
ORIGINAL ARTICLE

An Adapted Neural-Fuzzy Inference System Model Using
Preprocessed Balance Data to Improve the Predictive Accuracy
of Warfarin Maintenance Dosing in Patients After Heart
Valve Replacement

Zhi-Chun Gu1
& Shou-Rui Huang2

& Li Dong3
& Qin Zhou4

& Jing Wang5
& Bo Fu6

& Jin Chen2

Accepted: 14 April 2021
# Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Background Tailoring warfarin use poses a challenge for physicians and pharmacists due to its narrow therapeutic window and
substantial inter-individual variability. This study aimed to create an adapted neural-fuzzy inference system (ANFIS) model
using preprocessed balance data to improve the predictive accuracy of warfarin maintenance dosing in Chinese patients under-
going heart valve replacement (HVR).
Methods This retrospective study enrolled patients who underwent HVR between June 1, 2012, and June 1, 2016, from 35 centers in
China. The primary outcomes were the mean difference between predicted warfarin dose by ANFIS models and actual dose and the
models’ predictive accuracy, including the ideal predicted percentage, the mean absolute error (MAE), and the mean squared error
(MSE). The eligible caseswere divided into training, internal validation, and external validation groups.We explored input variables by
univariate analysis of a general linear model and created two ANFIS models using imbalanced and balanced training sets. We finally
compared the primary outcomes between the imbalanced and balanced ANFIS models in both internal and external validation sets.
Stratified analyses were conducted across warfarin doses (low, medium, and high doses).
Results A total of 15,108 patients were included and grouped as follows: 12,086 in the imbalanced training set; 2820 in the
balanced training set; 1511 in the internal validation set; and 1511 in the external validation set. Eight variables were explored as
predictors related to warfarin maintenance doses, and imbalanced and balanced ANFIS models with multi-fuzzy rules were
developed. The results showed a low mean difference between predicted and actual doses (< 0.3 mg/d for each model) and an
accurate prediction property in both the imbalanced model (ideal prediction percentage, 74.39–78.16%; MAE, 0.37 mg/daily;
MSE, 0.39 mg/daily) and the balanced model (ideal prediction percentage, 73.46–75.31%; MAE, 0.42 mg/daily; MSE, 0.43 mg/
daily). Compared to the imbalanced model, the balanced model had a significantly higher prediction accuracy in the low-dose
(14.46% vs. 3.01%; P < 0.001) and the high-dose warfarin groups (34.71% vs. 23.14%; P = 0.047). The results from the external
validation cohort confirmed this finding.
Conclusions The ANFIS model can accurately predict the warfarin maintenance dose in patients after HVR. Through data
preprocessing, the balanced model contributed to improved prediction ability in the low- and high-dose warfarin groups.
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Introduction

Warfarin, with a clear effectiveness and price advantage, is
recommended for the prevention of thrombosis after heart
valve replacement (HVR) [1]. However, the need for frequent
monitoring, the narrow therapeutic range, dietary restrictions,
and multiple drug interactions associated with warfarin have
contributed to the insufficiency or excessiveness of
anticoagulation, which can lead to thromboembolism and
bleeding. Notably, significant individual diversity leads to
considerable differences (of up to 20-fold) in the response of
patients to warfarin doses [2]. Therefore, a tailored warfarin
dose may reduce complications and improve the survival rate
of patients with HVR [3].

At present, the warfarin individualized drug prediction model
can be divided into multiple linear regression (MLR) and a ma-
chine learning algorithm [4]. Specific pharmacogenomic vari-
ables, such as cytochrome P450, family 2, subfamily C, poly-
peptide 9 (CYP2C9) and vitamin K epoxide reductase complex,
and subunit 1 (VKORC1), could explain the 55% warfarin dose
variation and have been introduced to improve models’ predic-
tion ability [5]. Gage et al. and the International Warfarin
Pharmacogenetics Consortium (IWPC) have developed two rep-
resentatively linear warfarin prediction models based on
pharmacogenomic information and clinical factors; these models
could explain 43–54% of the variability in the warfarin dose [6,
7]. Currently, there is no warfarin maintenance dose prediction
model that is able to achieve an overall prediction accuracy
higher than 70% [5, 8, 9].

In China, where medical insurance is limited and there is a
lack of primary medical units, extensive gene sequencing for
predicting warfarin dose variation will bring unnecessary eco-
nomic burden, which is contrary to the original cost-efficiency
advantage of warfarin. Thus, developing the optimal predic-
tion model for warfarin dosing based on explicable clinical
variables poses a challenging task. Unlike the MLR method,
machine learning algorithms, such as adapted neural-fuzzy
inference system (ANFIS), are data mining methodologies
that work based on a combination of fuzzy logic and neural
networks. They determine various clustering values in fuzzy
sets, predict membership functions during the training pro-
cess, and calculate the weights by a neural network model.
Efficiently, this technique simplifies the problems of compli-
cated characteristics in the process of system modeling and is
used in a wide variety of inference problems including those
in mechanics and engineering. In previous studies, we
established the ANFIS models [10], the artificial neural net-
work (ANN) [11], the back-propagation neural network with
genetic algorithm (BPGA) [12], and the back-propagation
neural network (BPNN) [13], based on machine learning al-
gorithms, to predict the maintenance dose of warfarin. As a
result, we achieved the actual warfarin dose with 59–78%
accuracy for patients who underwent AVR. However, we also

found poor accuracy for patients in the low- and high-dose
groups. Similar results were also observed in other warfarin
dose models [14–17]. One explanation for this might be the
class imbalance learning (CIL) problem, which is associated
with the size of the data used to train the warfarin dose pre-
diction model [18]. Indeed, most studies on warfarin mainte-
nance dose prediction demonstrate a large gap between the
sample number of the patients in the medium-dose group
and that in the low- and high-dose groups. It is worth noting
that patients receiving low or high warfarin doses are more
vulnerable to cardiovascular adverse events. Therefore, to im-
prove the model prediction effect in low- and high-dose pa-
tient groups, we attempted to correct the CIL problem by
adjusting the distribution structure of the training dataset be-
fore modeling.

