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Abstract
Background  Mechanical ventilation (MV) is widely used to relieve respiratory failure in patients with congestive heart 
failure (CHF). Prolonged MV (PMV) is associated with a poor prognosis. We aimed to establish a prediction model based 
on machine learning (ML) algorithms for the early identification of patients with CHF requiring PMV.
Methods  Twelve commonly used ML algorithms were used to build the prediction model. The least absolute shrinkage 
and selection operator (LASSO) regression was employed to select the key features. We examined the area under the curve 
(AUC) statistics to evaluate the prediction performance. Data from another database were used to conduct external validation.
Results  We screened out 10 key features from the initial 65 variables via LASSO regression to improve the practicability 
of the model. The CatBoost model showed the best performance for predicting PMV among the 12 commonly used ML 
algorithms, with favorable discrimination (AUC = 0.790) and calibration (Brier score = 0.154). Moreover, hospital mortal-
ity could be accurately predicted using the CatBoost model as well (AUC = 0.844). In the external validation, the CatBoost 
model also showed satisfactory prediction performance (AUC = 0.780), suggesting certain generalizability of the model. 
Finally, a nomogram with risk classification of PMV was shown in this study.
Conclusion  The present study developed and validated a CatBoost model, which could accurately predict PMV in mechani-
cally ventilated patients with CHF. Moreover, this model has a favorable performance in predicting hospital mortality in 
these patients.
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Introduction

Heart failure (HF) is a global problem with an estimated 
prevalence of 64.3 million people worldwide, and the most 
common diagnosis in patients aged 65 years or older admit-
ted to hospital [1, 2]. Although some progress in the treat-
ment, the prognosis of HF is worse than that of most of can-
cers [3]. Numerous patients with HF are characterized by the 
presence of tissue congestion due to fluid retention, which 
is also called congestive heart failure (CHF) [4]. On a pul-
monary level, cardiac dysfunction could lead to an increased 
pulmonary capillary wedge pressure (PCWP), causing inter-
stitial and alveolar edema, with subsequent dyspnea.

Mechanical ventilation (MV) is commonly used in 
patients with CHF to relieve respiratory failure and reduce 
work done by the heart [5]. Due to the aging population and 
the progress in treatments, the MV ratio and the duration of 
MV have been increasing in recent years [6]. MV is a life-
saving treatment; however, it also has some life-threatening 
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complications, including ventilator-associated pneumonia, 
hemodynamic effects, and sedation agent toxicity [7], and 
the duration of MV is associated with a near-linear relation-
ship with outcomes [8]. Prolonged MV (PMV) has been 
defined as 21 days of MV by experts [9]; however, many 
clinical studies have defined PMV as duration of MV sup-
port of >4, >7 or >14 days as these provide greater clini-
cal applicability [10–12]. It is uncontroversial that PMV is 
strongly associated with poor prognosis [13]. Nevertheless, 
there is a lack of studies to predict PMV in patients with 
CHF.

Machine learning (ML), which merges statistical analysis 
with computer science to produce algorithms, is a subset 
of artificial intelligence (AI) and could detect relationships 
between potential explanatory features and a known target 
outcome [14]. In the previous study, we have developed and 
validated a CatBoost model, which could accurately pre-
dict hospital mortality in mechanically ventilated patients 
with CHF [15]. In the present study, we aimed to establish a 
prediction model based on supervised-ML to early identify 
patients with CHF requiring PMV.

Methods

Sources of Data

Patients’ data were collected from the Medical Information 
Mart for Intensive Care IV (MIMIC-IV, version 1.0), which 
is a large single-center database containing information of 
257,366 individuals who were admitted to various ICUs 
of the Beth Israel Deaconess Medical Center (BIDMC) 
between 2008 and 2019 [16]. The code for data extraction 
is available on GitHub (https://​github.​com/​MIT-​LCP/​mimic-​
iv). The data of the external validation set were extracted 
from the eICU Collaborative Research Database (eICU, ver-
sion 2.0), which is a multi-center ICU database with high 
granularity data for over 200,000 admissions to ICUs of 
208 hospitals located throughout the United States between 
2014 and 2015 [17]. The Massachusetts Institute of Tech-
nology approved the establishment of the databases with an 
informed consent exemption. The study was reported accord-
ing to the recommendations of the Transparent Reporting of 
a multivariable prediction model for Individual Prognosis Or 
Diagnosis (TRIPOD) statement [18].

