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Abstract
Cardiovascular risk has traditionally been defined by modifiable and non-modifiable risk factors, such as tobacco use, 
hyperlipidemia, and family history. However, chemicals and pollutants may also play a role in cardiovascular disease 
(CVD) risk. Arsenic is a naturally occurring element that is widely distributed in the Earth’s crust. Inorganic arsenic 
(iAs) has been implicated in the pathogenesis of atherosclerosis, with chronic high-dose exposure to iAs (> 100 µg/L) 
being linked to CVD; however, whether low-to-moderate dose exposures of iAs (< 100 µg/L) are associated with the 
development of CVD is unclear. Due to limitations of the existing literature, it is difficult to define a threshold for iAs 
toxicity. Studies demonstrate that the effect of iAs on CVD is far more complex with influences from several factors, 
including diet, genetics, metabolism, and traditional risk factors such as hypertension and smoking. In this article, 
we review the existing data of low-to-moderate dose iAs exposure and its effect on CVD, along with highlighting the 
potential mechanisms of action.
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Introduction

Epidemiological studies have demonstrated that an individual’s 
susceptibility to developing cardiovascular disease (CVD) is 
related to both “non-modifiable” cardiovascular risk factors, 
such as age, family history, genetics, and sex, and “modifiable” 
risk factors including smoking, hypertension, diabetes, hyper-
lipidemia, and chronic kidney disease [1, 2]. Despite attempts 

to address these modifiable risk factors, CVD remains the 
leading cause of death in the United States (US) and costs the 
healthcare system $216 billion per year [3, 4].

Generally, CVD results from a relationship between genet-
ics and environmental factors. Environmental factors are tra-
ditionally thought of in terms of lifestyle choices including 
physical activity, diet, and tobacco use [1]. However, the 
influence of chemicals and pollutants in our environment on 
cardiovascular health is less clear. One environmental expo-
sure that has been implicated in the development of CVD 
is arsenic [5]. Arsenic can be found in combination with 
organic or inorganic substances. Organic arsenic species, 
such as those found in seafood, are less toxic, while inorganic 
arsenic (iAs) species are very reactive intracellularly [6, 7]. 
Most exposure to iAs in the current era is dietary through 
ingestion of contaminated food and water at high dose lev-
els (> 100 µg/L) and is more prevalent in countries such as 
Bangladesh, India, China, and Taiwan [8, 9]. However, even 
in the US, iAs has been detected in the drinking water supply. 
In a national study of groundwater quality, the US Geological 
Survey found iAs to be present in half of the sampled wells 
used for drinking water supply at a concentration greater than 
1 µg/L, with higher prevalence in the western US [10].
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The potential toxicity of iAs is far-reaching with signifi-
cant impacts on cardiovascular health. For many decades, 
higher doses have been linked to Blackfoot disease, a form 
of arteriosclerosis obliterans [11], though studies have 
also suggested correlations between lower exposure of iAs 
and CVD [12]. In this review, we provide a contemporary 
appraisal of the existing data related to low-to-moderate 
iAs exposure (< 100 µg/L) and the effect on CVD. We also 
review the potential pathogenesis of iAs and CVD in order 
to help guide clinicians in risk stratification and counseling 
of patients exposed to arsenic.

Arsenic Exposures and Metabolism

In 2001, the US Environmental Protection Agency (EPA) 
reduced the maximum contaminant level for iAs in potable, 
or drinking water, (regulations in the US have only pertained 
to potable water) from 50 to 10 µg/L [13]. However, even 
when potable water sources demonstrate iAs below the cur-
rent EPA limit, urinary excretion, which reflects dietary 
intake, has indicated persistent high level exposure presum-
ably from dietary food sources; this has been demonstrated 
in studies from both Bangladesh and the USA [14, 15]. 
Major dietary sources of iAs include vegetables, fruits, and 
particularly rice, suggesting that ground water contamina-
tion is an important source of iAs [16–19]. The efficient 
silicon uptake pathway in rice allows for concomitant uptake 
of iAs due to chemical similarity, leading to high iAs content 
in rice. Rice also has high iAs content due to the agricultural 
process of growing rice in flooded soil where iAs is more 
mobile [20]. Other food sources, such as fish and shellfish, 
contribute significantly to total arsenic exposure, but their 
contribution to iAs exposure is not as significant [18, 21].

iAs is methylated in the liver into dimethylarsinate 
(DMA) and monomethylarsonate (MMA) metabolites, 
whose major pathway of elimination is through the kidney. 
The nuances of the methylation steps of metabolism are 
beyond the scope of this review; however, it is important to 
note that there are cross-species differences in iAs metabo-
lism and therefore the doses exposed to in animal model 
studies do not directly translate to human exposures in water 
and dietary sources [22].

iAs exposure via water or dietary intake can be quanti-
fied in various ways, including measurement of iAs levels in 
urine and nail samples. A study from Pakistan demonstrated 
a strong relationship between arsenic intake from water and 
the concentrations of iAs in urine and toenail samples. How-
ever, the study specifically found toenail samples to be the 
most valuable biomarker of past exposure to iAs of dietary 
origin [23]. Therefore, it is important to note these differ-
ences when considering the studies described in this review.