Methods

Study Population

This was a retrospective multicenter study based on the
Chinese Low-Intensity Anticoagulant Therapy after Heart
Valve Replacement (CLIATHVR) database. The
CLIATHVR database prospectively included all patients
who underwent HVR and received warfarin treatment
from June 1, 2012, to June 1, 2016, in 35 centers (15
provinces) in China. The study included adult patients
who met the following criteria: (1) underwent HVR; (2)
received warfarin to prevent valve-associated thrombosis
after surgery; (3) conducted regular international normal-
ized ratio (INR) monitoring; and (4) achieved a stable
dose of warfarin (the INR value fluctuated by < 0.2 for
three consecutive times under the fixed dose). The exclu-
sion criteria were as follows: (1) patients in whom severe
liver or kidney dysfunction occurred before or after sur-
gery; (2) those who received a combination of other anti-
platelet or anticoagulant agents or non-steroidal anti-in-
flammatory drugs; and (3) patients with embolism, bleed-
ing events, or death during warfarin therapy (the absence
of complications indicated the ideal statement under war-
farin maintenance dose). All included patients provided
informed consent for the procedure and data collection.
The study protocol was approved by the Ethics
Commit tee of West China Hospi ta l of Sichuan
University (ChiECRCT-201792).

Input and Output Variables

The input variables were selected in two ways: (1) clinical
characteristics associated with the warfarin dose were chosen
according to expert advice and published literature; and (2)
preliminarily comprehensive screening was conducted to
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select potential variables related to the warfarin maintenance
dose. The correlation coefficient matrix of input variables is
developed, and the variables with strong collinearity are
screened according to the variance inflation factor (VIF) of
each variable (VIF > 10 was considered strong collinearity).
The general linear model (GLM)-univariate method was fur-
ther used to screen out variables based on both the level of
statistical significance (P < 0.05) and η2 (> 0.002; where η2 is
defined as the contribution of a specific input variable to the
output variable). The output variable was the predicted warfa-
rin maintenance dose, which was defined as the target value of
the patients’ INR between 1.5 and 2.5 on at least three con-
secutive occasions.

Group Setting

The entire dataset construction process is shown in Fig. 1.
The eligible cases were divided into three groups as fol-
lows: the training set (80% of patients), the internal vali-
dation set (10% of patients), and the external validation
set (the final 10% of patients by the enrollment time). We
applied two training datasets with different structures to
train the ANFIS model, in order to compare the prediction
accuracy in the same model before and after preprocess-
ing. The ANFIS model trained by the above training
group (imbalanced training set) was called the imbalanced
model, and the new dataset constructed by the method of
equal random-stratified sampling from the imbalanced
training set was called the balanced training set. Finally,

the ANFIS model trained by this training set was called
the balanced model. The purpose of the equal random-
stratified sampling was to randomly sample the same
number of cases in other groups according to the group
containing the minimum number of cases; thus, the pro-
portion of patients receiving high, medium, and low doses
of warfarin in the balanced training set was 1:1:1.

Adaptive Neural-Fuzzy Inference System (ANFIS)
Model

The ANFIS, as a classic machine learning algorithm, is a
neuro-fuzzy system (NFS) that was proposed by Jang et al.
in 1993 [19] and combines the advantages of a fuzzy inference
system (FIS) and ANN. The ANFIS is driven by data and can
automatically construct a set of if-then fuzzy rules, create an
appropriate membership function, determine its parameters,
and quickly form the mapping relationship between the input
and output. Since the ANFIS has only limited parameter set-
tings, it dramatically simplifies the problems of unclear and
complicated characteristics in the process of systemmodeling.
The models used in this study are based on the Takagi-Sugeno
type of ANFIS. Figure 2 presents the overall structure of the
ANFIS model. It includes a multi-layer feed-forward network
with a total of five layers.

& Layer 1 is the fuzzification layer in which each node rep-
resents a membership value to a linguistic term as a
Gaussian function with the mean.

Fig. 1 The whole process of data set construction. ANFIS, adaptive neural-fuzzy inference system; FIS, fuzzy inference system; GLM, general linear
model
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& Layer 2 provides the strength of the rule using multiplica-
tion operator.

& Layer 3 is the normalization layer which normalizes the
strength of all rules according to the equation.

& Layer 4 is a layer of adaptive nodes. Every node in this
layer computes a linear function where the function coef-
ficients are adapted by using the error function of the
multi-layer feed-forward neural network.

& Layer 5 is the output layer whose function is the summa-
tion of the net outputs of the nodes in layer 4.

This system is characterized by the back-propagation (BP)
algorithm and least square algorithm, which determine the
fuzzy rules and relevant parameters and automatically estab-
lish the mapping relationship between the input and output.
The input of the model is the patient data, and the output is the
predicted value of warfarin dosing.

