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Abstract Lipoprotein(a) [Lp(a)], comprised of apolipopro-
tein(a) [apo(a)] and a low-density lipoprotein-like particle, is
a genetically determined, causal risk factor for cardiovascular
disease and calcific aortic valve stenosis. Lp(a) is the major
plasma lipoprotein carrier of oxidized phospholipids, is pro-
inflammatory, inhibits plasminogen activation, and promotes
smooth muscle cell proliferation, as defined mostly through
in vitro studies. Although Lp(a) is not expressed in commonly
studied laboratory animals, mouse and rabbit models trans-
genic for Lp(a) and apo(a) have been developed to address
their pathogenicity in vivo. These models have provided sig-
nificant insights into the pathophysiology of Lp(a), particular-
ly in understanding the mechanisms of Lp(a) in mediating
atherosclerosis. Studies in Lp(a)-transgenic mouse models
have demonstrated that apo(a) is retained in atheromas and
suggest that it promotes fatty streak formation. Furthermore,
rabbit models have shown that Lp(a) promotes atherosclerosis
and vascular calcification. However, many of these models
have limitations. Mouse models need to be transgenic for both
apo(a) and human apolipoprotein B-100 since apo(a) does not
covalently associated with mouse apoB to form Lp(a). In
established mouse and rabbit models of atherosclerosis, Lp(a)
levels are low, generally <20 mg/dL, which is considered
to be within the normal range in humans. Furthermore, only

one apo(a) isoform can be expressed in a given model whereas
over 40 isoforms exist in humans. Mouse models should also
ideally be studied in an LDL receptor negative background for
atherosclerosis studies, as mice don’t develop sufficiently ele-
vated plasma cholesterol to study atherosclerosis in detail. With
recent data that cardiovascular disease and calcific aortic valve
stenosis is causally mediated by the LPA gene, development of
optimized Lp(a)-transgenic animal models will provide an op-
portunity to further understand the mechanistic role of Lp(a) in
atherosclerosis and aortic stenosis and provide a platform to test
novel therapies for cardiovascular disease.
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Introduction

Lipoprotein(a) is an unique plasma particle composed of a
low-density lipoprotein (LDL)-like particle where apolipopro-
tein B-100 is covalently attached to the hydrophilic,
carbohydrate-rich apolipoprotein(a) [apo(a)]. Since its discov-
ery in 1963 by Berg [1], its physiologic role remains un-
known, although accumulated evidence suggests that Lp(a)
is a genetically determined, independent, causal risk factor
for atherosclerotic cardiovascular disease and aortic valve
stenosis.

Encoded by the LPA gene on chromosome 6, apo(a) is a
large, highly polymorphic, glycoprotein with over 40 different
isoforms in human populations. The size of the apo(a) protein
is inversely related to plasma Lp(a) levels, which can vary
>1000 fold between individuals. More than 90 % of the
inter-individual variation of Lp(a) levels is genetically deter-
mined [2]. A large proportion of this variation is determined
by the length of the LPA gene, while other overlapping
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contributions include LPA single nucleotide polymorphisms
(SNPs), primarily rs10455872 and rs3798220 in Caucasians
[3–5] and rs9457951 in Blacks [6], ethnicity [7], and other
unidentified elements.

Epidemiology of Lp(a) for Atherosclerotic
Cardiovascular Disease and Calcific Aortic Stenosis

Lp(a) is a prevalent risk factor for cardiovascular disease, with
20 % of the population having Lp(a) >50 mg/dL. Such levels
are consistently associated with approximately a two-fold in-
creased risk of myocardial infarction (MI) [8, 9] and faster
progression of aortic stenosis (AS) in prospectively followed
cohorts [10]. Genome wide association studies established an
association between LPA SNPs and coronary artery disease
(CAD), MI [11–14], and calcific aortic valve disease [15]
and coronary artery calcification in some but not all studies
[16, 17]. Moreover, these findings have been corroborated by
recent Mendelian randomization studies, demonstrating that
LPA SNPs associated with elevated plasma Lp(a) levels also
predict development of myocardial infarction [3, 18] and aor-
tic valve stenosis [19, 20], supporting a role for Lp(a) as a
genetically determined, independent, causal risk factor for
these diseases.