Study Population and Definitions

In the present study, PMV was defined as the duration of 
MV ≥ 4 days. Specifically, PMV was categorized as pro-
longed acute MV (PAMV) (duration of MV ≥ 4 days), short-
term PMV (duration of MV ≥ 7 days), and long-term PMV 
(duration of MV ≥ 14 days). The primary purpose was to 

build a prediction model for PAMV, and the secondary pur-
poses were to establish the models to predict the short-term 
PMV and long-term PMV based on the MIMIC-IV cohort.

Participants were selected by the following inclusion 
criteria: (a) aged > 18 years; (b) with CHF as the major 
cause for admission; (c) received MV in the first 24-h of ICU 
admission. Patients with incomplete data were excluded.

Data Collection

PostgreSQL tool (version 13.0) was used to extract medi-
cal data from the two databases. The subject IDs were used 
to identify distinct patients. The demographics, vital signs, 
common comorbidities, and laboratory tests were included 
in the initial analysis. In addition, some patients had more 
than one ICU admission, the data of the first ICU admission 
and the first medical records during ICU stay were selected 
for analysis. In the present study, CHF was diagnosed by 
clinicians based on the guideline of heart failure [19]; pneu-
monia included community-acquired and hospital-acquired 
pneumonia, the diagnosis criteria were described elsewhere 
[20]; acute kidney disease (AKI) was diagnosed based on 
creatinine or urine output criteria of the clinical guideline 
[21]; sepsis was diagnosed based on the Sepsis-3 criterion 
[22]; and ventricular arrhythmia included ventricular tachy-
cardia (sustained or non-sustained), ventricular flutter and 
ventricular fibrillation. The definitions of other included 
variables are shown in Supplementary Table S1.

Development of the Prediction Model

Key Features Identification

It is necessary to identify the key features from the train-
ing data, which can increase the speed of model fitting and 
improve the feasibility of the model. In the present study, 
the least absolute shrinkage and selection operator (LASSO) 
regression, which could automatically remove unnecessary 
or uninfluential covariates based on a penalization coeffi-
cient, was used to eliminate the irrelevant variables [23]. 
Moreover, the Shapley additive explanations (SHAP) values 
were used to assess the importance of each feature using a 
game-theoretic approach using the functions of the SHAP 
Python package version 0.40.0 [24].

ML Algorithm Selection

A total of 12 widely used ML algorithms including Ada-
Boost, CatBoost, XGBoost, LightGBM, logistic regression 
(LR), bootstrap aggregating (Bagging), decision tree, ran-
dom forest, support vector machine (SVM), naïve Bayes, 
multi-layer perceptron neural networks (MLP), and K near-
est neighbors (KNN) models were used to initially predict 
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the PMV based on the selected key features. The discrimina-
tion of the above models was assessed by the area under the 
receiver operating characteristic curve (AUC). In addition, 
accuracy, positive prediction value (PPV), negative predic-
tion value (NPV), balanced accuracy (BA), and F1-score 
were performed in each model to evaluate the prediction per-
formance. Moreover, the calibration curve and Brier score 
were applied to qualitatively and quantitively evaluate the 
calibration of models, respectively. To demonstrate the deci-
sion benefit, the decision curve analysis (DCA) was also 
conducted. The algorithm with the best discrimination and 
calibration was selected to perform the remaining analyses.

