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Abstract Epidemiological and clinical studies have identi-
fied many physiological traits and biomarkers that are statis-
tically associated with coronary artery disease (CAD). For
some of these traits and biomarkers it is well established that
they represent true causal risk factors for CAD. For other
biomarkers, however, the distinct character of association is
still a matter of debate. Randomized controlled trials (RCT)
had a pivotal role in establishing causal associations between
risk factors and biomarkers and CAD in some settings by
demonstrating that therapeutic intervention targeting risk
factors/biomarkers also affect the risk for clinical outcomes,
such as CAD. In other scenarios, however, RCTs did not dem-
onstrate clear benefits associated with lowering biomarker
levels and therefore suggest that the association between these
biomarkers (like C reactive protein) and CAD was driven by
confounding or reverse causation. Even accurately conducted
RCTs are not immune against incorrect causal inference.
Moreover, the extensive costs and efforts required to conduct
RCTs asked for alternative study designs to elucidate potential
causal associations. Mendelian Randomization studies repre-
sent one such alternative by using genetic variants as proxies
for specific biomarkers to investigate potential causal relations
between biomarkers and clinical outcomes. In this review, we

briefly describe the principles of MR studies and summarize
recent MR studies in the context of CAD.
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Introduction

Epidemiological and clinical studies have identified many
physiological traits and biomarkers that are statistically asso-
ciated with coronary artery disease (CAD). For some of these
traits and biomarkers it is well established that they represent
true causal risk factors for CAD. For other biomarkers, how-
ever, the distinct character of association is still a matter of
debate [1, 2]. Randomized controlled trials (RCT) had a piv-
otal role in establishing causal associations between risk fac-
tors and biomarkers and CAD in some settings by demonstrat-
ing that therapeutic intervention targeting risk factors/
biomarkers also affect the risk for clinical outcomes, such as
CAD [3]. In other scenarios, however, RCTs did not demon-
strate clear benefits associated with lowering biomarker levels
and therefore suggest that the association between these bio-
markers (like C reactive protein) and CAD was driven by
confounding or reverse causation [4, 5].

Even accurately conducted RCTs are not immune against
incorrect causal inference.

Moreover, the extensive costs and efforts required to con-
duct RCTs asked for alternative study designs to elucidate
potential causal associations. Mendelian Randomization stud-
ies represent one such alternative by using genetic variants as
proxies for specific biomarkers to investigate potential causal
relations between biomarkers and clinical outcomes [6]. In
this review, we briefly describe the principles of MR studies
and summarize recent MR studies in the context of CAD.

* Henning Jansen
henning.jansen@gmx.de

1 Deutsches HerzzentrumMünchen, Technische Universität München,
Lazarettstr. 36, 80636 München, Germany

2 DZHK (German Centre for Cardiovascular Research), Partner Site
Munich Heart Alliance, Technische Universität München,
Lazarettstr. 36, 80636 München, Germany

3 Institut für Epidemiologie, Christian-Albrechts Universität zu Kiel,
Kiel, Germany

Cardiovasc Drugs Ther (2016) 30:41–49
DOI 10.1007/s10557-016-6640-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s10557-016-6640-y&domain=pdf


Principles of Mendelian Randomisation Studies

The aim of MR studies is to assess whether the associations
between a biomarker (exposure) and a disease phenotype (out-
come, e.g. CAD) are causal. One key feature of MR studies is
that a genetic variant is used as a proxy for the biomarker of
interest (Fig. 1). The ideal scenario is that the genetic variant
causally effects the biomarker level. Due to the fact that the
alleles of a genetic variant are distributed randomly at meiosis
(Mendel’s second law of independent assortment), individuals
are then Brandomized^ by nature to higher or lower biomarker
levels. In this regard, MR studies and RCTs share an essential
feature as individuals are being randomized in both scenarios
– either by nature or by a standardised study protocol to either
lower or higher levels of a biomarker. It is unlikely that the
random distribution of alleles is influenced by other factors
that could also affect the outcome, making MR studies, there-
fore, not susceptible to confounding, i.e. indirect modulation
by factors associated with the biomarker and the outcome.
Hence, both groups represented by the respective genotypes
are comparable except for the biomarker which is influenced
by the genetic variant [7]. A further relevant assumption for
MR studies is the absence of pleiotropic effects. That means
that the genetic variant affects the outcome only via the
biomarker of interest. It is essential that the chosen SNP
does not have any other significant effects on interme-
diate disease traits or biomarkers, which might also influ-
ence the outcome measure [8].