Structure and Function of Lp(a)

LPA evolved through duplication of its neighboring PLG gene
encoding plasminogen, is highly homologous to plasminogen
and retains kringle IV (KIV), kringle V, and the protease-like
domain (Fig. 1a) [21]. However, over the course of 40–80
million years since the first existence of LPA in primates [21,
22], KIV of plasminogen has been expanded into ten types
(KIV1-KIV10) to form apo(a) with all kringles present in a
single copy except for the variable number of identical tandem
KIV2 repeats between individuals, ranging from 3 to >40 cop-
ies [7]. Apo(a) isoform size as well as apo(a) heterogeneity is
directly determined by the number KIV2 repeats, as the re-
maining number of kringles are present equally on all iso-
forms. Separately, due to mutations, the apo(a) protease-like
domain is catalytically inactive [23].

The kringle domains on apo(a) confer the ability of Lp(a) to
interact with proteins and lipids. For example, the proposed
mechanism for Lp(a) assembly involves two steps, the first
mediated by non-covalent interactions between lysine binding
sites (LBS) in KIV7-KIV8 and Lys680 and Lys690 on apoB-
100 [24]. Subsequently, a disulfide bond between Cys4057 in
KIV9 of apo(a) and Cys4326 of apoB-100 is formed [25].
Another important apo(a) domain is KIV10. This domain,
which shares 88 % amino acid sequence homology with plas-
minogen KIV (ligand binding domain) [26], has been

implicated in lysine binding and competitive interaction be-
tween Lp(a) and plasminogen.

Lp(a) is an Inhibitor of Plasminogen Activation In Vitro

Lp(a) interferes with plasminogen binding to fibrin [27] and
endothelial cells [28] and competitively inhibits tissue plas-
minogen activator (tPA) mediated activation of plasminogen
in vitro [27, 29]. Three-dimensional molecular models of
KIV10 and KV, based on X-ray crystallographic structures of
plasminogen, predict that these domains will bind lysine [26],
competing with plasminogen for an interaction of this amino
acid residue on fibrin and endothelial cells. Using recombi-
nant apo(a), Hancock et al. demonstrated that a single point
mutation in the lysine binding site of KIV10 or total deletion of
KV significantly diminishes the inhibition of plasminogen
activation by tPA in the presence of fibrin [29].

Lp(a) is the Major Lipoprotein Carrier of Oxidized
Phospholipids

Oxidized phospholipids (OxPL) play a central role in the de-
velopment of atherosclerosis, particularly in pro-inflammatory
pathways [30, 31]. Elevated levels of oxidized phospholipids
on apolipoprotein B-100 (OxPL-apoB), detected usingmurine
monoclonal antibody E06 that binds to the phosphocholine
head group on oxidized but not native phospholipids, predict
death, MI, and stroke in unselected populations followed pro-
spectively [9, 32–35]. Furthermore, OxPL-apoB correlate
with endothelial dysfunction and progression of coronary

�Fig. 1 Summary of pathological consequences of elevated Lp(a). a
Genetic architecture of apo(a). Panel a The genes for plasminogen
(PLG) and apo(a) (LPA) are depicted on chromosome 6. LPA is
transcribed into apo(a) consisting of kringle domains KIV1-KIV10, KV,
and a protease-like domain, with variable number of tandemKIV2 repeats
that determine apo(a) isoform size. A strong lysine binding site (LBS) is
present in KIV10. Panel b Structure of Lp(a) and its content of oxidized
phospholipids. Lp(a) consists of apo(a) covalently bound to apoB-100
through a disulfide bone in KIV9. Oxidized phospholipids (OxPL) are
present within the lipid phase as well as covalently bound to Lp(a). Panel
c Cardiovascular diseases associated with elevated Lp(a) include
atherosclerosis (left panel), vascular calcification (middle panels) and
aortic stenosis (right panels). Left panels depict optical coherence
tomography (OCT) imaging of a thin fibrous cap atheroma Bvulnerable
plaque^ with large necrotic cores (NC) and hemorrhage. The
corresponding histologic specimen is shown below the OCT image.
The overlying fibrous cap (FC) is thin (70 μm) and heavily infiltrated
bymacrophages. Themiddle panels depict intravascular ultrasonographic
(IVUS) images using Bvirtual histology ,̂ show fibrous (dark green) and
fibrofatty (light green) necrotic core (red) and calcified (white) tissue. The
corresponding histologic specimen is shown below the IVUS image. The
right panels depict a non-calcified tricuspid aortic valve (top) and the
presence of aortic valve calcifications using multislice computed
tomography. Figures were reproduced with permission from a
Leibundgut et al. [75], b Rao et al. [48], c left panel, Otsuka et al.
[131], middle panel- Konig et al. [132], right panel Tops et al. [133]