Hyperparameters Optimization

The hyperparameters, including learning rate and a max of 
learning depth, are essential for ML algorithms, an ideal 
combination of hyperparameters could significantly improve 
the model performance. Accordingly, we performed the 
hyperparameters optimization (HPO) using the Optuna 
version 2.10.0, an open-source optimization framework, 
which enabled us to write complex deep learning experi-
ments quickly, efficiently, and dynamically, to perform the 
optimization with the Hyperband method and test different 
combinations of hyperparameters [25]. We performed 100 
trials to obtain the best combination of the hyperparameters.

Model Fitting and Evaluation

The final model was fitted with the best combination of the 
hyperparameters. The data from the MIMIC-IV database 
were randomly divided into a training set (80%) and an 
internal validation set (20%). Moreover, the data from the 
eICU database were used to perform the external validation. 
To further evaluate the prediction performance of the final 
model, comparisons of prediction performance between the 
final model and sequential organ failure assessment (SOFA) 
score [26], simplified acute physiology score (SAPS-II) [27], 
logistic organ dysfunction system (LODS) score [28], and a 
combination of commonly used blood gas indicators, includ-
ing partial arterial oxygen pressure (PaO2), partial arterial 
carbon dioxygen pressure (PaCO2), a saturation of arterial 
blood oxygen (SO2), PaO2, and fraction of inspiration O2 
ratio (PFR), PH, base excess (BE), bicarbonate radical and 
lactate, were conducted. In addition, PMV is strongly asso-
ciated with mortality, and prediction of hospital mortality 
based on the final model was conducted to assess the predic-
tion performance. Finally, a nomogram was performed to 
visually present the prediction result. Recursive partitioning 
analysis was performed to construct a survival decision tree 
for risk stratification with R package ‘rpart’ based on the 
total points of the nomogram of each participant. Moreover, 

the prediction for every patient was plotted in order of their 
risk to assess the prediction distribution from the model.

Statistical Analyses

The Kolmogorov–Smirnov test was used to evaluate the 
normal distribution of the data. Continuous variables 
were expressed as mean ± standard deviation (SD) and 
compared using t-test. Levene’s homogeneity of variance 
test was used to test the assumption of homoscedasticity. 
If the homoscedasticity was unsatisfied, the Welch’s t-test 
was used for performing comparisons between groups. 
Categorical data were expressed as proportions and were 
compared using the chi-squared test. Additionally, the 
variance inflation factor (VIF) was assessed among the 
covariates in the nomogram, and VIF > 4.0 was inter-
preted as indicating multicollinearity. Variables with VIF 
> 4.0 were not included in the final model analysis. Uni-
variate and multivariate Logistic regression analyses were 
performed for all variables of the nomogram to further 
identify the independent risk factors.

The logic check of the data was conducted to identify the 
extreme and error value, then to replace them with mean val-
ues. Variables with missing values> 30% were excluded. To fill 
the missing value of the included variables, multiple imputa-
tion was performed in the present study [29]. All the statistical 
analyses were conducted using Python version 3.9.0 (Python 
Software Foundation, www.​python.​org) and R software ver-
sion 4.0.4 (R Foundation for Statistical Computing, Vienna, 
Austria). A two-tailed test was performed, and a P-value < 
0.05 was considered to reflect statistical significance.

Results

Baseline Characteristics

A total of 4533 mechanically ventilated patients with CHF 
were included in the MIMIC-IV database, and all partici-
pants were divided into PMV (n = 1268) and non-PMV 
(n = 3265) groups based on the duration of MV (Sup-
plementary Fig. S1). In addition, 65 features, including 
demographics and characteristics, vital signs, therapy, 
comorbidities, and laboratory tests, were selected for the 
initial analysis (Supplementary Table S1). After featuring 
elimination through LASSO regression, 10 key variables, 
including Glasgow coma scale (GCS) score, PFR, cardiac 
troponin T (cTnT), N-terminal pro-B type natriuretic pep-
tide (NT-proBNP), diagnosis of pneumonia, sepsis, AKI, 
anemia, use of inotropic agents, and urine output (UO), 
were used for establishing the compact model and perform-
ing external validation of the eICU database. The variable 
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comparisons of the non-PMV and the PMV groups of the 
MIMIC-IV and the eICU databases are shown in Table 1.

