14) is not satisfied,

constraint (7) in the MP problem is replaced with a new one. The number of such constraints does not exceed the number of

nodes of the polyhedron C since none of the vectors c
k � 1

can be found once again before condition (13) or (14) is satisfied.

The theorem is proved.

Below we present criteria of checking the solution for admissibility in problems (2) and (3) for some uncertainty sets.

3. REPRESENTATION OF UNCERTAINTY SETS

3.1. Discrete and Polyhedral Uncertainty Sets. A discrete set given as

S D q b D q b D q b j Na j j j k� � �{ }( , , ) | ( , , ) ( , , ),

is the simplest type of an uncertainty set, which specifies initial data of constraints that describe admissible domains of

problems (2) and (3).

89



Hereafter, D j Nj k, � , are symmetric nonnegative definite matrices.

The set described by the guaranteeing constraint � � �Dx x, � � � �q x b, 0 for all ( , , )D q b S a� is equivalent to an

intersection of k sets each being specified by the convex quadratic constraint for each ( , , )D q b Sj j j a� , j N k� ,

j N

j j j

k

D x x q x b

�

� � � � � � �
�

{ }, , 0 , (15)

which, in turn, is described by the inequality

max , , | ( , , ){ }� � � � � � � �D x x q x b D q b Sj j j j j j a 0.

The set described by the constraint

	 � � � � � � � �( , , ) : , ,D q b S Dx x q x ba 0 (16)

in problem (3) is equivalent to the union of sets described by this constraint for each ( , , )D q b Sj j j a� , j N k� ,

j N

j

k

D x x

�

� � �
�

{ , � � �q xj , b j � 0},

which is equivalent to

min , , | ( , , ){ }� � � � � � � �D x x q x b D q b Sj j j j j j a 0. (17)

Discrete uncertainty sets are used when it is necessary to make a decision that is stable (in problem (2)) and optimistic

(in problem (3)) with respect to several scenario (each value of ( , , )D q bj j j corresponds to a certain scenario).

The convex hull of a discrete uncertainty set is specified by

conv {S D q b D q b D q ba

j

k

j j j j� �

�

�( , , ) | ( , , ) ( , , ),

1

� � �j k

j

k

jj N
 � � �

�

�0 1

1

, }.

The constraint � � � � � � � � �Dx x q x b D q b S a, , ( , , )0 conv is equivalent to the following one:

j

k

j jD x x

�

� � � �

1

� ,

� � � � � 
q x bj j j, 0 0� , j N k� ,

j

k

j

�

� �

1

1� , which, in turn, is equivalent to the set of constraints (15). In the case of the

uncertainty set conv S a , constraints (16) are equivalent to (17).

Thus, the following statement is true.

Statement 1. Let conv S i be the convex hull of the set S i , i N m� , X x Z D x x q x b
n

i i i1

0� � � � � � � � �{ | , ,

� ( , , )D q bi i i �conv S i , i N m� }, X
2

�{ convx Z D q b S
n

i i i i� 	 �| ( , , ) : � � � � � � � �D x x q x b i Ni i i m, , , }0 . Then

X Xk k� , k � 1 2, .

Based on Statement 1, we assume that the sets S i , i N m� , are convex.

The uncertainty sets S a and conv S a can be extended to the following polyhedral uncertainty set:

S D q b D q b D q b A db

j

k

j j j j� � � 


�

�{ }( , , ) | ( , , ) ( , , ), ,

1

0� � � ,

where { }� � �� � 
 � �R A d
k

| , |0 .

Let us introduce a vector g g g Rk

k
� �( , , )

1

� , g D x xj j� � � �, � � �q x bj j, , j N k� .

Statement 2. A vector x Z
n

� satisfies the constraint � � �Dx x, � � � �q x b, 0 for all ( , , )D q b S b� if and only if there

exists a vector u R
k

� such that A u g
T


 , � � �d u, 0 hold.

Proof. Fix an x. Then the constraint � � �Dx x, � � � �q x b, 0 for all ( , , )D q b S b� is equivalent to the system of linear

inequalities

� � � � 
g , � �0 0 such that A d� � . (18)

According to the theory of duality of linear programming, relations (18) are equivalent to the following ones: 	 �u R
k

such that A u g
T


 , � � �d u, 0.
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Statement 3. A vector x Z
n

� satisfies the constraint 	 � � � � � � � �( , , ) : , ,D q b S Dx x q x bb 0 if and only if

� � � � 
 �d u u A u g
T

, :0 0 . (19)

Proof. The constraint 	 � � � � � � � �( , , ) : , ,D q b S Dx x q x bb 0 for the given vector x Z
n

� is equivalent to the following

one: 	 �� R
k

, � 
 0, such that A d� � , � � �g , � 0. According to the theory of duality of linear programming, these relations are

equivalent to (19).