b
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calcification [36, 37], predict the progression of femoral/
carotid disease [38], coronary artery disease (CAD) [39],
and are elevated in patients with ACS [40] and following
PCI [41]. Interestingly, the predictive value of OxPL-apoB
and Lp(a) for CAD and CVD events is conditioned by the
presence of a pro-inflammatory haplotype genetically defined
at the IL-1 gene locus [34]. This finding confirms a strong link
between lipoprotein oxidation and development of atheroscle-
rotic lesions and adverse CVD events.

In humans, more than 85 % of plasma lipoprotein-
associated OxPL are bound to Lp(a) while the remaining
exists primarily on apoB containing lipoproteins, although
a very small amount is present on HDL [42–44]. A sec-
ond large and independent pool of OxPL present on other
proteins is primarily present on plasminogen [45, 46]. In-
terestingly, when OxPL are present on plasminogen, they
potentiate fibrinolysis in vitro, suggesting that the risk of
OxPL on (lipo)proteins, is context dependent and that they
are pro-atherogenic on Lp(a) but potentially anti-

thrombotic on plasminogen [46, 47]. Consistent with the
role of this apoB-100 containing lipoprotein as the prefer-
ential lipoprotein carrier of OxPL, OxPL-apoB levels cor-
relate with Lp(a) levels in the population as a whole.
However, this is dependent on genetics and underlying
apo(a) isoform composition, irrespective of race. For ex-
ample, the strongest association (r-values up to 0.85) is in
patients with elevated Lp(a) levels and concomitantly
small apo(a) isoforms while the weakest correlations (r-
values as low as 0.13) are found in subjects with low
Lp(a) levels along with large apo(a) isoforms [7, 35, 48,
49]. Further genetic evidence that Lp(a) levels determine
plasma OxPL levels include the high genetic covariance of
Lp(a) and OxPL-apoB in a study examining these param-
eters in monozygotic versus dizygotic twins [48], and that
the LPA single nucleotide polymorphisms (SNPs)
rs3798220 [49] and rs10455872 [48] are also associated
with elevated levels. Lastly, in trials with pharmacologic
[10, 43, 50–53] or dietary [37, 54, 55] interventions that
raise Lp(a), OxPL-apoB is increased as well. Conversely,
lipid apheresis [42], and antisense to apo(a) [56] and nia-
cin (unpublished data), all lower OxPL-apoB.

Mechanisms of the Atherogenicity of Lp(a)
and apo(a), Insights from Animal Models

The pathophysiologic basis of Lp(a) in atherosclerotic and
aortic valve disease has been attributed to both its LDLmoiety
and apo(a) component. Both apoB-100 and apo(a) have been
co-localized in human coronary and carotid atheromas [57],
coronary bypass grafts [58, 59] as well as stenotic aortic
valves [60], suggesting a local role of Lp(a) in the develop-
ment and/or progression of these disease.

LDL [61] and apoB [62], the obligate apolipoprotein present
on atherogenic non-HDL particles, are both well-established
risk factors for cardiovascular disease. However, there are sev-
eral atherogenic features of Lp(a) and apo(a), which include
enhancing monocyte entry and retention in the vessel wall
and macrophage foam cell formation [63–65], promoting apo-
ptosis in endoplasmic reticulum-stress macrophages [66], pro-
moting release of pro-inflammatory IL-8 [67], promoting
smooth muscle cell proliferation [68], and antifibrinolytic ef-
fects [27, 28, 69] have been proposed (reviewed in [70, 71]).
Moreover, a key component of the atherogenicity of Lp(a) may
be due to its role as a carrier of OxPL (Fig. 1b).