Such pleiotropic effects could lead to wrong conclusions in
many ways. First, an observed effect might be driven by an-
other biomarker, which was not subject of the conducted MR
analysis but is also associated significantly with the
studied SNP and the outcome. Second, another biomarker
(correlated with SNP and outcome)might abolish true positive
associations between a first biomarker and the outcome by
counteracting its effect. A true causal association between
biomarker 1 and the outcome could then be easily missed [7].

In the past decade, genome-wide association studies have
identified numerous single nucleotide polymorphisms (SNPs)
that display robust associations with cardiovascular bio-
markers or disease traits, including diabetes, LDL or HDL

cholesterol, triglycerides or various circulating proteins (e.g.
C-reactive protein) [9, 10] as well as cardiovascular endpoints
such as CAD, stroke or heart failure. The identification of
genetic information associated with biomarker levels and the
exploration how these variants associated with CAD is an
important requirement for MR studies.

Cardiovascular Biomarkers and Disease Traits
Tested in MR Studies

Fostered by enormous progress in cardiovascular genetics,
MR studies have been conducted for more than ten years
making important scientific contributions. Some of these con-
tributions encouraged further drug developments like PCSK9
inhibitors [11, 12], but also reinforced disappointments from
negative pharmacological trials on –for example- few CETP
inhibitors [5, 13].

A systematic search in PubMed (using the terms
BMendelian randomization^ and Bcoronary heart disease^)
confirmed a recent rapid increase in the number of MR stud-
ies. Since our last review onMR studies for CAD in 2014 [7],
the number of hits using the above search terms almost
doubled up to 215. It is far beyond the scope of a
single review to present all biomarkers and cardiovascular
disease traits tested in MR settings in more detail. Therefore,
we name several examples in Table 1 and focus on recent
important discoveries.

Height

Many epidemiological studies observed an association be-
tween shorter adult height and the risk for CAD [14]. A
meta-analysis reported that a decrease of 1 SD (approximately
6.5 cm) goes along with a relative risk increase of 8 % for
CAD [15, 16]. Even after adjustment for known cardiovascu-
lar risk factors (e.g. hypertension, dyslipidemia, smoking
habits, diabetes), which are also associated with shorter
height, the effect remained. Hence, the distinct mechanisms
linking height to CAD and whether this relation is causal
remains unclear. A genomewide association study (GWAS)

Fig. 1 Basic principles of MR. A genetic variant has be to substantially
associated with the biomaker of interest. It is independent of any
confounders (measured or unmeasured). Moreover, the association between
a SNP and the disease outcome has to bemediated only through the biomaker

of interest. Fufilling these requirements, the association between a biomaker
and disease outcome can be assumed to be causal. Adapted from Dovey
Smith G and Hemani G: Mendelian randomisation: genetic anchors for
causal inference in epidemiological studies, Hum Mol Genet., 2014
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identified 180 genetic variants associated with height [17],
which were tested for their association with CAD in the
CARDIoGRAM and C4D-consortia involving more than 65,
000 cases and 128,000 controls [16]. This analysis revealed
that a 1-SD decrease of genetically determined height in-
creases the risk of CAD by 13.5 % (95 % CI 5.4-22.1,
p < 0.001). Some of these genetic variants also increase cir-
culating levels of LDL-cholesterol and triglycerides.
However, Nelson et al. estimated that less than one third of
the observed association between height and CAD is driven

by these established risk factors. Thus, other biological pro-
cesses, determining height and CAD may explain the ob-
served correlation.

Dysglycaemia and Type 2 Diabetes

Several observational studies reported that diabetes is a risk
factor for CAD. Meta-analyses of clinical trials supported the
strategy that long-term glucose lowering reduces adverse car-
diovascular outcomes [18]. However, recent trials failed to

Table 1 Biomarkers, traits and
diseases tested in MR studies for
CAD are listed

Trait Effect on CAD Reference

25-hydroxyvitamin D - Brøndum-J. et al. [30]

Adiponectin +/− Dastani et al. [60]

Alcohol + Holmes et al. [61]

APOC3 + Crosby et al. [28]

Bile acid sequestrants + Ross et al. [62]

Bilirubin - Stender et al. [63]

Blood pressure + Lieb et al. [64]

Brain-Derived Neurotrophic Factor + Kaess et al. [43]

C-reactive protein - Wensley et al. [65]