The Prediction Ability of the Model

The primary outcomes were the mean difference between the
predicted warfarin maintenance dose by the models and the
actual dose in clinical practice and the predictive accuracy of
the models that were evaluated by the internal and external
validation sets with three indexes: the ideal predicted percent-
age, the mean absolute error (MAE), and the mean squared
error (MSE). The ideal predicted percentage was defined as

the percentage of patients whose predicted warfarin dose was
within 20% of the actual dose. The MAE was the mean abso-
lute difference between the predicted dosage and the actual
dosage of warfarin. The MSE was the square of the difference
between the two dosages. The warfarin dose was classed as
low (< 1.875 mg/d), medium (1.875–3.125 mg/d), or high (>
3.125 mg/d).

Statistical Analyses

Microsoft Excel 2019 was used for data inclusion and prelim-
inary screening of eligible cases. Categorical variables are
expressed as number and percentage and were compared
using the chi-square test. Continuous variables are expressed
as mean with standard deviation (SD) and were compared
using the paired Student’s t-test or Mann–Whitney U tests.
MATLAB R2009a (MathWorks Inc, USA; code is presented
in supplemental file) was used to establish the ANFIS models
and predict the individual warfarin dose. The differences be-
tween the predicted dose and the actual dose of each ANFIS
model were analyzed using the mean difference (< 0.3 mg/d
considered to be an acceptable difference). The models’ pre-
dictive accuracy (MAE,MSE, ideal predicted percentage) was
calculated using the ANFIS model results. Statistical analyses
were performed using SPSS software, version 22.0 (SPSS
Inc., Chicago, Illinois, U.S.A), with a P value < 0.05 indicat-
ing a significant difference.

Fig. 2 Structure of the adaptive
neural-fuzzy inference system
(ANFIS) model
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Results

Data Acquisition and Variable Inclusion

As shown in Fig. 3, 19,595 patients who were enrolled in the
CLIATHVR database between June 1, 2012, and June 1,
2016, were selected in this study. After eliminating 3424 un-
finished cases and 726 cases that did not meet the criteria,
15,445 cases were eligible for further analysis. A further 337
cases containing missing data or abnormal values were ex-
cluded, and an original dataset, including 15,108 patients
and consisting of 52 potential independent variables (patient
characteristics, medical history, echocardiography indexes,
preoperative laboratory results, surgical information, and post-
operative warfarin medication information), was finally con-
structed. Of which, 8512 patients who were involved in our
previous study [10] were also enrolled in the present study.
Variables were selected based on the GLM univariate method
(Table S1), and eight variables (including age, disease,
weight, tricuspid valve disease, albumin level, creatinine lev-
el, usage of the first dose, and dosage of the first dose) were
included for model construction (Table S2).

Datasets and Population Characteristics

Of 15,108 patients, 1511 were selected as the external valida-
tion set according to the admission time. From the remaining
13,597 patients, 1511 were selected as the internal validation
set by random sampling, and 12,086 patients were selected as
the imbalanced training set. The number of patients in the

low-, medium-, and high-dose groups in the imbalanced train-
ing set was 1259 (10.42%), 9887 (81.81%), and 940 (7.78%),
respectively, indicating a significant imbalance (imbalanced
ratio, 10.5). Therefore, the equal random-stratified sampling
method was used to construct a balanced training set that
included 2820 patients (imbalanced ratio, 1.0). The baseline
characteristics of the included variables in the different
datasets are shown in Table 1. The mean age of the overall
population was 50.84 ± 11.09 years, and the mean weight was
60.16 ± 10.77 kg. Warfarin was primarily used for the treat-
ment of rheumatic heart disease (83.95%), with a mean main-
tenance dose of 2.65 ± 0.66 mg/d. The baseline characteristics
were similar between the patients in the imbalanced training
set and those in the balanced training set (P > 0.05 for each
variable). The characteristics of the patients in the external
validation set were significantly different from those of the
patients in the other datasets (internal validation set, imbal-
anced training set, and imbalanced training set; P < 0.05 for
weight, albumin level, creatinine level, usage of the first dose,
dosage of the first dose, and warfarin maintenance dose),
which satisfied the requirement for the external validation set.

ANFIS Model Construction

On the basis of the eight variables as the input layer and the
warfarin maintenance dose as the output layer, the imbalanced
and the balanced training sets were used to train the original
ANFIS model, respectively. After self-adjustment of the mod-
el with default settings, an imbalanced model with two fuzzy
rules and a balanced model with four fuzzy rules were

Fig. 3 The flow diagram of
selection of patients
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constructed (Fig. S1). Meanwhile, the individual variable’s
membership functions and the warfarin maintenance dose
are shown in Fig. S2.

The Overall Prediction Ability of Models

As shown in Table 2, the predictive warfarin doses were close
to the actual doses, with a lowmean difference (< 0.3 mg/d for
eachmodel). The overall prediction abilities of the imbalanced
model and the balancedmodel are summarized in Table 3. For
internal validation, the overall prediction accuracy of the bal-
anced ANFIS model was 75.31%, and that of the imbalanced
ANFIS model was 78.16%. The difference in the overall pre-
diction accuracy between the two models was not statistically
significant (P = 0.064). The MAE of the balanced model and

the imbalanced model was 0.421 and 0.368, respectively. The
MSE of the balanced model was 0.433, and that of the imbal-
anced model was 0.388. For external validation, the overall
prediction accuracy of the balanced ANFIS model and the
imbalanced model was 73.46% and 74.39%, respectively,
with no significant difference (P = 0.562). The MAE of the
balanced model was 0.422, and that of the imbalanced model
was 0.370. The MSE of the balanced model was 0.413, and
that of the imbalanced model was 0.386.