Animal studies have added insight into the role of Lp(a),
and specifically apo(a), in binding OxPL. In transgenic mice
expressing human apoB-100, E06 immunoreactivity was de-
tected on human apoB-100 containing lipoproteins only if
apo(a) was concurrently expressed [72]. Furthermore, trans-
genic mice expressing apo(a) had OxPL associated with mu-
rine apoB-100 [72], which can non-covalently bind to apo(a)
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[72, 73]. When apo(a) levels are lowered with antisense
targeted against the LPA gene, OxPL on human and murine
apoB-100 are diminished as well [74]. OxPL is thought to
bind to apo(a) both covalently and non-covalently as 30–
70 % of E06 immunoreactivity in Lp(a) from various human
subjects was lipid soluble [44]. Comparisons between species
with expression natural variants of Lp(a) have provided fur-
ther clues on how apo(a) binds OxPL. Except for humans,
primates naturally expressing Lp(a) lack E06 immunoreactiv-
ity and coincidentally contain loss of function mutations in the
apo(a) KIV10 lysine binding site or lack KV, suggesting these
domains are essential for binding to OxPL. Indeed, mice ex-
pressing a recombinant apo(a) with 2 amino acid substitutions
(Asp55/57 → Asn55/57) in KIV10 abolished both lysine binding
and OxPL binding as detected by E06 [75]. Recombinant
human apo(a) containing KIV8–10, but not KV is unable to
bind OxPL [76], demonstrating that the presence of both
KIV10 LBS and KVare required for this function. Incidentally,
this may explain why OxPL is not detected on baboon apo(a)
which contains all amino acid residues in KIV10 predicted to
be involved with lysine binding but not KV.

Transgenic mice expressing apo(a) have also provided in-
sight into the role of this protein on atherosclerosis
(summarized in Table 1). Unlike humans, where plasma apo(a)
is almost entirely covalently bound to LDL, apo(a) circulates
as non-lipoprotein associated, or Bfree^ apo(a) in mice [77], as
well as non-covalently bound to murine apolipoprotein B-100
[72–75, 78]. Therefore, apo(a) transgenic mice provide a plat-
form to study the role of apo(a), independent of human LDL,
on atherosclerosis. Cholesterol and cholate-fed transgenic
mice expressing apo(a) developed more aortic fatty streaks
compared to non-transgenic controls [77, 79, 80]. Similar find-
ings were reported in study of old (66 weeks old at time of
analysis) mice expressing apo(a), which were more likely to
develop atheromas and larger lesions than control mice [81].
Interestingly, transgenic expression of human apolipoprotein
AI in apo(a) mice prevents the development of fatty streaks in
apo(a)-transgenic cholesterol-fed animals [79]. However, it
should be noted that Mancini et al. [82] did not observe in-
creased aortic atherosclerosis in cholesterol and cholate-fed
mice expressing apo(a) compared to controls.

Moreover, transgenic mice which express human apo(a)
with 17 total KIV repeats (17 K) and containing point muta-
tions in two key anionic residues in KIV10 lysine binding site
(Asp55/57 → Asn55/57) [LBS mut apo(a)], develop significant-
ly less aortic fatty streaks compared to mice which express
WT apo(a) [83]. This mutation in apo(a) renders the protein
incapable of binding to OxPL as detected by E06 [75], lysine
and fibrin [83]. In a diet induced mouse model of atheroscle-
rosis, both fibrin and apo(a) co-localize with fatty streak le-
sions [84]. However, in fibrinogen (and therefore fibrin) defi-
cient animals, apo(a) was not detected in the aorta [84]. Sim-
ilarly, there was significantly less apo(a) detected

immunologically in lesions from LBS mutant apo(a) mice
compared to WT apo(a) expressing mice [83]. This observa-
tion was recapitulated in a separate mouse model, where hu-
man apo(a) with 8 total KIV repeats (8 K) and containing a
separate KIV10 lysine binding site point mutation (Tyr72 →
Arg72) expressed by adenovirus in animals transgenic for hu-
man apoB (h-apoB) also demonstrated less vessel wall accu-
mulation compared to control mice expressing WT apo(a)
[85]. Taken together, these experiments show that apo(a) can
be targeted to the vessel wall by its KIV10 lysine binding site,
which facilitates fibrin(ogen) binding. Once resident in the
artery wall, the relative contributions of fibrin and OxPL,
bound to apo(a), towards the development and progression
of atherosclerosis remains to be determined.

