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Abstract Cardiovascular signals are largely analyzed

using traditional time and frequency domain measures.

However, such measures fail to account for important

properties related to multiscale organization and non-

equilibrium dynamics. The complementary role of con-

ventional signal analysis methods and emerging multiscale

techniques, is, therefore, an important frontier area of

investigation. The key finding of this presentation is that

two recently developed multiscale computational tools––

multiscale entropy and multiscale time irreversibility––are

able to extract information from cardiac interbeat interval

time series not contained in traditional methods based on

mean, variance or Fourier spectrum (two-point correlation)

techniques. These new methods, with careful attention to

their limitations, may be useful in diagnostics, risk strati-

fication and detection of toxicity of cardiac drugs.
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Introduction

Physiologic control mechanisms exist from subcellular to

systemic levels and operate over multiple time scales.

Continuous interplay among these different regulatory

systems ensures that information is constantly exchanged

across all levels of organization, even at rest, and enables

an organism to adjust to an ever-changing environment and

to perform a variety of activities necessary for survival.

These dynamic processes, especially under healthy

conditions, are evident in the complex fluctuations of

physiologic output signals, such as heart rate, blood pres-

sure, brain electrical activity, and hormone levels. In

contrast, aging and pathologic systems, which have

degraded control mechanisms, are likely to generate less

complex outputs [1, 2]. This loss of complexity is manifest

as increased randomness, (e.g., the heart rate fluctuations of

a patient with atrial fibrillation), or greater periodicity (e.g.,

cardiopulmonary oscillations in Cheyne–Stokes syndrome

with heart failure). Both classes of pathology are charac-

terized by a ‘‘collapse of complexity,’’ which is associated

with a breakdown of the long-range correlations, multiscale

variability and time irreversibility properties of the signals

observed in healthy subjects.

There is no unifying consensus definition of complexity.

In information theory, complexity measures the degree of

compressibility of a string of characters. Therefore, random

uncorrelated strings, which are virtually incompressible,

are considered the most complex [3]. In contrast, from a

complex systems approach [4], which we adopt here, ran-

dom uncorrelated strings of characters are among the least

complex signals, and those with long-range correlations are

among the most complex. Complex signals typically

exhibit one (and usually) more of the following properties:

(i) non-linearity––the relationships among components are

not additive; therefore small perturbations can cause large

effects; (ii) non-stationarity––the statistical properties of the

system’s output change with time; (iii) time irreversibility or

asymmetry––systems dissipate energy as they operate far-

from-equilibrium and display an ‘‘arrow of time’’ signature;

(iv) multiscale variability––systems exhibit spatio-temporal

patterns over a range of scales.
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The purpose of this paper is fourfold: (i) to briefly

review two multiscale methods that quantify different

properties of complex cardiovascular signals: multiscale

entropy [5, 6] and multiscale time irreversibility (asym-

metry) [7], (ii) to present a simplified version of the time

irreversibility measure, (iii) to apply the two methods to the

challenge of characterizing and distinguishing physiologic

and surrogate time series not separable using conventional

techniques, and (iv) to test models of heart rate variability

previously proposed as part of an international competition.

Our underlying conceptual construct is that multiscale

complexity is a marker of healthy dynamics, which have

the highest functionality and adaptability, and these prop-

erties degrade with aging and disease. Multiscale entropy

quantifies the information content of a signal over multiple

time scales. Time irreversibility quantifies its degree of

temporal asymmetry. Of note, both measures probe aspects

of cardiovascular signals that are independent of traditional

time and frequency domain measures such as mean, vari-

ance and Fourier spectrum, and are also independent of

each other as demonstrated below. For continuous heart

rate time series obtained, for example from 24 h electro-

cardiograms (Holter recordings), the analyzed time scales

typically range from milliseconds to minutes.

Methods

Multiscale Entropy

The multiscale entropy method was developed to quantify

a central aspect of complex signals, namely their multiscale

variability over a range of scales. At each level of resolu-

tion, the multiscale entropy algorithm yields a value that

reflects the mean rate of creation of information. The

overall degree of complexity of a signal is calculated by

integrating the values obtained for a pre-defined range of

scales.

In practice the algorithm comprises two steps: (1) a

coarse-graining procedure that allows us to look at repre-

sentations of the system’s dynamics at different time

scales, and (2) the quantification of the degree of irregu-

larity of each coarse-grained time series, which can be

accomplished using sample entropy (SampEn), a statistic

introduced by Moorman et al. [8].