The Prediction Ability of the Two Models in Different
Warfarin Dose Groups

The prediction difference of models across warfarin doses
(low-dose, < 1.875 mg/d; medium-dose, 1.875–3.125 mg/d;

Table 1 Baseline characteristics and differences among groups

Characteristics
n (%)/mean ± SD

Total patients
(n = 15108)

Imbalanced training
set (n = 12086)

Balanced training
set (n = 2820)

Internal validation
set (n = 1511)

External validation
set (n = 1511)

Age 50.84 ± 11.09 50.80 ± 11.12 50.64 ± 11.32 50.80 ± 11.01 51.13 ± 10.96

Weight 60.16 ± 10.77 60.11 ± 10.83 60.72 ± 11.39 59.86 ± 10.52 60.78 ± 10.51 a, b, c

Diseases

Rheumatic valvular heart disease 12683 (83.95%) 10127 (83.79%) 2278 (80.78%) 1255 (83.06%) 1301 (86.10%)

Degenerative aortic valve disease 895 (5.92%) 770 (6.37%) 231 (8.19%) 89 (5.89%) 36 (2.38%)

Congenital heart disease 561 (3.71%) 432 (3.57%) 107 (3.79%) 64(4.24%) 65 (4.38%)

Mitral valve degeneration 500 (3.31%) 413 (3.41%) 100 (3.55%) 57 (3.77%) 30 (1.99%)

Infective endocarditis 210 (1.39%) 164 (1.36%) 49 (1.74%) 18 (1.19%) 28 (1.85%)

Autoimmune diseases involve valvular diseases 116 (0.77%) 82 (0.68%) 22 (0.78%) 15 (0.99%) 19 (1.26%)

Secondary valvular heart disease 102 (0.68%) 65 (0.54%) 19 (0.67%) 11 (0.73%) 26 (1.72%)

Ischemic heart disease 12 (0.08%) 9 (0.08%) 5 (0.18%) 1 (0.07%) 2 (0.13%)

Hypertrophic cardiomyopathy 10 (0.07%) 6 (0.05%) 1 (0.04%) 1 (0.07%) 3 (0.20%)

Traumatic valvular heart disease 8 (0.05%) 8 (0.07%) 3 (0.11%) 0 (0.00%) 0 (0.00%)

Degeneration of cardiac conduction system 7 (0.05%) 7 (0.06%) 3 (0.11%) 0 (0.00%) 0 (0.00%)

Dilated cardiomyopathy 4 (0.03%) 3 (0.02%) 2 (0.07%) 0 (0.00%) 1 (0.07%)

Iatrogenic valvular heart disease 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Tricuspid valve disease

No 7003 (46.35%) 5674 (46.95%) 1201 (42.59%) 725 (47.98%) 604 (39.97%)

Stenosis 168 (1.11%) 131 (1.08%) 42 (1.49%) 19 (1.26%) 18 (1.19%)

Incomplete closure 7804 (51.65%) 6172 (51.07%) 1550 (54.96%) 755 (49.97%) 877 (58.04%)

Stenosis with incomplete closure 133 (0.88%) 109 (0.90%) 27 (0.96%) 12 (0.79%) 12 (0.79%)

Albumin 41.42 ± 4.75 41.43 ± 4.78 41.32 ± 4 .81 41.49 ± 4.72 41.28 ± 4.49 a, b, c

Creatinine 78.21 ± 21.05 77.66 ± 20.67 78.94 ± 21.83 78.27 ± 21.00 82.53 ± 23.53 a, b, c

Usage of the first dose 13392 (88.64%) 10593 (89.88%) 2355 (83.51%) 1338 (88.55%) 1461 (96.69%) a, b, c

Dosage of the first dose 2.84 ± 0.65 2.87 ± 0.66 2.93 ± 0.82 2.85 ± 0.65 2.57 ± 0.52 a, b, c

Warfarin maintenance dose 2.65 ± 0.66 2.68 ± 0.65 2.75 ± 1.19 2.67 ± 0.67 2.44 ± 0.66 a, b, c

Low-dose (≤ 1.875 mg/d) 1.48 ± 0.37 1.49 ± 0.37 1.48 ± 0.36 1.43 ± 0.44 1.48 ± 0.36

Medium-dose (> 1.875 mg/d; < 3.125 mg/d) 2.69 ± 0.27 2.70 ± 0.27 2.70 ± 0.27 2.70 ± 0.27 2.59 ± 0.23

High-dose (≥ 3.125 mg/d) 4.06 ± 0.86 4.06 ± 0.86 4.06 ± 0.86 4.06 ± 0.79 4.12 ± 0.93

a , significant difference between external validation set and overall set (P<0.05); b , significant difference between external validation set and imbalanced
training set (P<0.05); c , significant difference between external validation set and internal validation set (P<0.05).
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high-dose, > 3.125 mg/d) is outlined in Fig. 4 and Table S3.
As for internal validation, although the balanced model
lowered the prediction accuracy by 6.21% compared with
the imbalanced model in the medium-dose group (P <
0.001), it inversely significantly increased the prediction ac-
curacy in the low- and high-dose groups (P < 0.001 and P =
0.047, respectively). Similar results were found in the external
validation set, which strengthened the conclusion that the bal-
anced ANFISmodel could improve the prediction effect in the
low- and high-dose groups.