Studies utilizing animal models have also attempted to as-
sess the contribution of Lp(a) to the development of athero-
sclerosis relative to that of apoB-100 alone. In murine models
expressing relatively low levels of Lp(a) levels, the addition of
an LPA transgene did not appear to increase atherosclerotic
burden in animals transgenic for h-apoB. Mancini et al. exam-
ined atherosclerosis in transgenic mice expressing cDNA
encoding for 17 K apo(a), and double transgenic mice which
also express high levels of h-apoB (Lp(a) mice) on a high
cholesterol diet [82]. Lp(a) levels were 35–54 mg/dl in double
transgenic mice and these animals had a two-fold higher le-
sion area in the proximal aorta although no difference in aortic
lipid staining overall compared to single transgenic h-apoB
mice [82]. Callow et al. [80] also compared proximal aorta
lesion size between cholesterol-fed 17 K apo(a) mice, h-apoB
mice and Lp(a) mice. Although Lp(a) levels were not reported
in this study, Lp(a) mice had apo(a) levels of 9–14 mg/dl,
determined relative to human Lp(a) standards on ELISA.
Mice with high levels of h-apoB (>100 mg/dl) developed
the largest lesions, and in this setting, the addition of the
apo(a) was insignificant towards atherogenesis. However,
mice which expressed apo(a) and low levels of h-apoB (14–
17 mg/dl) developed 2.5 fold larger lesions than those which
only expressed apo(a) [80], suggesting that Lp(a) promotes
lesion development beyond the effect of apo(a). Sanan et al.
developed transgenic mice expressing apo(a) and h-apoB
(Lp(a) mice) or only h-apoB on an LDL-receptor deficient
background [86]. In this model, both strains of mice had sim-
ilar plasma h-apoB-100 levels while mice which also
expressed apo(a) had average Lp(a) levels of 25 mg/dl. On a
chow diet, both strains developed complex atherosclerotic le-
sions, although the aortic lesion burden was not different be-
tween the two groups [86]. Finally, Teivainen et al. [87] dem-
onstrated that mice expressing h-apoB and a yeast artificial
chromosome (YAC) containing LPA did not develop more
atherosclerosis than those expressing LPA only.

Another mouse model examined the role of Lp(a) in chron-
ic kidney disease, which is associated with accelerated athero-
sclerosis, increased cardiovascular death, and elevated Lp(a)
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levels in uremic patients (reviewed in [88]). In a nephrectomy
model of uremia, mice transgenic for a 12 K cDNA construct
encoding apo(a) or double transgenic for Lp(a) developed
larger aortic root lesions compared to WT and h-apoB con-
trols, respectively [89]. This model suggests that Lp(a) may be
a therapeutic target in uremic or end-stage renal disease pa-
tients, a population which does not benefit from statin therapy
[90, 91] has been difficult to manage for primary and second-
ary prevention of cardiovascular disease.

One major limitation of the above mouse models, is that
they express Lp(a) at levels short of the what is generally
accepted as an Belevated^ Lp(a) level in humans, which is
>50 mg/dl [92]. Lp(a) levels less than this do not appear to
confer as high increased risk of CVD after adjustment for
traditional risk factors [32, 93]. To address this issue,
Schneider et al. [72] generated transgenic mice with plasma
Lp(a) levels of up to ~700 mg/dl based on the principle in
humans that smaller apo(a) isoforms lead to higher Lp(a)
levels due to faster synthesis of apo(a) [94]. This model ex-
presses cDNA encoding an 8 K version of apo(a) [in contrast
to previous animal models which expressed 17 K apo(a)],
consisting of KIV1, KIV2, a fusion of KVI3–5 and KIV6–
KIV10, KV, and the protease domain, with an Apoe promoter

regulating transcription of this transgene. These apo(a) mice
were bred into those transgenic for a bacterial artificial chro-
mosome containing a human apoB-100-only gene, which
contains a mutation in codon 2,153 preventing mRNA editing
and subsequent production of apoB-48. Two lines of double
transgenic mice, expressing Lp(a) were described, one with
lower levels of Lp(a) [~35 mg/dl] and another with very high
levels [~700 mg/dl]. The high Lp(a) expressers have substan-
tially higher plasma levels of OxPL present on human apoB-
100 and mouse apoB-100 compared to low expressers and
single transgenic human apoB-100-only mice. These findings
likely reflect the role of apo(a) as a recruiter of OxPL to apoB
containing particles associated with it. Although atherosclero-
sis studies have yet to be performed using this model, it pro-
vides the unique opportunity to examine the contributions of
high Lp(a) levels and that of OxPL on Lp(a) towards this
disease in mice.