Celiac disease - Jansen et al. [48]

Chronic kidney disease - Olden et al. [52]

Cystatin C - Svensson-Färbom et al. [53]

Fetuin-A +/− Laugsand et al. [66]

Fibrinogen - Sabater-Lleal et al. [1]

HDL cholesterol - Voight et al. [57]

Height + Nelson et al. [16]

Homocysteine - Van Meurs et al. [67]

IFN-I production - Nelson et al. [51]

IL-6 + Sarwar et al. [2]

LDL cholesterol + Voight et al. [57]

Lp-PLA2 - Casas et al. [68]

LP(a) + Kamstrup et al. [69]

Milk intake - Bergholdt et al. [41]

Niemann-Pick C1-like 1 + Stitziel et al. [25]

Non fasting glucose + Benn et al. [70]

Obesity + Nordestgaard et al. [71]

Paraoxonase - Tang et al. [72]

Pentraxin 3 - Barbati et al. [73]

Telomere length + Codd et al. [74]

Triglycerides + Do et al. [27]

Type 2 Diabetes + Ross, Jansen, Ahmad [21, 22, 75]

Type II secretory phospholipase A2 - Holmes et al. [76]

Uric acid - Palmer et al. [77]

Vitamin C +/− Kobylecki et al. [38]

,,+B denotes a causal association with CAD. „-B indicates no causal association between the biomarker and CAD
and „+/−B tags biomarkers showing no clear results in MR studies / needing further investigation
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reduce cardiovascular events by lowering blood glucose
levels, thereby challenging the concept of a causal interference
between diabetes and large vessel disease, such as CAD [19,
20]. Therefore, Ross and colleagues investigated the relation
between dysglycemia and diabetes and CAD using an MR
study [21]. By analysing 59 SNPs associated with type 2 di-
abetes (T2DM), they estimated the causal effect of diabetes on
CAD as an OR of 1.63 (95 % CI 1.23-2.07), which is inline
with individual observational studies and meta-analyses [21].
In a former study diabetes SNPs (n = 44) also proved a sig-
nificant increase in CAD risk (the average increase in CAD
risk per T2DM-SNP was 1.0076, p = 0.02), albeit to a lesser
extent than expected given the SNP effects on T2DM and
observational estimates derived from the Framingham Heart
Study [22]. The different estimates of diabetes being a causal
risk factor for CAD potentially arise from the varying number
of SNPs studied in these two MR settings. Moreover,
Ross and colleagues used the MR technique not only
to assess the CAD risk increase per individual allele
but also calculated the magnitude of diabetes as a true risk
factor for CAD (OR 1.63).

Niemann-Pick C1-Like 1

LDL cholesterol is one of the most important modifiable risk
factors for CAD. In addition to observational evidence and
RCTs on the effect of statins [23], MR studies on PCSK9
provided support for a causal relationship between LDL and
CAD [24]. This convincing evidence from observational data,
RCTs and MR studies fostered promising drug developments
[11, 12].

Beside statins, ezetimibe, which acts through the inhibition
of Niemann-Pick C1-like 1 (NPC1L1), is frequently adminis-
tered to lower LDL-cholesterol. However, the benefit of an
NPC1L1-inhibition in terms of cardiovascular outcomes was
not proven for a long time.

Recently, the NPC1L1 exome was sequenced in more
20,000 individuals from different ethnities and 15 distinct
NPC1L1 inactivating mutations were identified [25].
Heterozygous carriers of these mutations (about 1 in every
650 persons) had on average 12 mg/dl lower LDL cholesterol
levels compared to non-carriers, and a reduced CAD risk.
These findings suggest that a lifelong inhibition of NPC1L1
decreases the risk of CAD. The authors speculated that such
effect could also be achieved by a pharmacological inhibition.
Indeed, IMPROVE-IT investigators recently reported that
ezetimibe, when added to simvastatin, was able to further
decrease the absolute risk difference of the primary endpoint
(cardiovascular death, myocardial infarction, unstable angina,
coronary revascularization or stroke) by 2 % (towards 32.7 %)
over 7 years of treatment. Such results provide evidence that
this agent not only decreases LDL cholesterol but also pre-
vents future cardiovascular events [26].