Sample entropy is the negative natural logarithm of the

conditional probability that two patterns of length m,

xm(i) = {xi,…, xi + m - 1} and xm(j) = {xj,…, xj + m - 1},

which are similar to each other within a tolerance r

(meaning that d[xm(i), xm(j)] B r, where d is a function that

measures the distance between vectors), will still be con-

sidered similar to each other when points, xi + m and xj + m

are added to patterns xm(i) and xm(j), respectively.

Sample entropy is a measure of irregularity. For regular

signals, SampEn is very low. For uncorrelated random

signals, SampEn is the highest.

Although complex signals are irregular not all irregular

signals are complex. Consider, for example, a physiologic

time series, which is the output of a system regulated by

multiple control mechanisms, and the time series obtained

by shuffling these data points. The surrogate shuffled time

series is less complex than the physiologic time series.

However, an entropy measure, such as SampEn, assigns a

higher entropy value to the surrogate shuffled time series

than to the physiologic one because the former is more

random than the latter. Therefore, the use of single scale-

based measures of entropy to assess complexity may lead

to misleading results.

By distinction, our [5] objective is to compute entropy

over multiple time scales. The underlying hypothesis is that

complex systems, in particular physiologic systems con-

trolled by regulatory mechanisms that operate on different

time scales, generate time series that exhibit highly vari-

able fluctuations at multiple levels of resolution. To

quantify irregularity at different time scales we coarse-

grain the original time series. Given a signal with N data

points sampled at D Hz, the coarse-grained time series are

constructed as follows. For scale 1, the coarse-grained time

series is the same as the original signal. In this case the

time interval between consecutive data points is 1/D s. For

scale n (Fig. 1), we divide the data into consecutive non-

overlapping blocks with n data points each and calculate

the mean inside each block. The sequence of average

values is the coarse-grained time series for scale n that

corresponds to n/D s. This time series is shorter that the

original one. It contains N/n data points, which should be

taken into consideration when calculating the error bars for

the entropy values. Of note, the choice of calculating the

mean value to summarize the dynamics inside each block

of data was motivated by Zhang’s work [9].

...

...

Scale 3

Scale 2 x1 x6x5x4x3x2

x1 x6x5x4x3x2

y 21

y 31 y 32

y 23y 22

Fig. 1 Schematic illustration of the coarse graining procedure for

scales 2 and 3 used for the multiscale entropy method. (Adapted from

ref. 6.)
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The next step is to calculate the sample entropy for each

coarse-grained time series and to plot the results as a

function of scale, which yields the so-called multiscale

entropy curve. The multiscale entropy curve [6] for cor-

related fractal (1/f) noise is a straight line (the entropy is

1.8 for all scales) since at all levels of resolution new

patterns of variability are revealed and, therefore, new

information is created. In contrast, the multiscale entropy

curve for white noise is a function that monotonically

decreases with scale. This profile is characteristic of single

scale signals, which at low resolution levels (higher scales)

contain less information than at high resolution levels

(lower scales.) Of note, the multiscale entropy does not

distinguish between a given time series X = {x1, x2,…, xN}

and that obtained by time reversing the series X0 = {xN,

xN - 1,…, x1} because the degree of irregularity/unpre-

dictability is the same for both signals.

Multiscale Time Irreversibility

Time irreversibility (‘‘the arrow of time’’), a fundamental

property of far-from-equilibrium systems, is related to the

unidirectionality of the energy flow across the boundaries

of the system [10]. Living beings are paradigmatic exam-

ples of systems operating far-from equilibrium. They

utilize energy to evolve to and maintain ordered structural

configurations, through inherently time irreversible pro-

cesses. Perhaps counterintuitively, death is a state of

maximum equilibrium, since there are no driving forces or

consumption of energy. To the extent that all processes

occurring under equilibrium conditions are time reversible,

states approaching death are expected to be more time

reversible than those representing far-from-equilibrium

healthy physiology.

In time series analysis, time irreversibility refers to the

lack of invariance of the statistical properties of a signal

under the operation of time reversal [11]. Figure 2 shows

the heart rate time series of a healthy young subject and of

a patient with congestive heart failure, both in the forward

and backward (reversed) time directions. The pathologic

signal is more symmetric than the healthy one, indicating a

loss of temporal irreversibility with pathology.

A method [7] that we recently developed to quantify the

degree of time irreversibility comprises three steps: a

coarse-graining procedure, the computation of the degree

of time irreversibility for each coarse-grained time series,

and the integration of the results obtained for a pre-defined

range of scales. We made the simplifying assumptions

that transitions between consecutive values (an increase or

decrease in heart rate) are independent and require a

certain amount of ‘‘energy.’’ Based on a statistical physics

approach [12] we considered that the relationship between

energy E for each transition and the probability p of

observing that transition was: E = p ln p. Then, we cal-

culated the difference between the average energy for the

activation (p+ ln p+) and the relaxation (p- ln p-) of the

heart, over a range of time scales (where p+ is the proba-

bility that the value of the recorded variable increases at

any time instant and p- is the probability that is decreases).