Feature Selection

The LASSO regression was performed to identify the key 
features. The process of feature selection through LASSO 
regression is shown in Supplementary Fig. S2, with the 
penalty coefficient (Lambda) increased, the corresponding 
coefficients of some variables gradually approached zero, 
which reflected that these variables had little influence on 
the model. After LASSO regression, 10 key features were 
selected. The feature importance of the 10 variables was 
evaluated by SHAP value (Fig. 1). To identify the multicol-
linearity between the 10 features, the VIF test was performed 
and showed that there was no significant multicollinearity 
with all VIFs of the features less than 4.0, the mean VIF was 
1.07. Univariate and multivariate Logistic regression analy-
ses were conducted to quantitatively evaluate the influence 
of the 10 variables on the model. The result suggested that 
all 10 features had a significant influence on PMV in patients 
with CHF (Table 2).

Development of the CatBoost Model

Based on the 10 key features, a total of 12 commonly used 
ML algorithms without parameter optimization were used 
for the initial analysis, and we found that the CatBoost algo-
rithm had the best prediction model (AUC = 0.790) (Fig. 2). 
In addition, AUC, accuracy, PPV, NPV, BA, and F1-score 
of different models based on the 10 features in the internal 
validation set are summarized in Supplementary Table 3. As 
shown in the table, the CatBoost model had the best AUC 

(0.790), NPV (82.0%), BA (67.9%), and F1 score (0.532). 
To assess the calibration of the 12 ML models, the calibra-
tion curve was conducted as in Fig. 3A, and for simplic-
ity, only LR, XGBoost, and KNN models were selected as 
the references. We found that the prediction probability of 
the CatBoost model was the closest to the true probability 
compared with the others, with a Brier score of 0.154. A 
satisfactory result was also shown in the DCA (Fig. 3B). 
Accordingly, the CatBoost model was used to perform the 
remaining analyses.

HPO based on the 10 features was conducted to improve 
the prediction performance of the CatBoost model (Sup-
plementary Fig. S3). After 100 trials, the best combination 
of hyperparameters with the best AUC was obtained. The 
final settings of the hyperparameter search are listed in Sup-
plementary Table S3. Additionally, comparisons of the full 
model with the compact model and the final model after 
HPO were conducted to demonstrate the optimization effect. 
As shown in Supplementary Fig. S4, the prediction perfor-
mance of the CatBoost model was significantly improved 
(AUC: 0.790 vs. 0.817).

Model Evaluation and Validation

To further demonstrate the prediction performance of 
the CatBoost model, comparisons of the final model with 
SOFA score, SAPS, blood gas analysis, and LODS score 
for predicting PAMV in patients with CHF were performed 
(Fig. 3C). As shown in the figure, the CatBoost model 
had the best prediction performance compared with oth-
ers. Moreover, we performed another prediction of short-
term MV (7d), long-term MV (14d), and in-hospital death 

Table 1   Baseline characteristic 
of the cohorts

PMV, prolonged mechanical ventilation; GCS, Glasgow coma scale; HR, heart rate; PaO2, partial arterial 
pressure of oxygen; PFR, partial arterial pressure of oxygen/ fraction of inspiration O2; SCr, Serum cre-
atinine; cTnT, cardiac troponin T; NT-proBNP, N-terminal pro-B type natriuretic peptide; AKI, acute kid-
ney injury; VA, ventricular arrhythmia (ventricular tachycardia, ventricular flutter, ventricular fibrillation). 
(*The eICU cohort did not record NT-proBNP, we used BNP instead)

MIMIC-IV cohort (n = 4533) eICU cohort (n = 2367)