Discussion

Major Findings

In this study, we simultaneously constructed two ANFIS
models, namely, the imbalancedmodel and the balancedmod-
el, to predict the warfarin maintenance dose, based on a retro-
spective multicenter database involving 35 centers and 15,108
patients after HVR. Themajor findings were as follows: (I) the
imbalanced ANFIS model, based on a training set of 12,086
cases, could accurately predict the warfarin maintenance dose
for Chinese patients undergoing HVR, with an ideal predic-
tion percentage of 74.39–78.16%,MAE of 0.37mg/daily, and

MSE of 0.39 mg/daily; (II) the balanced ANFIS model that
used equal random-stratified sampling and was based on a
training set of 2820 cases also achieved an accurate prediction
property of warfarin maintenance dose (ideal prediction per-
centage, 73.46–75.31%;MAE, 0.42mg/daily; MSE, 0.43mg/
daily); (III) compared to the imbalanced model, the balanced
model had a significantly higher prediction accuracy in the
low-dose warfarin group (internal validation, 14.46% vs.
3.01%; P < 0.001) and the high-dose warfarin group
(34.71% vs. 23.14%; P = 0.047); (IV) the results of external
validation were in line with the results of internal validation,
thus strengthening the conclusion that the ANFISmodel could
improve the model prediction effect.

Comparison with Previous Models

Table S4 summarizes the current warfarin prediction models. In
2004, Gage et al. firstly created a warfarin dosage prediction
model based on 369 patients [20]. This study explored eight
variables (age, sex, body surface area [BSA], race, amiodarone,
simvastatin use, INR, CYP2C19) using an MLR model and
achieved a 39% predictive ability to explain the variance of the
warfarin maintenance dose. Of note, the CYP2C9*2 and
CYP2C9*3 alleles contributed to a dominatingweight in the said
model. Since then, six further studies have been conducted in

Table 2 Comparison of predicted
dose and actual dose of warfarin Models Actual dose (mg/daily) Predictive dose (mg/daily) MD (mg/d)

Imbalanced model (IV) 2.61 ± 0.93 2.59 ± 0.23 0.14

Imbalanced model (EV) 2.39 ± 0.88 2.56 ± 0.22 0.27

Balanced model (IV) 2.68 ± 0.67 2.74 ± 0.41 −0.11
Balanced model (EV) 2.44 ± 0.66 2.58 ± 0.39 −0.14

MD, mean difference; IV, internal validation; EV, external validation

Table 3 Comparison of overall
prediction accuracy of models Outcomes Imbalanced model Balanced model P value

Internal validation

Ideal prediction percentage 1181 (78.16%) 1138 (75.31%) 0.064

Underestimation prediction percentage 110 (7.28%) 121 (8.01%) 0.451

Overestimation prediction percentage 220 (14.56%) 252 (16.68%) 0.109

MAE (mg/daily) 0.368302 0.421399 -

MSE (mg/daily) 0.388446 0.433394 -

External validation

Ideal prediction percentage 1124 (74.39%) 1110 (73.46%) 0.562

Underestimation prediction percentage 71 (4.70%) 105 (6.95%) 0.008

Overestimation prediction percentage 316 (20.91%) 296 (19.59%) 0.365

MAE (mg/daily) 0.370215 0.421528 -

MSE (mg/daily) 0.385928 0.412730 -

MAE, mean absolute error; MSE, mean square error
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order to gain a higher predictive accuracy of the model in a
Caucasian population [2, 3, 21–24]. Although these studies
achieved considerable predictive abilities (R2, 47–73%) through
involving certain pharmacogenomic information (e.g.,
CYP2C19, VKORC1, GGCX), they had two main limitations:
the small sample sizes (< 350 patients), which limited the repre-
sentation of the population; and a lack of external validation,
which limited the extrapolation of models to large patient popu-
lations in real-world practice. In 2008, Gage et al. developed
another pharmacogenetic algorithm based on 1015 patients and
nine predictors (age, BSA, smoking, race, amiodarone use, cur-
rent thrombosis, CYP2C9,VKORC1, target INR) [7]; thismodel
could explain 53–54% of the variability in the warfarin dose in
the derivation and validation cohorts. Furthermore, a nonprofit
website was developed to facilitate the use of this pharmacoge-
netic and clinical equation (www.WarfarinDosing.org). The
following year, the IWPC created a novel pharmacogenetic
algorithm that included 4043 patients from 21 various research
groups in nine countries and eight factors (age, weight, height,
race, amiodarone status, enzyme inducers, CYP2C9, and
VKORC1) [6]. This model could explain 43–47% of the
variability in the derivation and validation populations and
provided accurate dose estimates, as evidenced by a low MAE
(8.3 mg/week). In addition, the differences in the performance of

themodel in the low-dose (≤ 21mg/week), medium-dose (21–49
mg/per week), and high-dose (≥ 49 mg/week) groups were eval-
uated. Although the Gage and IWPCmodels have addressed the
above limitations, it may not be appropriate to directly extrapo-
late these results for a Chinese population due to the variation in
warfarin sensitivity across ethnic groups (weight, dietary habit,
drug interaction, genotype, adherence, etc.). All of these inherent
issues have fueled the development of warfarin prediction
models for the Chinese population. However, the current
Chinese medical insurance coverage only covers genetic testing
for warfarin dosage prediction for patients with a high risk of
bleeding or labile INR values, which is a barrier to its utilization.
Considering the latter limitation, the current models conducted
for a Chinese population have included small sample sizes com-
bining both clinical and pharmacogenomic variables, which lim-
ited the generalizability of models [25–31]. Therefore, develop-
ing the optimal prediction model for warfarin dose based on
explicable clinical variables is challenging.