Current Evidence of Arsenic and CVD

Overview

Numerous epidemiologic surveys, prospective analyses, 
and observational studies from endemic regions have dem-
onstrated an association between iAs and CVD, especially 
with chronic high-dose exposures [24–31]. iAs expo-
sure has been linked to ischemic heart disease [32, 33], 
hypertension [34, 35], and carotid artery atherosclerosis 
[36]. Most studies have focused on chronic high-dose iAs 
exposure, while few studies characterize the relationship 
between CVD and low-to-moderate dose iAs exposure, 
which are more commonly seen in the US. A 2012 meta-
analysis by Moon et al. demonstrated a causal associa-
tion between chronic iAs exposure (mean iAs in drinking 
water > 50 µg/L) and CVD (coronary heart disease and 
peripheral artery disease), but the results were inconsist-
ent at lower iAs exposures [37]. Another meta-analysis 
showed associations between chronic iAs exposure and 
CVD incidence (stroke, coronary heart disease, and heart 
failure), mortality, and carotid atherosclerosis at both low-
to-moderate and high levels of iAs exposure from drinking 
water. However, there was wide variation in the relative 
risks, highlighting the limitations of these analyses which 
were comprised of studies that differed in methodology 
and exposure assessment [38]. The studies discussed in the 
subsequent part of this review, unless otherwise specified, 
pertain to low-to-moderate dose iAs exposure (defined 
as < 100 µg/L).

Low‑to‑Moderate Dose iAs Exposure and CVD

A few small-scale studies have demonstrated associa-
tions between low-to-moderate levels of iAs exposure 
(10–100 µg/L) and CVD [39, 40], hypertension [41], and 
stroke [42]. In two prospective studies from Bangladesh, 
there was a trend towards low-to-moderate iAs exposure 
and incident CVD though this was not statistically signifi-
cant [25, 26]. In addition, in a population of patients from 
the Danish Diet, Cancer, and Health cohort, there was no 
overall association found between average concentration 
of iAs in drinking water and risk of myocardial infarction, 
but there was an association in one specific geographic 
area for iAs exposures at 2.21–25.34 μg/L, with an inci-
dence rate ratio of 1.48 (95% confidence interval [CI]: 
1.19–1.83) when compared with very low iAs exposure 
(0.05–1.83 μg/L). However, the authors were unable to 
rule out whether this association was caused by risk fac-
tors for myocardial infarction being more prevalent among 
participants in the geographic area that showed the positive 
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association [43]. Socioeconomic factors may play a role in 
the differences in outcomes, especially at low levels of iAs 
exposure, though the exact extent is often unclear in stud-
ies. Given the paucity of high-quality studies, establishing 
an association between CVD and iAs at lower levels rel-
evant to the US population is challenging. However, several 
recent analyses have provided more evidence on low-to-
moderate dose iAs exposure and may allow clinicians in the 
US to begin to identify a threshold at which iAs exposure 
contributes significantly to CVD [44–47].

A case-cohort study of 555 individuals from Southern 
Colorado who were exposed to low-to-moderate levels of 
iAs in drinking water throughout their lives found that there 
was an increased risk of coronary heart disease (HR: 1.38, 
95% CI: 1.09–1.78, per every 15 μg/L increase) [44]. In the 
North American Heart Study, a prospective study conducted 
in Native American communities in Oklahoma, Arizona, and 
North and South Dakota, a significant increase in CVD inci-
dence (HR: 1.32, 95% CI 1.09–1.59; p = 0.002) and mortality 
(HR: 1.65, 95% CI 1.20–2.27; p < 0.001) was found when 
comparing the quartile with the highest urine iAs levels to the 
lowest after adjusting for confounders [12, 45]. As discussed 
above, most studies have focused on the association between 
iAs exposure from drinking water and CVD risk; however, 
rice intake also represents a significant exposure to iAs, even 
in developed countries. In a recent ecological study from Eng-
land and Wales, a non-linear dose–response relationship was 
found for the relationship between rice intake and CVD and 
indicated that CVD risk increased with iAs exposure from 
rice at exposures above 0.3 μg/person/day [47]. Another study 
evaluated the comprehensive cardiovascular risk due to low-
to-moderate levels of iAs exposure in patients with baseline 
hypertension from the 2003–2012 National Health and Nutri-
tion Examination Survey (NHANES) by utilizing the 10-year 
atherosclerotic CVD (ASCVD) risk score from the pooled 
cohort equations. After adjustment for sociodemographic fac-
tors and ASCVD risk factors, male participants in the highest 
quartile of urine iAs had higher 10-year ASCVD risk (24% 
increase in 10-year ASCVD risk; 95% CI: 2–53%), but there 
was no association of urine iAs with ASCVD risk score in 
women participants (5% increase in 10-year ASCVD risk in 
highest quartile of urine iAs; 95% CI: − 15 to 29%) [46].

