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Abstract A frequency domain distributed 55 segment

arterial model was constructed from the reflection per-

spective to predict pressure waveforms in the large sys-

temic arteries. At any node, the predicted pressure

waveform was the combination of a forward propagating

waveform and a number of repeatedly reflected waveforms

from any possible sites. This approach ensured that any

single reflected waveform could be traced back to its ori-

gin, and thus the causal-effect relation would be precisely

known. This model was evaluated in terms of branch

reflection coefficient, terminal vascular bed behavior, and

wall viscoelasticity. It was found that the model predicted

pressure waveforms were most sensitive to the branch

reflection coefficient, and this led to the adoption of the

zero-forward reflection assumption at branches. The

model-predicted pressure waveforms compared favorably

with realistic blood pressure waveforms, especially in the

upper limbs. For lower limbs, finer segmentation could

further improve the predictions.

Keywords Arterial hemodynamics � Distributed model �
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Introduction

The amplification of pressure pulses as a result of reflec-

tions in the periphery was first identified in nineteenth

century by Spengler and Von Kries (Li 2000). The

amplification of pressure pulses has been attributed to the

in-phase summation of reflected waves arising from

structural and geometric non-uniformities. The arteriolar

beds have been recognized as the principal reflection sites.

Thus, pulsatile pressure and flow waveforms contain

information about the heart as well as the vascular system.

The study of pulse waveform contours is important,

because of its relevance to many cardiovascular diseases.

Alterations in contours are closely related to the mechan-

ical properties of the vessel wall and vascular states, and

are linked to hypertension and atherosclerosis (O’Rourke

1970; Safar et al. 1984). In hypertension, for instance, the

increased pressure is always associated with increased

wave reflections (Li 1989). Increased wave reflections

impede ejection and are detrimental to normal LV function.

This increased wave reflection can occur as a consequence

of changing vascular bed characteristics or the modification

of conduit vessel wall properties.

Due to the lack of means for direct measurement of the

timing, amplitude and sites of wave reflection and com-

plexity of the nature of wave reflection, model study

emerges as an important tool. There are numerous models

of the arterial system; some are linear models based on

transmission line theories (e.g. Noordergraaf et al. 1963;

Westerhof et al. 1969; Avolio 1980) others are nonlinear

models (Snyder et al. 1968; Stergiopulos et al. 1992). Few

models utilize reflection phenomena sufficiently and

directly. A propagating pulse wave is traceable. And its

resultant waveform at any location can be ascribed to

individual reflected waves so that a causal relation can be
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established to describe the relationships between different

sites of interests (Berger et al. 1993). A recent model

proposed by Wang and Parker (2004) dealt with reflection

directly in the time domain. But viscosity was neglected in

the model, therefore wall-damping effects were underesti-

mated. Also, their model did not compare with actual

measured data.

We present here a model of the arterial system from a

new perspective that emphasizes wave reflection directly,

intuitively, and thoroughly. The main difference between

this model and the traditional transmission models lies in

how reflection is treated and that the predicted pressure

waveform becomes the combination of a forward propa-

gating waveform and a number of repeatedly reflected

waveforms from many possible sites. This approach

ensured that any single reflected waveform could be traced

back to its origin, and thus the causal-effect relation would

be precisely known.

Methods

The construction of the proposed arterial model consists of

three steps: single segment modeling, interaction between

segments, and multi-segment network connections.

Pulsatile Wave Propagation in a Single Segment

The basic computational unit is a segment of artery which

is a thin-walled cylindrical tube having internal viscous,

elastic and inertial properties with external coupling to the

surrounding tissue producing a longitudinal constraint

(Avolio 1980). The transmission ratio of pressure at the one

end p2 to pressure at the other end of a segment p1 = A1ejxt

for a certain frequency x is given by Taylor (1966) if

assuming no reflection occurs.