The MLR method presents certain irreconcilable issues such
as poor behavior of the non-linear relationship between variables;
thus, theMLR is unlikely to be an optimal method for predicting
the warfarin dose [32]. Recently, several artificial intelligence
modeling technologies, including support vector machines and
a general regression neural network, have been used for warfarin

Fig. 4 The prediction difference
of models across warfarin dose in
(a) internal and (b) external
validation sets. Prediction
accuracy (ideal prediction
percentage) was compared
between imbalanced model and
balanced model, with P value
< 0.05 considering significant
difference
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dosage predication [33, 34]; however, these models showed a
relatively low predictive ability (< 50% of the ideal predicted
percentage). Our study team has made numerous attempts in
warfarin model development and achieved a 63% predictive ac-
curacy based on BPGA and ANFIS models [10, 12, 35]. This
study further included 15,108 patients who underwent HVR
from 35 centers and used balanced training set preprocessing
with the equal random-stratified sampling method. Compared
with the results of the IWPC model, both the imbalanced and
the balanced ANFIS models had better performance in terms of
ideal prediction percentage (73.46–74.39% forANFIS vs. 45.5%
for IWPC) and MAE (2.59–2.95 mg/week for ANFIS vs. 8.5
mg/week for IWPC) in external validation cohorts. Hence, the
ANFIS method based on big data is a feasible and optimal
modeling technology to improve the prediction ability for esti-
mating the warfarin maintenance dose.

Reasons for Improved Prediction Property in Low-
and High-Dose Groups

Patients receiving low or high warfarin doses are more vul-
nerable to thromboembolic and bleeding events due to diffi-
culty with INR control. To date, no study has been specifically
designed to address this concern. Our previous studies found
an extremely low prediction accuracy in the low-dose group
(0.0% byBPNN [13] and 9.1% byANFIS [10]) and high-dose
group (0.0% by BPGA [12]). Considering the distribution of
patients across different doses in the training set, the propor-
tion in the medium-dose group was higher than that in the
low- and high-dose groups (low-dose, 10.41%; medium-dose,
81.81%; high-dose, 7.78%). This explains why our previous
models showed better performance in the medium-dose group
but poor performance in the low-dose group. It is known as
the CIL problem. In brief, because the sample size of one class
is considerably larger than that of the other classes, the ma-
chine learning models detect more characteristics of the peo-
ple in the bigger class than those of the people in the smaller
class; this leads to insufficient data learning of smaller-scale
categories, resulting in an unsatisfactory prediction effect of
the model in a smaller class [36]. We used the equal random-
stratified sampling method to address this problem, which can
balance the number of patients in each group through random
sampling [37]. Using the balanced training set, the model
results indicated an increased prediction accuracy compared
to the imbalanced model (low-dose, 14.46–24.34% vs. 3.01–
3.62%; high-dose, 29.58–34.71% vs. 21.12–23.14%).

Clinical Relevance

When lacking genetic information in a clinical setting, this
ANFIS method could provide high accurate warfarin dose
estimates on the basis of clinical variables (including age,
disease, weight, tricuspid valve disease, albumin level,

creatinine level, usage of the first dose, and dosage of the first
dose). This could aid physicians and pharmacists in the selec-
tion of patients who will likely be suited to low or high doses
of warfarin, thus allowing earlier and more aggressive inter-
vention to control INR.

Strengths and Limitations

The main strengths of this study were as follows: first, this
study used a large sample of 15,108 Chinese patients from 35
centers who received warfarin after HVR to develop and val-
idate the models; second, we applied the equal random-
stratified sampling method to address the CIL problem that
resulted in the low predicted ability in the low- and high-dose
groups; and third, we validated the models using both internal
and external validation cohorts. However, this study also had
some limitations. First, this was a retrospective study that may
have a certain selection bias. Second, some of the possible
determinants of warfarin dose, such as diet information and
patient genotypes (CYP2C9 and VKORC1), are not available
in our study, which may limit the performance of the models.
Third, clinical adverse events related to warfarin use were not
examined in this study. Given the above limitations, further
prospective studies with more potential predictors need to be
carried out to further improve the model performance using
machine learning techniques.

Conclusions

This study constructed two ANFIS models to predict the war-
farin maintenance dose based on 15,108 patients who
underwent HVR from 35 centers. The results showed that
both imbalanced and balanced models could accurately pre-
dict warfarin maintenance dose (ideal prediction percentage >
70%). Besides, the balanced model contributed to improved
prediction ability in the low- and high-dose warfarin groups.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s10557-021-07191-1.

Author Contributions Chen is the guarantor of the entire manuscript. Gu
and Huang contributed to the study conception and design, critical revi-
sion of the manuscript for important intellectual content, and final approv-
al of the published version. Li, Zhou, Wang, and Fu contributed to data
acquisition, analysis, and interpretation.