Of note, the relationship between p ln p and the energy E is

only valid if the transitions between states are independent.

If they are not independent, we still can use the differences

between p+ ln p+ and p- ln p- to quantify the degree of

temporal asymmetry of a signal but there is no simple

physical interpretation for these terms.

In this paper we present a simplified version of this

algorithm that yields comparable results and is easier to

implement. The simplified version is based on the obser-

vation that the number of increments (number of times

xi + 1 - xi [ 0) is equal to the number of decrements

(number of times xi + 1 - xi \ 0) for a symmetric function.

We use this finding for calculating the asymmetry of the

original time series and for the coarse-grained time series.

Consider a time series X = {xi}, 1 B i B N. For scale 1,

we construct the time series Y1 = {yi}, yi = xi + 1 - xi,

1 B i B N - 1 Then, we calculate the difference A1

between the percentage of increments and decrements

according to

Fig. 2 Heartbeat time series from a healthy subject (top panels) and

patient with severe congestive heart failure (bottom panels) shown in

both the forward (first and third panels) and backward time directions

(second and forth panels). Note that the time series from the

congestive heart failure patient ‘‘reads the same’’ in both forward and

backward time directions, in contrast to the more asymmetric time

series from the healthy subject
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A1 ¼
P

H½�yi� �
P

H½yi�
N � 1

where H is the Heaviside function (H(a) = 0 if a \ 0 and

H(a) = 1 if a C 0 and 1 B i B N - 1.) For scale j, we

construct the time series Yj = {yi}, yi = xi + j - xi,

1 B i B N - j. Then, we calculate the difference Aj

between the percentage of increments and decrements

according to

Aj ¼
P

H½�yi� �
P

H½yi�
N � j

; where 1� i�N � j:

The time asymmetry (irreversibility) index is defined as

RAj for a pre-defined range of scales.

The time irreversibility and multiscale entropy methods

quantify different aspects of complex systems and are

independent of each other. Consider, for example, two time

series X1, an asymmetric triangle function of period 10

(X1 = {xi}, where xi = 3 if i is a multiple of 10 and xi =

0.5(1 + i) if i is not a multiple of 10, and X2, the time

series obtained from X1 by time reversing the sequence of

data points. The two time series X1 and X2 have the same

multiscale entropy values because for all coarse-grained

time scales the conditional probability that d[xm + 1(i),

xm + 1(j)] B r given that d[xm(i), xm(j)] B r is the same that

the conditional probability that d[x0m + 1(i), x0m + 1(j)] B r

given that d[x0m(i), x0m(j)] B r, where xm(i) = {xi,…, xi +

m - 1} and x0m(i) = {xi + m - 1,…, xi}. However, X1 and

X2 have different degrees of temporal irreversibility.

For time series X1, the degree of time irreversibility is

8/10 - 2/10 = 3/5 because, in this example, the proba-

bility that the value of xi increases is 8/10 while the

probability that xi decreases is 2/10. For the temporally

reversed series, the asymmetry index is -3/5.

Results

To illustrate the application of these two techniques, we

apply them to a physiologic and surrogate data pair and to

data from a time series modeling competition sponsored by

the NIH PhysioNet Resource.

Physiologic/Surrogate Data Test

In Fig. 3 we show two time series with the same means and

standard deviations and identical power spectra. One is the

heart rate time series of a healthy young subject and the

other is a surrogate time series generated by a computa-

tional algorithm [13] that degrades the information content

of the original signal through the process of phase ran-

domization. Although both signals have the same statistical

properties as measured by conventional biostatistical

methods including Fourier spectral analysis, their under-

lying mechanisms are very different. The surrogate time

series is less complex than the physiologic time series.

Fig. 3 Two time series with fundamentally distinct dynamics but the

same mean values and standard deviations, and identical power

spectra. Top panels: the heart rate time series (day time) from a young

healthy subject and its Fourier power spectrum. Bottom panels: the

surrogate, phase randomized series of the physiologic signal shown in

the top panel and its Fourier power spectrum. The average value of

entropy per scale (arbitrary units) is consistently higher for the

physiologic (1.55) than for the surrogate time series (1.46). Similarly,

the asymmetry index is also higher for the physiologic time series

(0.37) than for the surrogate series (0.04). Thus, in contrast to

traditional time and frequency measures, both the multiscale entropy

and time irreversibility algorithms capture the differences between the

physiologic and the surrogate time series. Furthermore the results are

consistent with a degradation of complexity (nonlinearity) with the

phase randomization process
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However, conventional time and frequency domain mea-

sures fail to fully quantify the information content of these

signals, which is subtly encoded in the temporal sequence

of the values. In contrast, both the multiscale entropy and

time irreversibility metrics distinguish the two time series.