p2 ¼ p1e�cl ¼ A1ejxte�cl ð1Þ

where l is the length of the segment, and c is the

propagation constant. The above equation applies to

transmission that occurs in either direction. The

propagation constant describes the transmission of

sinusoidal waves with respect to the spatial change of

phase (phase coefficient b) and the spatial decrease in

amplitude (damping or attenuation coefficient a)

c ¼ jx
cph
¼ aþ jb ð2Þ

where cph is the complex phase velocity. cph was calculated

from Womersley’s analysis for a uniform tube, and is a

function of viscous blood flow, viscoelasticity of the vessel

wall, Poisson ratio of the wall material, and the external

constraints on wall motion. Womersley (1957)

cph ¼
c0

ðX � jYÞð1� jxWÞ ð3Þ

c0 is the pulse wave velocity defined by the Moens-

Korteweg equation

c0 ¼
ffiffiffiffiffiffiffi

Eh

qD

s

ð4Þ

where h is the arterial wall thickness, D is the internal

diameter, and q is blood density taken as 1.05 gm/cm3.

E is the static Young’s modulus of the arterial wall. The

arterial wall behaves as a viscoelastic material that

produces a phase difference / between applied force

and resulting displacement (Taylor 1966). The term

(1 - jxt) in Eq. 3 takes into account the effects of wall

viscosity:

ð1� jxWÞ ¼ 1� j
tan /

2
ffi e�j/=2 ð5Þ

and the above approximation is based upon the fact that /
is small for aorta (Bergel 1961), where the angle / is

expressed in terms of wall viscosity g

/ ¼ tan�1 xg
E

� �

ð6Þ

Taylor (1966) derived an expression for the variation of /
with frequency as

/ ¼ /0ð1� e�kxÞ ð7Þ

where /0 is an asymptotic value that was taken as 15� by

Avolio (1980) and k was taken as 2. Karamanoglu et al.

(1995) observed a relationship for /0

/0 ffi /ð10h=2rÞ ð8Þ

where h/2r is the wall thickness to diameter ratio, and u
is taken 5�, 10� and 15�. Since minimal effects were

obtained using different u, u = 10� is used in this study

to obtain /.

The term (X - jY) in Eq. 3 takes into account the effects

of blood viscosity and longitudinal constraint:

ðX � jYÞjk¼�1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� r2Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� F10Þ
p ð9Þ

where r is Poisson’s ratio and is taken as 0.5; k is a variable

which expresses the longitudinal constraint and loading

(k = -?) is a condition of maximal constraint and

loading). The complex function (1 - F10) may be

expressed in modulus (M
0
10) and phase (e

0
10)

ð1� F10Þ ¼ M
0

10eje
0
10 ð10Þ

Womersley (1957) tabulated the modulus and phase for

various values of rx, where rx is the non-dimensional

Womersley’s parameter
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ax ¼ r

ffiffiffiffiffiffiffi

xq
l

r

ð11Þ

where l is the blood viscosity (0.04 poise), and r is the

internal arterial radius.Substituting Eqs. 5, 9, and 10 into

Eq. 3, and solving for cph yields

cph ¼
c0ðM

0

10Þ
1=2eje

0
10
=2ej/=2

ð1� r2Þ1=2
ð12Þ

Substitute Eq. 12 into Eq. 2 and we obtain

c ¼ xð1� r2Þ1=2

c0ðM 0
10Þ

1=2
sin

e
0
10 þ /

2

� �

þ j cos
e
0
10 þ /

2

� �� �

ð13Þ

attenuation coefficient:

a ¼ xð1� r2Þ1=2

c0ðM0
10Þ

1=2
sin

e
0
10 þ /

2

� �

ð14Þ

phase coefficient:

b ¼ xð1� r2Þ1=2

c0ðM0
10Þ

1=2
cos

e
0

10 þ /
2

� �

ð15Þ

Inter-Segmental Interaction

Characteristic Impedance

The characteristic impedance of an arterial segment as

derived by Womersley (1957) is

Zo ¼
qc0

pr2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p ð1� F10Þ�1=2 ð16Þ

In this expression, Zo is a function of blood viscosity and

oscillatory frequency, and longitudinal constraint and

loading is allowed for. With inclusion of wall viscosity,

we have:

Zo ¼
qco

pr2ð1� r2Þ1=2ð1� F10Þ1=2ð1� jxWÞ
ð17Þ

Zo can also be calculated with the water hammer equation

(Li 1987, 2004):

Zo ¼
qc0

pr2
ð18Þ

In this expression, Zo only represents the local

geometry. Eq. 18 can be approximated from Eq. 17 by

assuming infinite rx. The difference in using the two

expressions in calculating local reflection coefficient with

respect to branch area ratio is shown to be small in

major arteries (Noordergraaf 1969). Therefore, for

simplicity, Eq. 18 is used to calculate the characteristic

impedance.