APOC3

Recently, a large-scale MR-analysis suggested a causal role of
triglycerides in CAD by studying 185 independent genetic
variants associating with lipid traits [27]. Subsequently, the
same group asked to which extent rare mutations contribute
to the variation of triglyceride level and alter the risk of CAD
[28]. The authors made great efforts and sequenced almost 20,
000 genes in 3734 participants to identify such genetic vari-
ants, which were then tested for their association with CAD
(34,002 cases and 76,968 controls). They found a combina-
tion of four loss-of-function mutations within the APOC3
gene associating strongly with triglyceride levels. About 1 in
150 persons carried any of these rare mutations, which were
associated with a 39 % decrease in triglyceride levels com-
pared to non-carriers. Also, HDL cholesterol (22 % increase)
and LDL cholesterol (16 % decrease) were affected by these
variations. Interestingly, heterozygous carriers of any of these
mutations had a 40% lower risk of CAD than noncarriers (OR
0.6, 95 % CI 0.47-0.75, p = 4 × 10−06) [28]. These results
indicate that a loss-of-function of APOC3 contributes to the
risk of CAD, making APOC3 an interesting potential target
for future interventions to reduce the risk of CAD [29].

25-hydroxyvitamin D

Based on three large study samples from the Copenhagen
area, Danish researchers assessed a potential causal associa-
tion between 25-hydroxyvitamin D and CAD [30]. Numerous
observational studies reported that low concentrations of 25-
hydromyvitamin D (p-25(OH)D) were associated with a
greater risk for CAD and myocardial infarction [31, 32]. A
meta-analysis of 18 observational prospective studies found a
39 % risk increase for CAD when comparing individuals in
the lowest vs. the highest quartile of p-25(OH)D concentra-
tions [33].

RCTs investigating the health benefit of p-25(OH)D did
not sufficiently focus on cardioprotective effects nor studied
solely the effect of p-25(OH)D [33, 34]. Hence, an MR anal-
ysis would be suitable to investigate this association. In total,
four genetic variants which reduce p-25(OH)D concentrations
were tested in an MR setting using the above mentioned
Danish cohorts with the following key results. Individuals in
the lowest vs. the highest quartile of p-25(OH)D concentra-
tions displayed an increased risk of ischemic heart disease
(HR: 1.82 (95 % CI 1.42-2.32). Second, each allele increase
associated with a 1.9 nmol/decrease in p-25(OH)D in an ag-
gregated genetic risk score consisting of such four genetic
variants within the CYP2R1 and DCHR7 loci. Third, the au-
thors found no evidence that the analysed variants associated
with risk for CAD (OR 0.98, 95 % CI 0.76-1.26). In
sum, these data argue against a causal relationship between
p-25(OH)D and CAD.
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Reverse causation or confounding have to be taken into
consideration to explain the positive associations observed in
epidemiological settings. Since p-25(OH)D concentrations
can also mirror socioeconomic factors, malnutrition and an
unhealthy lifestyle, it is conceivable that the association might
be driven by such confounders [33].

Vitamin C

Elevated vitamin C concentrations as a consequence of high
intake of fruits and vegetables are commonly paralleled by
multiple health benefits and reduced all-cause mortality [35].
Moreover, prospective studies reported that vitamin C might
also have beneficial effects on CAD [36]. However, RCTs for
vitamin C supplementation provided inconsistent results so far
[37, 38]. In this regard, the Nordestgaard group conducted a
MR analysis with samples from the general Danish community
[38]. The authors found a strong association between a genetic
variant (rs33972313) within the SLC23A1 gene -encoding for a
sodium-dependent vitamin C transporter- and higher plasma
vitamin C levels (11 % per allele). Comparing groups with
the highest vs. the lowest intake of fruits and vegetables, the
authors observed multivariable adjusted hazard ratios of 0.87
(95 % CI 0.78-0.97, p = 0.01) for CAD. Albeit these facts, the
results obtained from the MR analysis drew an ambiguous
picture: a genetically determined 25 % elevation of plasma
vitamin C produced an OR for CAD of 0.90 with a 95 % CI
including 1.0 (0.75–1.08). Since the OR-range is spanning 1.0,
it makes it difficult to jump to a clear statement about causal
interrelation. Nevertheless, given comparable effect sizes to
those of fruit and vegetable intake, a certain effect of genetically
elevated vitamin C concentrations on CAD seems likely.