Effect Modification

Epidemiologic evidence indicates there is a more nuanced 
relationship between iAs exposure and CVD, with effect 
modification from diet, genetics, metabolism, socioeco-
nomic factors, and traditional cardiovascular risk factors 
such as hypertension and smoking. Clinical nutritional 
research is ongoing into whether an individual’s diet modi-
fies iAs effect on cardiovascular health. Adequate dietary 
folate intake has been linked to more robust methylation 

capacity and could potentially lower the risk of iAs toxic-
ity [48]. Selenium is another nutritional factor that may 
modify the effect of iAs on cardiovascular health [49, 50], 
as adequate dietary selenium may curtail lipid peroxida-
tion, thereby mitigating cardiovascular toxicity [51–53]. 
Higher urinary selenium concentrations have been linked 
to the somewhat less toxic intermediate, DMA, implying 
selenium aids in detoxification of iAs [54]. Thus, to better 
understand the public health implications of iAs exposure 
and recognize patient populations that are susceptible to 
its toxic effects, it is important to understand gene-envi-
ronment interactions. A study from Mexico demonstrated 
that a specific genetic susceptibility (PON1 Q192 R poly-
morphism) modified the CVD risk from iAs exposure in 
drinking water, as assessed by biomarkers of cardiovascu-
lar disease — asymmetric dimethylarginine (ADMA) and 
fatty acid-binding protein 4 (FABP4) [55].

The role of iAs in cardiovascular health does not exist in 
isolation, as traditional CVD risk factors may modify the 
effects of iAs exposure and further lead to susceptibility to 
iAs toxicity. A prospective analysis of 2,939 participants in 
the New Hampshire Skin Cancer Study demonstrated that iAs 
exposure measured from toenail clipping samples was related 
to an increased risk of ischemic heart disease mortality among 
smokers, with a higher hazard ratio in participants with ≥ 30 
pack-years (HR: 1.66, 95% CI: 1.12−2.45) [56]. This study 
highlights a synergistic relationship between iAs exposure and 
smoking. However, the Hispanic Community Health Study/
Study of Latinos which investigated the relationship between 
iAs exposure through rice consumption and hypertension 
found an association in non-smokers rather than in smokers. 
Among never smokers who had high rice-consumption, less 
efficient iAs metabolism (higher % iAs as compared to % of 
arsenic metabolites — DMA and MMA) was associated with 
increased systolic blood pressure (BP) (1.96 mmHg/percentage 
point increase in % iAs; 95% CI: 0.13–3.80; P = 0.034), and 
there was no association in smokers [57]. The authors of the 
study hypothesize that the difference in effect may be due to 
an interaction between smoking and iAs metabolism, though 
future studies delving further into this mechanism are needed.

In an analysis from the Strong Heart Family Study of ado-
lescents and young adults, exposure to low-to-moderate iAs 
levels was associated with increased left ventricular (LV) 
wall thickness and LV mass, predominantly in patients with 
hypertension or pre-hypertension [58]. Another risk factor 
for CVD is metabolic syndrome, comprised of elevated glu-
cose, hypertension, elevated triglycerides, low high-density 
lipoprotein cholesterol, and high waist circumference. In a 
study from the US NHANES 2013–2014 data, there was no 
association found between iAs methylation and metabolic 
syndrome; however, gender and body mass index (BMI) sig-
nificantly modified the effect of iAs methylation on meta-
bolic syndrome [59].
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Proposed Mechanisms of Action

Framework to Approach Animal Studies

Researchers have attempted to identify a molecular path-
way between low-to-moderate dose iAs exposure and CVD 
toxicity in basic science models. Developing a plausible 
mechanism of action for iAs toxicity requires determining 
if and how iAs disrupts cell physiology to generate a chronic 
inflammatory state that sustains atherosclerosis pathogene-
sis. Two proposed mechanisms of action are oxidative stress 
and neovascularization [60]. As we discuss both human and 
animal studies to explore these two mechanisms, we should 
note animal models may have an alternative process for 
metabolizing iAs not directly applicable to metabolism in 
humans [5, 8].