3.2. Uncertainty Sets that Contain Perturbations Bounded in Norm. Further, let us describe two closed

uncertainty sets that contain perturbations bounded in norm and are bounded versions of generalized ellipsoidal sets [15]. In

the first uncertainty set S c , all the elements ( , , )D q b are given by

S D q b D q b D q b u D q bc

j

k

j j j j� � �

�

�{( , , ) | ( , , ) ( , , ) ( , , ),

0 0 0

1

u u p
 �0 1, | | | | },

where | | | |u p is an Lp -norm for some real p 
 1, D j , j N k� �{ }0 are symmetric nonnegative definite matrices in R
n n�

.

Statement 4. A vector x Z
n

� satisfies the constraint 	 � � � � � � � �( , , ) : , ,D q b S Dx x q x bc 0 if and only if there exists

a vector h R
k

� , h 
 0, h g
 
 , that satisfies the inequality

� � � � � � 
 �D x x q x b h q0 0 0

0, , | | | | , (20)

where 1 1 1/ /p q� � .

Proof. The constraint 	 � � � � � � � �( , , ) : , ,D q b S Dx x q x bc 0 is equivalent to

� � � � � � � �

 �

�

�D x x q x b u D x
u u u

j

k

j j

p

0 0 0

0 1

1

, , min ( ,

: , || ||{ }

x q x bj j� � � � �
�

�
�

��

�

�
�

��
�, ) 0 (21)

or to the inequality

� � � � � � 
 
�

 �

�

�D x x q x b u D x
u u u

j

k

j j

p

0 0 0

0 1

1

, , max (

: , || ||{ }

, , )x q x bj j� 
 � � 

�

�
�

��

�

�
�

��
� 0.

Denote y g D x x q x bj j j j j� 
 � 
 � � 
 � � 
, , and z y yj j j� �
�

( ) max ,{ }0 , i N k� . Assume that p �1. Then if z � 0,

the optimal solution u
*

of the problem max , | , | | | |{ }� � 
 �u y u u p0 1 is u z zj j

p

q

p* / /

( ) / | | | |�

 
1 1 1 1

otherwise u j

*

� 0, j N k� .

Therefore, (21) is equivalent to

� � � � � � 
 �D x x q x b z q0 0 0

0, , | | | | . (22)

For p � 1, max

1 � �j k
j

z{ } is the optimal solution of the problem max , | , | | | |{ }� � 
 �u y u u p0 1. Thus, (21) is equivalent to

(22). Moreover, since z 
 0, | | | | | | | |h zq q
 for all h zj j
 (i.e., h j 
 0 and h yj j
 ), j N k� , and (22) holds if and only if there

exists a vector h R
k

� , h 
 0, h y
 , such that it satisfies inequality (20).

Statement 5. A vector x Z
n

� satisfies the constraint � � � � � � �Dx x q x b, , 0 for all ( , , )D q b S c� if and only if there

exists a vector h R
k

� , h 
 0, h g
 , such that it satisfies the inequality

� � � � � � � �D x x q x b h q0 0 0

0, , | | | | , (23)

where 1 1 1/ /p q� � .

To prove this statement, note that the constraint � � � � � � � � �Dx x q x b D q b S c, , ( , , )0 is equivalent to the constraint

� � � � � � � �

 �

�

�D x x q x b u D x
u u u

j

k

j j

p

0 0 0

0 1

1

, , max ( ,

: , || ||{ }

x q x bj j� � � � �
�

�
�

��

�

�
�

��
�, ) 0. (24)

Arguing as in the proof of Statement 4, we prove that constraint (24) holds if and only if there exists a vector h R
k

� ,

h 
 0, h gj j
 , j N k� , such that it satisfies inequalities (23).
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In the uncertainty set S c , perturbations in the quadratic D and affine ( , )q b terms are specified by the same parameter

u. However, these perturbations are independent in many applications, i.e., can be specified by different parameters. Let us

consider the following uncertainty set:

S

D q b D D u D u

q b q b

d

j

k

j j p

j

�

� � �

� �

�

�( , , ) | , | | | | ,

( , ) ( , )

0

1

0 0

1

�

� �

�

�

�
�

�

�
�

�

�

�
�

�

�
�

1

1

k

j j j rw q b w( , ), | | | | ,

,

where p and r are real numbers no less than 1.