Variables Non-PMV
(n = 3265)

PMV
(n = 1268)

P value Non-PMV
(n = 903)

PMV
(n = 1464)

P value

GCS 13.4 ± 3.8 9.7 ± 4.4 < 0.001 12.7 ± 3.5 11.1 ± 4.0 < 0.001
PFR 204.4 ± 99.5 173.1 ± 91.8 < 0.001 244.8 ± 129.1 220.2 ± 133.3 < 0.001
cTnT, ng/mL 0.99 ± 1.69 1.37 ± 2.14 < 0.001 0.52 ± 1.25 0.96 ± 1.64 < 0.001
NT-proBNP, pg/mL 5804 ± 6007 7954 ± 8198 < 0.001 2451 ± 1943 2686 ± 2189 < 0.001*
Pneumonia, % 1071 (32.8) 753 (59.4) < 0.001 173 (19.2) 425 (29.0) < 0.001
Sepsis, % 1215 (37.2) 686 (54.1) < 0.001 132 (14.6) 388 (26.5) < 0.001
AKI, % 1747 (53.5) 887 (69.9) < 0.001 181 (20.0) 428 (29.2) < 0.001
Anemia, % 2113 (64.7) 917 (72.3) < 0.001 403 (45.3) 685 (46.8) 0.478
UO, mL/kg/h 0.87 ± 0.91 0.77 ± 0.58 < 0.001 1.41 ± 1.37 1.33 ± 1.36 0.152
Inotropic agent, % 2005 (61.3) 935 (73.7) < 0.001 247 (27.3) 532 (36.3) < 0.001
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based on the CatBoost model, and favorable results were 
obtained in the present study (Fig. 3D-E).

External validation was conducted in this study. As 
shown in Fig. 3F, in the external validation set with the 
10 features, the CatBoost model had the best prediction 
performance among the 12 algorithms (AUC = 0.780). 
The accuracy of the CatBoost model in the external vali-
dation set was also the highest among the models, with an 
accuracy of 69.4%.

Finally, a nomogram was performed to visually repre-
sent the prediction result. The PAMV probabilities of each 
patient in the external validation set were obtained using 
the ‘predict_proba’ function of the CatBoost algorithm. 
Moreover, the patients were sorted based on the prediction 
probability. The prediction distribution plot of the CatBoost 
model with patients sorted in the order of risk showed posi-
tive clustering of patients who suffered from PAMV, sug-
gesting the satisfactory discriminatory ability of the model 

Fig. 1   Features importance assessed by SHAP value. (A) The blue to red color represents the feature value (red high, blue low). The x-axis 
measures the impacts on the model output (right positive, left negative); (B) Significance of the predictors in the CatBoost model

Table 2   Univariate and 
multivariate logistic regression 
analyses for prolonged acute 
mechanical ventilation

OR, odd ratio; CI, confidence interval; other abbreviations are the same as in Table 1

Univariate logistic analysis Multivariate logistic analysis

Variables OR (95% CI) P value OR (95% CI) P value

GCS 0.860 (0.847–0.873) < 0.001 0.879 (0.864–0.893) < 0.001
PFR 0.996 (0.995–0.997) < 0.001 0.997 (0.996–0.998) < 0.001
cTnT 1.104 (1.069–1.141) < 0.001 1.049 (1.011–1.088) < 0.001
NT-proBNP 1.430 (1.340–1.501) < 0.001 1.325 (1.215–1.436) < 0.001
Pneumonia 2.995 (2.620–3.424) < 0.001 2.181 (1.876–2.536) < 0.001
Sepsis 1.989 (1.744–2.268) < 0.001 1.752 (1.512–2.030) < 0.001
AKI 2.023 (1.762–2.323) < 0.001 1.386 (1.184–1.624) < 0.001
Anemia 1.424 (1.235–1.642) < 0.001 1.319 (1.124–1.549) 0.001
Urine output 0.771 (0.687–0.864) < 0.001 0.893 (0.792–0.990) 0.042
Inotropic agents 1.769 (1.533–2.042) < 0.001 1.492 (1.271–1.753) < 0.001
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(Fig. 4A). Furthermore, the decision tree based on total point 
of each patient in the nomogram was employed to optimize 
the risk stratification (Fig. 4B). All patients were divided 
into three groups: low-risk (total points < 186), middle-risk 
(total points ≥ 186 and < 228), and high-risk group (total 
points ≥ 228) (Fig. 4C). In addition, we found that patients 
in the middle- and high-risk group presented with 3.25 and 
9.26-fold risk of PAMV, respectively, with the low-risk 
group as the reference (Fig. 4D). In addition, the nomograms 
of prediction of short-term and long-term PMV were shown 
in Supplementary Figs. S5 and S6.