Reflection at Bifurcations

Wave reflections occur from any discontinuity along the

arterial tree, and possible reflecting sites are branching

points, areas of alteration in arterial distensibility (geo-

metric and elastic tapering), and high resistance terminal

beds. Consider at a bifurcation, a wave traveling down the

parent segment will be partially reflected at the junction

and partially transmitted to the daughter segments. The

relationship between the incident, reflected and transmitted

waves is determined by the conditions of one-dimensional

flow at junctions (Wang 1997): (1) the mass must be

conserved and (2) the pressure is continuous across the

junction. For pressure, this relationship is expressed as

DP0 þ dP0 ¼ dP1 ¼ dP2 ð19Þ

where DP0 is the incident pressure in the parent segment at

the junction, dP0 is the reflected portion in the parent

segment at the junction, and dP1 and dP2 are the trans-

mitted portion in the daughter segments at the junction.

The reflection coefficient can be derived from the above

two conditions as

CB ¼
Z�1

o � Z�1
1 � Z�1

2

Z�1
o þ Z�1

1 þ Z�1
2

ð20Þ

where Zo is the characteristic impedance of the parent

segment; in traditional transmission line models, Z1 and Z2

are the input impedances of the two daughter segments (Li

et al. 1984), and they represent the impedance that can be

‘seen’ from the bifurcating point on to all downstream

(with respect to the propagation direction) vascular bran-

ches. This approach was also used by Wang and Parker

(2004). This equation also applies when the wave travels

backward. Therefore, the parent and daughter segments are

defined with respect to wave traveling direction (Li et al.

1984).

The transmission coefficient T is given by

T ¼ 1þ CB ð21Þ

The forward reflection coefficients have been experimen-

tally shown to be small for major arterial branches (Har-

dung 1952; Gosling et al. 1971; Li et al. 1984, 1986b;

Papageorgiou et al. 1990). The backward or retrograde

reflections at branches are large (Li et al. 1984).

Reflection at Terminal Beds and Terminal Impedance

Modeling

The high impedance arterioles have been agreed to be the

major sites of pulse wave reflection (McDonald 1974; Li

1987). Two approaches can be used to model the lumped

terminal impedance. One is to model it as a pure resistance.

The other is to model it with a modified Windkessel as in
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Stergiopulos (1990). We modeled both and the differences

were not found significant which implies that terminal beds

are primarily resistive. The values of total terminal resis-

tances Rt used in this study are obtained from Schaaf and

Abbrecht (1972). The terminal reflection coefficient is

given by

CT ¼
Rt � Zo

Rt þ Zo
ð22Þ

Arterial Tree and Physiological Data

A schematic representation of the arterial tree used in this

study is shown in Fig. 1. A common source of physiology

data of the arterial tree used in many models (Westerhof

et al. 1969; Schaaf and Abbrecht 1972; Avolio 1980;

Stergiopulos et al. 1992; Wang and Parker 2004) was

complied by Noordergraaf et al. (1963) and subsequently

modified by Westerhof et al. (1969). The arterial model of

this study is based upon Stergiopulos’s version (1990) of

data that has 55 segments. Whenever an ambiguity arises, it

is tracked back to Westerhof et al.’s data (1969) that has

121 segments. It would be more accurate to have 121

segments to reflect geometric and elastic tapering. How-

ever, due to the consideration of computation time, 58

segments are adopted in this study with 3 more segments

added to the original 55 segments as stenotic points. The

geometric, elastic, and terminal resistance data presented

below are considered representative of a healthy young

adult.

Geometric Data

The geometric properties of an arterial segment include:

length, proximal and distal radii, and wall thickness (h).