Oxidative Stress and Endothelial Dysfunction

In analyses exploring mechanistic links between heavy met-
als and CVD, disturbances in nitric oxide (NO) generating 
systems and the vascular endothelium are repeatedly identi-
fied as a potential culprit [61]. In vitro studies suggest iAs 
can increase the local production of reactive oxygen spe-
cies and alter the function of critical antioxidants [62–64]. 
In reviewing animal models investigating endothelial dys-
function, we have to evaluate whether iAs plausibly leads to 
endothelial nitric oxide synthase inhibition, exhausting local 
pools of available NO and subsequently increasing oxidative 
stress to a point beyond which it drives lipid peroxidation, 
smooth muscle contraction, and other steps in the develop-
ment of atherosclerosis [61, 65].

The pathway from oxidative stress to oxidative damage 
leading to atherosclerosis and eventually clinical manifes-
tations of CVD presumably requires a milieu of chronic 
inflammation; thus, markers of chronic inflammation have 
been used as surrogates to connect disparate mechanisms of 
cardiovascular toxicity to iAs. Markers of chronic inflam-
mation linked to high-dose iAs exposure include endothe-
lial adhesion molecules, particularly soluble intercellular 
adhesion molecule-1 (sICAM-1) and soluble vascular cell 
adhesion molecule (sVCAM-1) [66], which may be potential 
biomarkers of CVD [67–69]. For instance, a recent study of 
Bangladeshi adults revealed a positive relationship between 
increased sICAM-1 and VCAM-1 with iAs in drinking water 
after adjustments for BMI, hypertension, and other CVD 
risk factors, though iAs exposure had an interquartile range 
of 2.98 to 186 μg/L [70]. The investigators also indicated 
that iAs exposure in drinking water led to increased oxida-
tive stress, specifically measured by plasma levels of oxi-
dized low-density lipoprotein and C-reactive protein (CRP) 
[70]. In a cross-sectional study population from the New 

Hampshire Health Study, comprised of adults with low-to-
moderate iAs exposure, iAs was positively associated with 
biomarkers related to CVD pathogenesis, including mark-
ers of endothelial dysfunction such as vascular and cellular 
adhesion molecules (VCAM-1 and ICAM-1) [71].

In the Multi-Ethnic Study of Atherosclerosis (MESA), fre-
quent rice intake was not associated with several markers of 
inflammation including high sensitivity CRP, interleukin-6, 
and fibrinogen or subclinical atherosclerosis; however, two 
markers of inflammation that have been previously associated 
with iAs exposure (E-selectin and ICAM-1) were positively 
associated with rice intake [72]. Using rice as a marker for iAs 
exposure has limitations, and this study was unable to consider 
an individual’s capacity to metabolize iAs. In addition, evi-
dence detailing what level of iAs exposure leads to clinically 
relevant lipid peroxidation is lacking [73]. Furthermore, recent 
human studies in iAs-exposed populations have failed to dem-
onstrate a relationship between iAs ingestion (ranging from 
less than 10 μg/L up to more than 300 μg/L) and urinary mark-
ers of oxidative stress [74].

Several of the early animal models exploring iAs expo-
sure and risk of developing CVD in apolipoprotein E defi-
cient mice revealed that high dose exposures, including 
either a dose of 2,000 or 10,000 μg/L sodium arsenite in 
drinking water over the course of 24 weeks in one study 
[75] or a fixed exposure of 13,300 μg/L in another [76], 
led to increased atherosclerotic lesions in the vasculature 
[75, 76]. Other studies have linked high dose exposures of 
iAs in utero or in the early postnatal period to the increased 
development of atheroma [77–79], but equivalent studies 
relevant to human exposures are absent. Although biomark-
ers reflective of perturbations in the NO-generating systems 
and indicative of chronic inflammation have been identi-
fied in animal models with high-dose iAs exposures, animal 
models of iAs at exposures that would be considered low-
to-moderate for studies applicable to human exposures on 
CVD risk have not been completed. Further animal models 
defining the role of iAs on pro-thrombotic factors, such as 
fibrinogen and plasminogen activator inhibitor-1 (PAI-1), 
are needed as a recent cross-sectional analysis of the Strong 
Heart Study unexpectedly demonstrated that low-to-mod-
erate iAs exposure was positively associated with baseline 
fibrinogen levels and inversely associated with PAI-1 [80].