Discussion

A prediction model of PMV was established based on 12 
commonly used ML algorithms. Among the 12 ML algo-
rithms, the CatBoost showed the best prediction perfor-
mance. In addition, we found that several factors, includ-
ing pneumonia, GCS score, and NT-proBNP, were strongly 
associated with PMV in patients with CHF. The prediction 
performance of the CatBoost model for predicting PMV was 

significantly better than the traditional methods, including 
SOFA score, SAPS, LODS score, and blood gas. Moreover, 
the CatBoost model showed satisfactory prediction perfor-
mance both in the internal validation and the external valida-
tion sets. Additionally, hospital mortality could be accurately 
predicted using the final model as well.

The CatBoost algorithm, which belongs to the gradi-
ent boosting algorithm family, outperforms other publicly 
available boosting implementations in terms of quality on 
a variety of datasets [30]. Two main innovations introduced 
in CatBoost are the implementation of ordered boosting, 
a permutation-driven alternative to the classic algorithm, 
and an innovative algorithm for processing categorical fea-
tures, both of them can overcome a prediction shift caused 
by a special kind of target leakage present in all currently 
existing implementations of gradient boosting algorithms 
[31]. In addition, CatBoost uses a new schema to calculate 
leaf values when selecting the tree structure. The schema 
helps to reduce overfitting, which constrains the gener-
alization ability of machine-learning models [31]. In the 
present study, the CatBoost model showed satisfactory 
performance as well.

Fig. 2   Prediction performance 
of different machine learning 
algorithms



365Cardiovascular Drugs and Therapy (2024) 38:359–369	

1 3

Stasis of pulmonary vein and capillary is an impor-
tant pathophysiological feature in patients with CHF, and 
increased PCWP could lead to interstitial and alveolar edema 

and pleural effusion, causing acute respiratory failure [32]. 
Accordingly, MV is commonly used in patients with CHF 
to relieve dyspnea. Inflammation of pulmonary parenchyma 

Fig. 3   Model evaluation and validation. (A) Calibration plots; (B) 
Decision curve analysis; (C) Comparisons of the CatBoost and other 
models for prolonged acute mechanical ventilation (PAMV) based 
on the compact 11 features; (D) Prediction of the CatBoost model 

for predicting PAMV, short-term prolonged mechanical ventilation 
(PMV) and long-term PMV; (E) Prediction of in-hospital death based 
on the CatBoost model; (F) External validation of the prediction 
model based on the eICU dataset
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Fig. 4   Model validation and risk stratification. (A) Prediction distri-
butions of the risk of PAMV; (B) The risk stratification of PAMV 
according to a decision tree; (C) A nomogram of the CatBoost model 

for predicting PAMV; (D) Logistic analysis of the risk of PAMV 
based on the risk stratification
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and interstitium caused by pneumonia could aggravate lung 
consolidation and reduce effective respiration area [33], 
then exacerbate respiratory failure in patients with CHF. In 
addition, sepsis could aggravate hypoxemia through several 
mechanisms, including overaction of immune response, cir-
culatory abnormalities, and endothelial dysfunction of the 
lung [34]. Accordingly, patients with CHF combined with 
pneumonia or sepsis are likely to suffer from PMV.