The proximal and distal radii are used to calculate the

reflection coefficients at the proximal and distal branches

(or terminal bed). The mean radius is used to calculate

propagation constant. Geometric tapering is included in

segmentation. In general, the finer the segmentation is, the

smaller the error.

Elastic Properties

Young’s modulus of elasticity (static elasticity) is a func-

tion of both distending pressure and location (elastic

tapering) along the arterial tree. The relationship between

elasticity and distending pressure is non-linear and not

considered in the current study. Elastic tapering is con-

sidered by the method used by Westerhof et al. (1969):

1. For the main arterial trunk, upper arms and legs,

and lower part of the carotid artery, E = 4 9

106 g cm-1 s-2,

2. For the middle part of legs, arms, and head, E = 8 9

106 g cm-1 s-2, and

3. For the lower part of arms and legs, E = 16 9

106 g cm-1 s-2.

In Stergiopulos’s arterial model (1990), the femoral

artery is equivalent to the combination of the femoral

artery (l = 25.4 cm, E = 4 9 106 g cm-1 s-2) and pop-

liteal artery (l = 18.9 cm, E = 8 9 106 g cm-1 s-2) in

Westerhof et al.’s model (1969). Therefore, an average

value is taken as E = 6 9 106 g cm-1 s-2. Physiologic

data is completed by assuming a Newtonian fluid with a

constant dynamic viscosity l = 0.0045 N s m-2.

Network Construction

Computation is carried out in a network that is defined in

terms of branches, segments, and nodes. A detailed

Fig. 1 Model of the human arterial system (from Stergiopulos 1990).

Three stenosis segments are added 46, 56, and 57. Seg. 58 is used to

designate the original seg. 46
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description can be found in the Zhang (2006). The arterial

model shown in Fig. 1 is translated into 30-branches/58-

segments/116-nodes.

Within a segment, pressure wave propagation is deter-

mined by the propagation constant (Eq. 2) and not affected

by the wave direction. When the 1st originating wave

begins from 1st node of a segment and propagates toward

the 2nd node of the same segment, it becomes a forward

wave at the 2nd node; a reflected wave also occurs at the

2nd node; a transmitted (also forward) wave may occur

also at the 1st node of the neighboring segment if it is a

branch. Then the same pattern repeats in the neighboring

segment till all segments are propagated by the 1st origi-

nating wave. Then each reflected wave acts as an origi-

nating wave and propagates the network again. Each

reflected wave reaches different parts of the network

according to the topology. This interaction pattern can be

defined by an interaction distribution matrix described

below.

Then according to this interaction distribution matrix,

propagation (1st originating wave) starts from the heart

(node 1) with unit amplitude and zero phases for a har-

monic frequency, and propagates through the arterial tree,

creating forward and reflected components at each node,

by multiplying the propagation constants, transmission

and reflection coefficients that apply. The propagation

from the heart is the forward propagation that completes

when all other nodes have been reached. Then, the

reflected wave with unit amplitude and zero phase at node

2 acts like the heart and propagates throughout the arterial

tree, generating forward and reflected components. The

entire propagation process from node 1 to node 116 is

called a (round of) propagation distribution for a har-

monic frequency. Certainly, the repeated (secondary)

reflections do not necessarily end when a round of

propagation distribution completes. Reflections end only

when all energy is dissipated by blood and arterial wall

viscosity. The propagation distribution is described by a

(232 9 116) complex number matrix (with amplitude and

phase). There is one propagation distribution matrix for

each harmonic frequency.

A multi-reflection matrix is the result of applying the

propagation distribute matrix repeatedly until all energy is

lost (implemented by a given threshold). Once the multi-

reflection matrixes have been obtained for all harmonic

frequencies, analysis can be performed to obtain simulated

experimental results. For example, pressure waveform at

the heart (node 1) can be obtained by adding up all cor-

responding components at all harmonic frequencies. For-

ward and reflected components can also be tracked

separately.

Results

Model Evaluation

Forward Input Pressure Waveform

A forward input pressure waveform with fundamental

frequency 1.17 Hz that corresponds to a heart rate of 70

beats/min and a cardiac period of 0.86 s. Systole occupies

40% and diastole, 60%, of the cardiac cycle. An amplitude

threshold of 1% was given to control the convergence of

simulation.