Remark. Since u has no constraint on the sign, and the matrices D j Nj k, � �{ }0 are nonnegative definite, we

conclude that the worst case of the perturbation is u
*


 0 and the best one is u
*

� 0.

Statement 6. A vector x Z
n

� satisfies the constraint 	 �( , , ) :D q b S d � � � � � � �Dx x q x b, , 0 if and only if there exist

vectors h R
k

� and ��R
k

such that

� � � � � � 
 
 �D x x q x b h q S0 0 0

0, , | | | | | | | |� , (25)

where h D x xj j� 
 � �, , � j j jq x b� 
 � � 
, , j N k� , 1 1 1/ /p q� � , 1 1 1/ /r s� � .

Proof. The constraint 	 �( , , ) :D q b S d � � � � � � �Dx x q x b, , 0 is equivalent to the following one:

� � � � � � � �
� �

�

�D x x q x b u D x x
u u u

j

k

j j

p

0 0 0

0 1

1

, , min ,

: , || ||{ }

�
�

�
�

��

�

�
�

��
� � � �

�

�
�

��

�

�
�

��
�

�
�

�min ( , )

: || ||{ }w w
j

k

j j j

r

w q x b
1

1

0,

which is equivalent to

� � � � � � 
 
�
� �

�

�D x x q x b u D x
u u u

j

k

j j

p

0 0 0

0 1

1

, , max (

: , || ||{ }

, )x�
�

�
�

��

�

�
�

��

 
� � 


�

�
�

��

�

�
�

��
�

�
�

�max ( , )

: || ||{ }w w
j

k

j j j

r

w q x b
1

1

0. (26)

With the Cauchy–Bunyakovskii inequality, we get the equalities

max ( , ) | |

: , || ||{ }u u u
j

k

j j

p

u D x x h
� �

�

� 
� �
�

�
�

��

�

�
�

��
�

0 1

1

| |p , max ( , ) | | | |

: || ||{ }w w
j

k

j j j

r

w q x b
�

�

� 
� � 

�

�
�

��

�

�
�

��
�

1

1

� S .

Thus, (26) is equivalent to (25). Since the matrices D j are nonnegative definite � �j N k , it is easy to verify that the

equality h D x xj j� 
 � �, can be weakened up to h D x xj j� 
 � �, , j N k� , without influence on the constraint (25).

Statement 7. A vector x Z
n

� satisfies the constraint � � � � � � � � �Dx x q x b D q b S d, , ( , , )0 if and only if there exist

vectors h R
k

� and ��R
k

such that the following inequalities hold:

� � � � � � � � �D x x q x b h q S0 0 0

0, , | | | | | | | |� , (27)

where � j j jq x b� � � �, , h D x xj j� � �, , j N k� , 1 1 1 1 1 1/ / , / /p q r s� � � � .

Proof. The constraint � � � � � � � � �Dx x q x b D q b S d, , ( , , )0 is equivalent to

� � � � � � � �

 �

�

�D x x q x b u D x x
u u u

j

k

j j

p

0 0 0

0 1

1

, , max ,

: , || ||{ }

�
�

�
�

��

�

�
�

��
� � � �

�

�
�

��

�

�
�

��
�

�
�

�max ( , )

: || ||{ }w w
j

k

j j j

r

w q x b
1

1

0.

(28)

With the Cauchy–Bunyakovskii inequality, we arrive at the equalities

max , | | | |

: , || ||{ }u u u
j

k

j j q

p

u D x x h

 �

�

� � �
�

�
�

��

�

�
�

��
�

0 1

1

, max ( , ) | | | |

: || ||{ }w w
j

k

j j j S

r

w q x b
�

�

� � �
�

�
�

��

�

�
�

��
�

1

1

� .
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Therefore, (28) is equivalent to (27), and the equality h D x xj j� � �, can be weakened up to h D x xj j
 � �, , j N k� ,

without influence on the constraint (27).

Some uncertainty sets that describe the initial data for problems (2) with continuous variables and their applications

are presented in [16].

CONCLUSIONS

We analyzed complex integer optimization problems with inexact coefficients of the linear objective function and

quadratic constraint functions. We considered some uncertainty sets that describe the initial data of problems for which such

problems can be formulated as problems with exact data. We constructed and justified exact and approximate decomposition

methods to find guaranteeing and optimistic solutions to these problems under data uncertainty, based on their constructive

approximations with problems of simpler structures. Further study will be aimed at developing the methods for solving

complex integer optimization problems with controlled initial data, which will lead to formulations of problems on

preconvex sets. Admissibility and optimality criteria for solutions will be obtained, their stability will be analyzed, and

algorithms for data analysis will be developed.
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