NT-proBNP, which is a cleaved proteolytic product, has 
been shown as an efficient marker in patients with CHF to 
evaluate prognosis and cardiac dysfunction [35]. Addition-
ally, NT-proBNP could reflect the degree of pulmonary 
congestion [36]; therefore, NT-proBNP may be associated 
with respiratory failure in patients with CHF. Moreover, 
cTnT, which is increased both as a result of ischemic or 
non-ischemic myocardial injury, is strongly associated with 
cardiac dysfunction [37]. CHF reduces renal perfusion and 
then causes AKI, and renal dysfunction, in turn, increases 
the absorption of sodium water, placing a heavy burden on 
the heart. Therefore, the renal injury will deteriorate cardiac 
dysfunction in patients with CHF. Our findings suggested 
that NT-proBNP, cTnT, UO, and AKI were strongly associ-
ated with PMV as expected. In addition, use of inotropic 
agents and GCS scores were also found as the prediction 
factors for PMV in this study, and the results would be help-
ful in future research.

Blood gas analysis, SOFA score, LODS score, and SAPS-
II are widely used to evaluate the respiratory status and the 
severity of diseases. We conducted comparisons of the Cat-
Boost model with these models to predict PMV and found 
that the CatBoost model was significantly superior to these 
models. The previous study has demonstrated that PMV was 
significantly associated with mortality [13]. Accordingly, 
we hypothesize that hospital mortality could be accurately 
predicted using the final model which is used to predict 
PMV. The results showed that the CatBoost model exhibited 
favorable prediction performance to predict in-hospital mor-
tality based on the data of the selected 10 features (AUC = 
0.844). In addition, external validation was performed in the 
present study. We found that the prediction performance of 
the CatBoost model was also excellent in the eICU database.

The decision tree algorithm based on the nomogram 
was used to optimize the risk stratification of PMV in CHF 
patients (Fig. 4C). Due to the 10 features for prediction were 
readily accessible and frequently monitored in routine clini-
cal practice, CHF patients with high-risk of PMV could be 
easily identified using this nomogram. Our prediction model 
may lead to several changes in the management of mechan-
ically ventilated patients with CHF such as prediction of 
ICU workload and subsequent cost incurred by the hospital, 

and the ability to rationalize and tailor mechanical ventila-
tion strategy for high-risk patients. Moreover, the CatBoost 
model may facilitate decision making regard to the timing 
of tracheostomy in the high-risk of PMV patients. Timely 
tracheostomy not only had shorter duration of MV and inten-
sive care unit length of stay but also markedly lower hospital 
mortality [38]. Accordingly, we suggest that our model cer-
tainly had clinical application value in the early identifica-
tion of PMV in patients with CHF and in the administration 
of appropriate preventive treatments.

Limitations

Several limitations should be considered in this study. First, 
the data for analysis were collected from two public data-
bases. There were some important variables, including left 
ventricular ejection fraction, with a high rate of missing 
values were excluded, which may affect the prediction per-
formance. Second, there is no consensus on the accepted 
definition of PMV in CHF patients, while other investiga-
tors have used a wide range of time frames within a range 
of 4 to 21 days to define PMV. Considering the progresses 
in the management of CHF, the decompensated symptoms 
of CHF could be more rapidly corrected than before, we 
defined PMV as MV ≥ 4 days in this study. Third, this was 
a retrospective cohort study, and further prospective studies 
are needed to confirm the findings. Accordingly, the results 
should be interpreted with caution.

Conclusion

A prediction model of PMV with satisfactory prediction 
performance was established based on 12 commonly used 
ML algorithms. The CatBoost model was better than other 
predictive methods in predicting PMV in patients with CHF. 
Additionally, the CatBoost model may help in predicting 
in-hospital mortality in these patients. These findings need 
to be confirmed in future prospective studies.
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