Branch Reflection Coefficient

Forward propagating waves encounter little reflections at

vascular branches, i.e. vascular junction is pretty matched.

For this reason, most branches can be assumed to have zero

or a small forward reflection coefficient (below 0.20).

The calculated pressure waveforms for the original

dimension and for modified dimension (Fig. 2) are com-

pared against pressure waveforms from literature (e.g.

Guyton 1976), where some characteristic features can be

found (McDonald 1974; Li 2004): (1) Significant amplifi-

cation of the pulse pressure along the arterial tree; (2) The

incisura (dicrotic notch) is attenuated quickly resulting in a

smoother waveform; (3) Peripheral pressure exhibits a

secondary hump after the end of systole, due to reflection

from proximity of a nearby vascular bed. It can be seen in

Fig. 2 that the pulse pressure amplification is more evident

for the zero forward reflection assumption and agrees well

with Guyton’s (1976) data.

The forward and reflected components at the aorta are

also illustrated in Fig. 2. The reflection starts at about

100 ms after the beginning of systole for the zero forward

reflection assumption, while about 40 ms for the original

non-zero forward reflection case. Aortic reflection has

generally been found to be very small in the early part of

systole, i.e. the first 80 ms into systole is thought to be

reflection-free (Li 1986a). In the elderly, aortic pressure

exhibits early reflection, but it is related to stiffened arterial

vessels (Li et al. 2007). And in this study, the data of the

arterial model are assumed from a normal young adult.

Pressure Waveforms for the Control Case

A more complete set of pressure waveforms for the control

case is shown in Fig. 3. The pressure waveform is

decomposed into the forward and reflected components.

Hemodynamic characteristics of the pressure waveforms

are listed in Table 1.
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From Fig. 3; Table 1, pulse pressure amplification is

evident. Also the incisura becomes smoother, but does not

disappear until after the femoral artery. The second hump

basically is not seen in lower limbs. But the pressure

waveforms in the brachial and radial arteries have evident

second humps (diastolic waves) and the incisura is damped

out. This preservation of the appearance of incisura and

near absence of the second hump is attributed to fewer

segments in the lower limbs. When the reflection travels

backward or retrograde propagation, it is attenuated at

branches because of the negative backward reflection

coefficients. Therefore, fewer segments means that reflec-

ted waves can reach further up the arterial tree than the

case of more segments, where reflections are very much

confined to the local area. In addition, reflections have

more effects on other adjacent branches in the case of

fewer segments. Other features observed in Fig. 3; Table 1

are the attenuation in the forward components and accen-

tuation in the reflected components.

Wall Viscosity

The wall viscosity was expressed as an angle u, and

u = 10� was used for the control case with wall viscosity,

and u = 0 for the non-viscosity case. Only the attenuation

coefficients are affected by the wall viscosity. Neglecting

the wall viscosity decreases the attenuation coefficients and

increases pressure amplitudes.

The morphologic comparison between pressure wave-

forms with and without the wall viscosity is made in Fig. 4

(upper). For the ascending aorta, the difference is insig-

nificant except for a minimally elevated diastolic. For the

femoral artery, both the systolic and diastolic peaks

increase and also much of the diastolic portion is increased
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44 Cardiovasc Eng (2009) 9:39–48

123



in the non-viscosity case. For the radial artery, the increase

in the systolic peak, the amplified incisura and the second

hump diastolic wave become more evident when compared

with large elastic arteries. All these changes are due to less

energy loss caused by wall viscosity.

Wall Elasticity

The pulse wave velocity c0 changes with Young’s modulus

E as dictated by Moens-Korteweg equation, and therefore,

the propagation constant c, characteristic impedance Z0,
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components for the control case
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and terminal reflection coefficient CT all change with E

accordingly. With increased E, the attenuation coefficient a
decreases and the amplitude of the pressure wave increa-

ses; the phase coefficient b reflects the wave speed

(c1 = x/b, x is the angular frequency) inversely, therefore

the wave travels at a higher speed for higher E. In addition,

the amplitude and speed of the traveling wave in a proxi-

mal artery become lower than those in a peripheral artery

due to the higher E in the latter (elastic tapering). The

terminal reflection coefficient decreases if E increases

which tends to increase characteristic impedance. This, in

turn, seemingly reduces the mismatch between the terminal

impedance and the characteristic impedance. For 25 and

50% increased E, the computed pressure waveforms are

shown in Fig 4 (lower).