Milk Intake

Some preliminary evidence indicates that higher milk intake
goes along with increased blood cholesterol and higher risks
for CAD and myocardial infarction [39], whereas some obser-
vational analyses did not support this concept [40]. RCTs are
difficult to conduct when it comes to food intake because of
the required longterm adherence to randomization [41].
Bergholdt et al. evaluated rs4988235 within the MCM6 locus
(a genetic variant associated with lactase persistence/non-per-
sistence) as a suitable proxy to assess the potential causal
association between milk intake and CAD in an MR study
[41]. Carriers of the TC and TT genotype are known to have
a regular enzyme function while individuals with the CC ge-
notype suffer from difficulties to digest milk products –many
of them develop symptoms of lactose intolerance when con-
tinuing milk consumption [41]. Using datasets from almost
100,000 individuals from the general population, the authors
found 1) an observational hazard ratio for a 1 glass/week of
1.0 (95 % CI 1.00-1.01) for both CAD and MI; 2) a median

milk intake of 3 glasses/week in lactase CC non-persistent
individuals compared with 5 glasses/week in individuals car-
rying the TC and TT genotype (p = 3 × 10−60) and; 3) no
association with CAD nor MI when comparing lactase TC/
TT persistent individuals with lactase CC non-persistent indi-
viduals (OR 1.0, 95 % CI 0.92-1.09 for CAD and OR 0.96,
95 % CI 0.84-1.09 for MI) genotype. These findings indicate
neither an observational nor a genetic association between
milk intake and CAD/MI.

Circulating Brain-Derived Neurotrophic Factor

Brain-Derived Neurotrophic Factor (BDNF) is a peptide
playing an important role for the development of obesity by
influencing behaviours like food intake and physical activity
[42]. Animal models revealed inverse relations between circu-
lating BDNF and unfavorable outcome measures such as obe-
sity and an increased myocardial infarct size after experimental
infarction [43–45]. Kaess and colleagues investigated the asso-
ciation between circulating BDNF levels and cardiovascular
events and mortality within the Framingham Heart Study
(FHS) cohort and found an inverse association between serum
BDNF and CAD risk (HR per 1-SD increase 0.88, 95 % CI
0.80-0.97, p = 0.01) and mortality (HR 0.87, 95 % CI 0.80-
0.93, p = 0.0002) [43]. Next, Kaess et al. performed a MR
analysis using a nonsynonomous SNP (rs6365) within the
BDNF gene. This SNP was associated with BDNF levels in
the FHS cohort (0.772 ng/ml increase per minor allele copy)
and with CAD in the CARDIoGRAM consortium (OR 0.957,
95 % CI 0.923-0.992). These data suggest that BDNF might
have a causal and protective effect on the development of CAD.

Celiac Disease

In epidemiological settings patients with celiac disease are at
increased risk for CAD [46, 47]. Whether this observation is
due to a modified risk profile (e.g. an unfavourable lipid con-
stellation) or because of a per se causal association between
celiac disease and CAD remained obscure. A set of 41 genetic
variants which was robustly associated with celiac disease in
prior studies, were tested for association with CAD in
CARDIoGRAM (please see above) [48]. Only 24 SNPs
(58.5 %) produced ORs greater than 1 (CAD-OR range
1.001–1.081), while the remaining 17 variants displayed
ORs of either 1.0 or below (ORs range 0.951–1.0). This pro-
portion (58.5 %) of risk increasing alleles with consistent ef-
fects on celiac disease and CAD did not differ significantly
(p = 0.069) from the proportion expected just by chance
(50 %). Hence, a causal association between these two dis-
eases is rather unlikely given the results from this genetically
based analysis. Shared non-genetic factors like dietary or met-
abolic alterations in celiac disease are more likely to explain
the observed association.
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Leukocyte Type-1 Interferon Production

Cytokines play a pivotal role in chronic inflammatory diseases
like atherosclerosis and CAD [49]. Type-1-interferons (IFN-I)
as part of the antiviral response in inflammatory conditions
have been intensively studied. The production of a subgroup
(INF-α) is markedly elevated in autoimmune diseases like
systemic lupus erythemathodes (SLE), which in turn displays
a risk factor for CAD [50, 51].

To date, more than 50 % of genetic variants, which have
been identified to associate with SLE are involved in the INF-I
pathway. Further evidence for a causal role of IFN-I in SLE
comes from epidemiological reflections: an OR of ≈7.5 for the
association of CAD in SLE patients cannot be attributed to
traditional CAD risk factors. Hence, Nelson and colleagues
had good reasons to choose SLE associated genetic variants as
proxies to study the relation of INF-I-production and
CAD since GWAS on INF-I production were missing
to date [51]. First, they calculated a genetic risk score
consisting of 3 SNPs, which correlated significantly
with INF-α production in cell culture experiments but
did not associated with CAD in the CARDIoGRAM
consortium (OR 1.0, 95 % CI 0.98-1.02). In addition,
the authors tested a set of SLE-associated SNPs (n = 11) and
–again- found no association with CAD. These MR based
analyses raise doubt about INF production being an in-
dispensable and causal step in CAD development. The
utility of drugs targeting INF-I production has to be
critically evaluated [51].