Neovascularization

Neovascularization, the process of generating microvascula-
ture that may supply developing plaques with inflammatory 
factors and nutrients from the systemic circulation to support 
its development, is one of the processes proposed in the patho-
genesis of atherosclerosis [81]. As the intima thickens, passive 
diffusion of nourishing factors from the lumen diminishes and 
these microvessels may play a critical role in sustaining plaque 
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development. One animal model tested whether chronic expo-
sure to iAs in drinking water enhances neovascularization and 
saw a dose–response relationship between 0–5 and 50 μg/L 
iAs. However, the response diminished over time, conceivably 
a result of tolerance to iAs, which suggests that neovascu-
larization may be a less plausible mechanism of action for 
arsenic-induced CVD [82, 83].

Cardiac Hypertrophy

Along with the effect of iAs on atherosclerosis described 
above, arsenic has also been shown to induce pathological 
cardiac hypertrophy; multiple studies have shown exposure 
to iAs leading to myocyte apoptosis, fibrosis, and subsequent 
left ventricular hypertrophy [84, 85]. In one study, 8-week 
iAs exposure in male mice was associated with an increase in 
systolic pressure and altered cardiac geometry; iAs induced 
hypertrophic gene expression in ventricular myocytes via a 
calcineurin-nuclear factor of activated T cells pathway [86].

“Two‑Hit” Hypothesis of Cardiovascular Disease

Several studies have evaluated if in utero exposure to iAs 
in mice alters hepatic development and genetic expression, 
creating a pro-inflammatory state that accelerates atheroscle-
rosis [87–89]. This “two-hit” model of arsenic-induced CVD 
suggests that epigenetic modifications prime the mouse 

model with a chronic, low-grade inflammation that can be 
exacerbated by another insult or “hit” leading to atheroscle-
rosis [87]. For example, one study found in utero iAs expo-
sure was linked with increased production of the lipid modu-
lator sterol regulatory element binding protein (SREBP) 1 
[87], a potential factor in the development of diabetes and 
rheumatoid arthritis, as well as a possible modulator of other 
chronic inflammatory diseases. Another study found a tran-
sient postnatal elevation of heat shock protein 70 (HSP70) 
in prenatally iAs exposed mice [88], again proposing that 
iAs exposure alone may not create significant inflamma-
tion, but aggravates the effects of another toxic insult [89]. 
While intriguing, these studies were conducted with iAs 
doses much higher than is typical for human exposures. In 
addition, whether HSP70, SREBP1, and other intermediate 
biomarkers can be reliable indicators of low-grade inflam-
mation remains speculative. However, in the Strong Heart 
Study prospective cohort, the cardiovascular risk from low-
to-moderate level iAs exposure was significantly higher in 
participants with diabetes compared to those without diabe-
tes [12]. This study suggests the pro-inflammatory state cre-
ated by diabetes potentially augmented the impact of low-to-
moderate level iAs exposure on atherosclerosis, with further 
evidence in experimental models with healthy donor whole 
blood [90]. Thus, iAs may have a modifying effect on other 
cardiovascular risk factors but at what level of exposure and 
by what mechanism remains unclear.

Fig. 1  Schematic summarizing sources of iAs exposure, potential mechanisms of injury, and disease modifying components. DMA, dimethyl-
arsinate; MMA, monomethylarsonate
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Conclusion

Although measures of cardiovascular prevention have been tradi-
tionally targeted towards conventional risk factors, there is increas-
ing evidence that environmental exposure to iAs may increase 
risk of CVD (Fig. 1). The pathogenesis of atherosclerosis and its 
downstream clinical manifestations are complex processes, and 
associations between high levels of chronic iAs exposures and 
markers of various stages of atheroma development and CVD 
have been demonstrated, with some studies also presenting evi-
dence of CVD risk with low-to-moderate levels of iAs exposure 
which are more generalizable to the US population. Therefore, 
clinicians should consider iAs exposure when evaluating cardio-
vascular risk in patients. While the EPA regulates arsenic in com-
munity water systems, a threshold level of iAs exposure has not 
been clearly identified in the literature; therefore, it is important 
to maintain caution when advising patients on safe levels of iAs 
exposure. Patients using well water, which is not regulated by the 
EPA, could be advised to test their water for arsenic which could 
inform conversations with their physicians regarding risk of CVD. 
However, individual risk mitigation strategies may not always be 
feasible, and therefore policy-level change is needed to adequately 
address environmental arsenic exposure. Finally, the modifying 
effect of conventional risk factors, such as smoking, diabetes, and 
hypertension, on iAs toxicity emphasizes the importance of man-
aging traditional CVD risk factors.
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