The increase in elastic modulus shifts pressure wave-

forms in the ascending aorta and femoral artery to the

upper left, and also make the second hump in the diastole

more evident.

Discussions

In the present model the reflection is treated locally rather

than globally based upon the intuitive thought that each

traveling wave cannot predict what would happen beyond

the point at the branch. This viewpoint agrees well with

traditional transmission line models that reflections are

treated globally with the global reflection as the summation

of local reflections with minimal forward reflection. The

model presented here is more flexible and provides a

Table 1 Hemodynamic parameters for the control conditions

Dist. along aorta (cm) SBP (mmHg) DBP (mmHg) PP (mmHg) PPamp PPF (mmHg) PPFamp PPR (mmHg) PPRamp

Central

Asc. aorta 106.80 75.21 31.58 1 25.22 1 11.61 1

L. Carotid 6 106.78 75.82 30.96 0.98 25.12 1.00 12.30 1.06

Th. Aorta B 25.5 109.59 72.50 37.09 1.17 24.15 0.96 15.28 1.32

Ab. aorta E 43.4 110.58 70.85 39.74 1.26 22.42 0.89 19.23 1.66

Lower limb

Asc Aorta 106.80 75.21 31.58 1 25.22 1 11.61 1

L. femoral 64 113.81 69.40 44.41 1.41 20.61 0.82 25.35 2.18

L. dor. Ped 138.4 123.25 66.21 57.04 1.81 15.20 0.60 41.88 3.61

Upper limb

Asc aorta 106.80 75.21 31.58 1 25.22 1 11.61 1

L. brachial 55.5 117.51 74.75 42.77 1.35 21.30 0.84 21.71 1.87

L. radial 79 118.53 74.38 44.15 1.40 18.56 0.74 25.60 2.20

SBP Systolic blood pressure, DBP diastolic blood pressure, PP pulse pressure, PPamp pulse pressure amplification against composite ascending

aortic pressure, PPF pulse pressure of forward component, PPFamp amplification of forward pulse pressure against forward ascending aortic

pressure, PPR pulse pressure of reflected component, PPRamp amplification of reflected pulse pressure against reflected ascending aortic
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Fig. 4 Pressure waves for viscous versus non-viscous (upper) and for

varying elastic moduli (lower)
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causal-effect explanation of observed pressure waveforms

in the central and peripheral arteries that the traditional

transmission line models do not offer. The current model

can find its use in deriving central pressure waveforms

from peripheral non-invasive pressure measurements such

as with an arterial tonometer.

Since the reflection and transmission patterns are solely

dependent on the local characteristics, i.e. diameters, (this

model is based upon one-dimensional linearized flow

equations and the potentially important local factor—

branch angle is ignored.) the zero forward reflection

assumption becomes critical. From the current available

data, most branches have very small local reflection coef-

ficients that can be approximated as zero. But large

reflections do occur at some major branches, such as in the

thoracic aorta where the local forward reflection coefficient

is about 40%. When this occurs, all the reflections from

downstream will be greatly obscured.

The results of the sensitivity studies on the wall prop-

erties (elasticity and viscosity) are in good agreement with

other investigators (Stergiopulos 1990; Karamanoglu et al.

1994, 1995; Segers et al. 1997). With appropriate manip-

ulations of the terminal impedance (mainly resistance) and

the wall elasticity, atherosclerosis and the effect of aging

can be simulated.

Additional segments representing the limbs can add to a

more faithful reproduction of the pressure waveforms in

these regions. Using the original 121 segments by West-

erhof et al. (1969) is also feasible. Obviously, with more

segments, not only the reflection coefficients, but also the

geometric and elastic tapering can be better represented.

Another anticipated improvement of the model will be to

include perfusion into certain organ vascular beds.
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