Chronic Kidney Disease and Marker of Renal Function

Several adverse outcomes are closely related to chronic kid-
ney disease (CKD), and CAD represents the most common
cause of death in patients with CKD [52]. Since traditional and
novel risk factors are not able to fully explain the association
between CKD and CAD, Olden and colleagues asked whether
a genetic linkmight close the remaining gap [52]. A total of 19
SNPs associated with kidney function in GWAS, was tested
for its association with CAD using data from more than 100,
000 individuals. Only one SNP (rs653178) near SH2B3 pro-
duced a p-value <0.05 with a direction-consistent OR of 1.08
(95%CI 1.04-1.11) for association with CAD, indicating only
limited evidence for a common genetic architecture of CKD
and CAD.

Svensson-Färbom and his group took a close look on
cystatin C, which represents an optimal marker of impaired
renal function [53]. Not only CKD but also higher levels of
cystatin C itself increase the risk for CAD and mortality as
compared to individuals with lower cystatin C levels [54].
This association holds true even in patients with normal kid-
ney function [55]. Different explanations for this phenomenon
including toxic effects of cystatin C and progression of

dysmetabolic states in patients with elevated cystatin C have
been intensively discussed [53]. Based on these pathophysio-
logical considerations one might speculate about a causal re-
lationship between cystatin C and CAD. A recent GWAS
brought a genetic variant (rs13038305) to light, which associ-
ates with cystatin C independently of creatinine based mea-
sures of kidney function [56]. The authors tested this SNP for
its association with cystatin C levels in the Malmö Diet and
Cancer study (MDC, 4743 subjects) and found a 0.34 SD
increase in cystatin C per minor allele. Next, they confirmed
results from previous observations by showing a clear relation
between cystatin C and CAD. Finally, using the above men-
tioned SNP as a proxy for cystatin C levels, the authors con-
ducted an MR analysis and found no evidence for an associ-
ation between the genetic variant and CAD, neither in the
MDC study (OR 1.0, 95 % CI 0.94-1.07, p = 0.92), nor within
CARDIoGRAM (OR 0.99, 95 % CI 0.96-1.03, p = 0.84),
suggesting no causal association between cystatin C and
CAD. Rather, the epidemiological observations have to be
seen in the light of impaired kidney function and connected
pathophysiological changes [53].

Summary

Mendelian randomization studies are now being conducted
for more than 10 years, contributing important evidence re-
garding the possible causal association of cardiovascular bio-
markers with clinical CAD. While some disputable bio-
markers provided no evidence for causality in MR studies
[57], other MR results paved the way for promising drug
developments [58]. As intensively discussed by others, it is
essential to adhere strictly to the principles of MR studies to
minimize the risk of misinterpretations coming e.g. from
pleiotropy. Ruling out pleiotropy is particularly difficult
because not all biological mechanisms of a genetic var-
iant of interest might be known. Therefore, an advanced
knowledge about genes, their interactions and their ef-
fect on (patho-) physiological traits is mandatory to al-
low a precise selection of genetic variants for MR stud-
ies. On the other hand, statistical methods are rapidly
improving to pinpoint causal associations. For example,
many authors used multiple genetic variants [16] to in-
crease statistical power and decrease the likelihood of
relevant pleiotropic effects. Other (statistical) develop-
ments to further improve conclusions from MR studies
and facilitate the conduction of such studies include 1)
two-sample MR studies to allow testing the biomarker
and e.g. CAD in different cohorts 2) bidirectional MR
for testing the causal direction between a biomarker and
CAD, and 3) multi-phenotype MR studies, where regression
methods are used to separate the effects from multiple pheno-
types on e.g. CAD [59].
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Future MR studies will profit from these -currently evalu-
ated- methods and will potentially bring even more bio-
markers to light. However, new discoveries have to be
interpreted using other evidences –like RCTs- to strengthen
causal assumptions. By now, MR studies were already able to
identify important drug targets and to catalyze promising
pharmacological developments.
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