Funding This study was supported by the National Natural Science
Foundation of China (71974137 and 81641021), research funds of
Shanghai Health and Family Planning commission (20184Y0022), culti-
vation fund of clinical research of Renji Hospital (PY2018-III-06),
Clinical Pharmacy Innovation Research Institute of Shanghai Jiao Tong
University School of Medicine (CXYJY2019ZD001), and Shanghai
“Rising Stars of Medical Talent” Youth Development Program —

887Cardiovasc Drugs Ther (2022) 36:879–889

https://doi.org/10.1007/s10557-021-07191-1


Youth Medical Talents — Clinical Pharmacist Program (SHWJRS
(2019)_072).

Data Availability All data can be obtained by contacting the correspond-
ing author.

Declarations

Ethical Statement This study was registered in the Chinese Clinical
Trial Register platform (trial number, ChiCTR-OCH-10001185). The
study protocol was approved by the Ethics Committee of West China
Hospital of Sichuan University (ChiECRCT-201792). All participants
signed written informed consent.

Conflicts of Interest The authors declare no competing interests.

References

1. Kirley K, Qato DM, Kornfield R, Stafford RS, Alexander GC.
National trends in oral anticoagulant use in the United States,
2007 to 2011. Circulation-Cardiov Qual Outcomes. 2012;5(5):
615–21.

2. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S,
Nicholas ZP, et al. Randomized trial of genotype-guided versus
standard warfarin dosing in patients initiating oral anticoagulation.
Circulation. 2007;116(22):2563–70.

3. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King
BP, et al. The impact of CYP2C9 and VKORC1 genetic polymor-
phism and patient characteristics upon warfarin dose requirements:
proposal for a new dosing regimen. Blood. 2005;106(7):2329–33.

4. Jorgensen AL, Pirmohamed M. Risk modeling strategies for phar-
macogenetic studies. Pharmacogenomics. 2011;12(3):397–410.

5. Yan H, Yin J-Y, Zhang W, Li X. Possible strategies to make war-
farin dosing algorithm prediction more accurately in patients with
extreme dose. Clin Pharmacol Therap. 2018;103(2):184.

6. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee
MTM, et al. Estimation of the warfarin dose with clinical and phar-
macogenetic data (vol 360, pg 753, 2009). N Engl J Med.
2009;361(16):1613.

7. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM,
et al. Use of pharmacogenetic and clinical factors to predict the
therapeutic dose of warfarin. Clinical Pharmacol Therap.
2008;84(3):326–31.

8. Anderson JL, Horne BD, Stevens SM, Woller SC, Samuelson KM,
Mansfield JW, et al. A randomized and clinical effectiveness trial
comparing two pharmacogenetic algorithms and standard care for
individualizing warfarin dosing (CoumaGen-II). Circulation.
2012;125(16):1997.

9. Li X, Liu R, Luo Z-Y, Yan H, Huang W-H, Yin J-Y, et al.
Comparison of the predictive abilities of pharmacogenetics-based
warfarin dosing algorithms using seven mathematical models in
Chinese patients. Pharmacogenomics. 2015;16(6):583–90.

10. Tao H, Li Q, Zhou Q, Chen J, Fu B, Wang J, et al. A prediction
study of warfarin individual stable dose after mechanical heart
valve replacement: adaptive neural-fuzzy inference system predic-
tion. BMC Surg. 2018;18:10.

11. Zhou Q, Kwong J, Chen J, Qin W, Chen J, Dong L, et al. Use of
artificial neural network to predict warfarin individualized dosage
regime in Chinese patients receiving low-intensity anticoagulation
after heart valve replacement. Int J Cardiol. 2014;176(3):1462–4.

12. Li Q, Tao H, Wang J, Zhou Q, Chen J, Qin WZ, et al. Warfarin
maintenance dose prediction for patients undergoing heart valve

replacement-a hybrid model with genetic algorithm and back-
propagation neural network. Sci Rep. 2018;8:9712.

13. Li Q, Wang J, Tao H, Zhou Q, Chen J, Fu B, et al. The prediction
model of warfarin individual maintenance dose for patients under-
going heart valve replacement, based on the back propagation neu-
ral network. Clin Drug Investig. 2020;40(1):41–53.

14. Groszek B, Piszczek P. Vitamin K antagonists overdose. Przegl
Lek. 2015;72(9):468–71.

15. Heffler E, Campisi R, Ferri S, Crimi N. A bloody mess: an unusual
case of diffuse alveolar hemorrhage because of warfarin overdose.
Am J Ther. 2016;23(5):E1280–E3.

16. Levine M, Pizon AF, Padilla-Jones A, Ruha A-M. Warfarin over-
dose: a 25-year experience. J Med Toxicol. 2014;10(2):156–64.

17. Wang SV, Franklin JM, Glynn RJ, Schneeweiss S, Eddings W,
Gagne JJ. Prediction of rates of thromboembolic and major bleed-
ing outcomes with dabigatran or warfarin among patients with atrial
fibrillation: new initiator cohort study. Bmj-British Med J.
2016;353. https://doi.org/10.1136/bmj.i2607.

18. Zhang Y, Liu B, Cai J, Zhang S. Ensemble weighted extreme learn-
ing machine for imbalanced data classification based on differential
evolution. Neural Comput Applic. 2017;28:S259–67.

19. Jang JR, Sun CT. Functional equivalence between radial basis func-
tion networks and fuzzy inference systems. IEEE Trans Neural
Netw. 1993;4(1):156–9.

20. Gage BF, Eby C,Milligan PE, Banet GA, Duncan JR,McLeod HL.
Use of pharmacogenetics and clinical factors to predict the mainte-
nance dose of warfarin. Thromb Haemost. 2004;91(1):87–94.