Of interest, multiscale entropy and time irreversibility are

consistently higher for the physiologic than for the surro-

gate time series.

Tests on Physiologic Models of Heart Rate Variability

Models of physiologic control should account for the

complex structure of physiologic time series, but in general

they fail to do so. For example, in 2002, the NIH Research

Resource for Complex Physiologic Signals (http://www.

physionet.org), in conjunction with Computers in Cardiol-

ogy (http://www.cinc.org), sponsored an international

competition on cardiac interbeat interval time series mod-

eling. This challenge had two parts. Part I called for the

development of models that could generate dynamics sim-

ulating those observed in heartbeat time series from healthy

subjects. Participants entering Part II were challenged to

distinguish between physiologic and model-generated time

series. Using only the multiscale entropy method, we were

able to correctly identify the origin of 48 out of 50 synthetic

time series [14]. Of note, most of the models proposed

failed to account for the multiscale, fractal properties of the

cardiac interbeat interval time series.

In Fig. 4, we show the time irreversibility analysis for

the physiologic and synthetic time series. None of the

models proposed generated time irreversible signals. Of

particular interest, the time series numbered 14 and 16,

which have the most marked negative time asymmetry

values, were not generated by any model. Instead, they

were obtained by time-reversing two physiologic series

[15]. This result shows that all proposed models fail to

generate time irreversible signals across a wide range of

scales, a dynamical signature of real-world systems with

multiscale, nonequilibrium properties. Our algorithm indi-

cates that datasets #23 and #49 have a similar degree of

asymmetry. The relatively lower asymmetry value com-

puted for the physiologic time series (#23) could be due to

unknown factors such as age, level of physical activity,

drugs effects, etc. In any case, we do not expect the time

irreversibility algorithm to provide absolute discrimination

between different classes of time series.

Discussion and Conclusions

The key finding of this presentation is that two recently

developed multiscale techniques are able to extract

information from cardiac interbeat interval time series not

contained in traditional time and frequency domain tech-

niques. The complementary role of conventional and newer

multiscale analytical methods in cardiovascular signal

analysis is a frontier area of investigation. Another tech-

nique that may be useful in this regard is multifractal

analysis, which is described elsewhere [16]. Quantifying

multiscale variability and time irreversibility may have

important applications, including risk stratification, aging

effects and assessment of therapeutic interventions and

development of models of biologic control. These two

measures quantify different properties of complex systems

and are independent of each other. In addition they are

independent of other conventional heart rate time and

frequency domain measures.

Limitations

Both the multiscale entropy and time irreversibility require

relatively long time series (a couple of thousand data

points) and the data need to be stationary. These two

requirements are often inter-related. For example, what

appears to be a slow drift of the baseline, i.e., a trend

without apparent physiologic meaning when we follow a

process for a shorter period, may, in fact, be a dynamical
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Fig. 4 Time irreversibility analysis of 50 cardiac interbeat intervals

time series from the PhysioNet/CinC2002 Challenge database. Note

that the physiologic time series are more time asymmetric (asymme-

try index = 0.53 ± 0.16) than those generated by computational

models (asymmetry index = -0.01 ± 0.06.) Time series numbered

14 and 16 (as given in http://www.physionet.org/challenge/2002/)

were generated by time-reversing two physiologic time series. The

time irreversibility algorithm identifies these time series. Although the

absolute values of the degree of irreversibility for the time reversed

signals were within the physiologic range, their sign is negative

indicating that time does not run in the ‘‘correct’’ direction
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pattern that is only revealed upon tracking the process over

a more extended time interval.

Determining whether a ‘‘real-word’’ time series is sta-

tionary or not, requires the definition of a time scale of

interest. In general, a process is stationary only if the

characteristic scale of the dynamical structures it generates

is much smaller than the recording time. For ‘‘relatively’’

stationary time series, the number of data points required to

calculate sample entropy is of the order of a couple of

hundred [4, 6]. One way of working around the nonsta-

tionarity problem is to detrend the data to eliminate those

structures whose characteristic scales are not substantially

much shorter (at least two orders of magnitude) than the

recording length [17]. Further, defining the utility and

limitations of newer multiscale complexity measures

requires testing on open-access databases. Finally, we note

that efforts to develop real world models of short and

longer-term cardiovascular regulation need to account for

the observed multiscale properties.
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