21. Aquilante CL, Langaee TY, Lopez LM, Yarandi HN, Tromberg JS,
Mohuczy D, et al. Influence of coagulation factor, vitamin K epox-
ide reductase complex subunit 1, and cytochrome P4502C9 gene
polymorphisms on warfarin dose requirements. Clinical Pharmacol
Therap. 2006;79(4):291–302.

22. Herman D, Peternel P, Stegnar M, Breskvar K, Dolzan V. The
influence of sequence variations in factor VII, gamma-glutamyl
carboxylase and vitamin K epoxide reductase complex genes on
warfarin dose requirement. Thromb Haemost. 2006;95(5):782–7.

23. Wadelius M, Chen LY, Eriksson N, Bumpstead S, Ghori J,
Wadelius C, et al. Association of warfarin dose with genes involved
in its action and metabolism. Hum Genet. 2007;121(1):23–34.

24. Zhu Y, Shennan M, Reynolds KK, Johnson NA, Herrnberger MR,
Valdes R Jr, et al. Estimation of warfarin maintenance dose based
on VKORCI (-1639 G > A) and CYP2C9 genotypes. Clin Chem.
2007;53(7):1199–205.

25. Miao L, Yang J, Huang C, Shen Z. Contribution of age, body
weight, and CYP2C9 and VKORC1 genotype to the anticoagulant
response to warfarin: proposal for a new dosing regimen in Chinese
patients. Eur J Clin Pharmacol. 2007;63(12):1135–41.

26. Wen MS, Lee MTM, Chen JJ, Chuang HP, Lu LS, Chen CH, et al.
Prospective study of warfarin dosage requirements based on
CYP2C9 and VKORC1 genotypes. Clinical Pharmacol Therap.
2008;84(1):83–9.

27. Huang S-W, Chen H-S, Wang X-Q, Huang L, Xu D-L, Hu X-J,
et al. Validation of VKORC1 and CYP2C9 genotypes on interin-
dividual warfarin maintenance dose: a prospective study in Chinese
patients. Pharmacogenet Genomics. 2009;19(3):226–34.

28. Cen H-J, Zeng W-T, Leng X-Y, Huang M, Chen X, Li J-L, et al.
CYP4F2 rs2108622: a minor significant genetic factor of warfarin
dose in Han Chinese patients with mechanical heart valve replace-
ment. Br J Clin Pharmacol. 2010;70(2):234–40.

29. You JHS, Wong RSM, Waye MMY, Mu Y, Lim CK. Choi K-c
et al. Warfarin dosing algorithm using clinical, demographic and
pharmacogenetic data from Chinese patients. J Thromb
Thrombolysis. 2011;31(1):113–8.

30. WeiM, Ye F, Xie D, ZhuY, Zhu J, Tao Y, et al. A new algorithm to
predict warfarin dose from polymorphisms of CYP4F2, CYP2C9
and VKORC1 and clinical variables: derivation in Han Chinese

888 Cardiovasc Drugs Ther (2022) 36:879–889

https://doi.org/10.1136/bmj.i2607


patients with non valvular atrial fibrillation. Thromb Haemost.
2012;107(6):1083–91.

31. Lou Y, Liu H, Han L, Xie S, Huang YL, Li YS. The study of
warfarin maintenance dose algorithm in Chinese Han population.
Int J Cardiol. 2013;163:S9.

32. Liu R, Li X, Zhang W, Zhou HH. Comparison of nine statistical
model based warfarin pharmacogenetic dosing algorithms using the
racially diverse international warfarin pharmacogenetic consortium
cohort database. PLoS One. 2015;10(8):e0135784.

33. Tao Y, Chen YJ, Fu X, Jiang B, Zhang Y. Evolutionary ensemble
learning algorithm to modeling of warfarin dose prediction for
Chinese. IEEE J Biomed Health Inform. 2019;23(1):395–406.

34. Tao Y, Chen YJ, Xue L, Xie C, Jiang B, Zhang Y. An ensemble
model with clustering assumption for warfarin dose prediction in

Chinese patients. IEEE J Biomed Health Inform. 2019;23(6):2642–
54.

35. Li S, Garcia DA, Khorana AA, Carrier M, Lyman GH, Kalmanti L,
et al. Treatment of vascular thrombosis in antiphospholipid syn-
drome: an update. Cancer. 2020;40(1):31–7.

36. He H, Garcia EA. Learning from imbalanced data. IEEE Trans
Knowl Data Eng. 2009;21(9):1263–84.

37. Hirzel A, Guisan A. Which is the optimal sampling strategy for
habitat suitability modelling. Ecol Model. 2002;157(2-3):331–41.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

889Cardiovasc Drugs Ther (2022) 36:879–889


	An...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Methods
	Study Population
	Input and Output Variables
	Group Setting
	Adaptive Neural-Fuzzy Inference System (ANFIS) Model
	The Prediction Ability of the Model
	Statistical Analyses

	Results
	Data Acquisition and Variable Inclusion
	Datasets and Population Characteristics
	ANFIS Model Construction
	The Overall Prediction Ability of Models
	The Prediction Ability of the Two Models in Different Warfarin Dose Groups

	Discussion
	Major Findings
	Comparison with Previous Models
	Reasons for Improved Prediction Property in Low- and High-Dose Groups
	Clinical Relevance
	Strengths and Limitations

	Conclusions
	References