It is also worth noting limitations beyond that of Lp(a)
levels in mouse models. Despite the ability of human LDL
to rapidly and readily covalently associate with apo(a) in mice,
as demonstrated by infusion of human LDL in apo(a) trans-
genic mice [95], the majority of apo(a) can remain unbound to
h-apoB-100 in double transgenic mice [78]. In this setting, it

Table 1 Effect of Apo(a) and Lp(a) expression in experimental animal models of atherosclerosis

Study Year Model Diet apoB
genotype

Apo(a)
genotype

apo(a)/Lp(a)
levels

Control animal Atherosclerosis

Lawn et al. [77] 1992 Mouse HC/HF mouse 17 K 12 mg/dl C57B6/SJL ↑

Callow et al. [80] 1995 Mouse HC/HF mouse 17 K 5 mg/dl C57B6/SJL/FVB ↑

HC/HF mouse/human 17 K 9 mg/dl apo(a) Tg ↑

HC/HF mouse/human 17 K 9 mg/dl h-apoB Tg No Δ

Mancini et al. [82] 1995 Mouse HC/HF mouse 17 K 11–15 mg/dl C57B6/SJL No Δ

HC/HF mouse/human 17 K 12–15 mg/dl h-apoB Tg No Δ

Boonmark et al. [83] 1997 Mouse HC/HF mouse 17 K 15 nM FVB ↑

HC/HF mouse 17 K 35 nM LBS mut 17 K ↑

Sanan et al. [86] 1998 Mouse Chow mouse 17 K 27 mg/dl LDLR−/−/C57B6/129Sv/Ev No Δ

Chow mouse/human 17 K 25 mg/dl h-apoB Tg/ LDLR−/− No Δ

Fan et al. [101] 2001 Rabbit HC/HF rabbit 17 K 27–29 nM non-transgenic rabbit ↑

Berg et al. [81] 2002 Mouse Chow mouse 17 K 73 U/l C57B6/SJL ↑

Sun et al. [97] 2005 Rabbit Chow rabbit 17 K 15 mg/dl WHHL rabbit ↑ + vascular
calcification

Teivainen et al. [87] 2004 Mouse Chow mouse LPA-YAC, 12 K 7–59 mg/dl FVB ↑ + vascular
calcification

HC/HF mouse LPA-YAC, 12 K 0.6–76 mg/dl FVB ↑ + vascular
calcification

HC/HF mouse/human LPA-YAC, 12 K NA apo(a) Tg No Δ

Schneider et al. [72] 2005 Mouse Chow mouse/human 8 K 700 mg/dl NA NA

Kitajima et al. [103] 2007 Rabbit Chow rabbit 17 K 3 mg/dl WHHL rabbit ↑

Pedersen et al. [89] 2010 Mouse Chow mouse 12 K 45 nM C57B6/SJL ↑

Mouse Chow mouse/human 12 K 50 mg/dl h-apoB Tg ↑

HC high cholesterol, HF high fat, 17 K 17 kringle, YAC yeast artificial chromosome, Tg transgenic,WHHLWatanabe heritable hyperlipidemic; NA not
available
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will be difficult to exclude the possibility that Bfree^ apo(a)
acted competitively against Lp(a) for its role in atherosclero-
sis. To add another layer of complexity, an additional pool of
apo(a), which is non-covalently associated with murine apoB-
100 [72, 73] exists in Lp(a) mice. The overall atherosclerosis
phenotype is most the net effect of contributions from each of
these unique particles (Fig. 2) in Lp(a) mice.

Another animal model traditionally utilized to study ath-
erosclerosis has been the rabbit model. This model has several
advantages compared to the murine model. Human apo(a) is
capable of forming a covalent bond with rabbit LDL [96]
(Fig. 2) and various studies have reported that 20–80 % of
apo(a) is linked to rabbit apoB-100 [96–99]. In addition, rab-
bits are more human-like with regards to lipoprotein metabo-
lism in that they express cholesterol ester transfer protein
(CETP) and apoB mRNA is not edited in the rabbit liver.
However, rabbits have very low plasma levels of hepatic li-
pase and lack apoA-II [100]. Lastly, Watanabe heritable hy-
perlipidemic (WHHL) rabbits, which have defect LDL recep-
tor function due to a spontaneous loss of function mutation,
develop marked hypercholesterolemia, xanthomas, and ath-
erosclerosis, resembling the phenotype of human familial
hypercholesterolemia.

Cholesterol-fed transgenic (non-WHHL) rabbits express-
ing cDNA encoding for 17 K apo(a), with Lp(a) levels of
27–29 nmol/L (~11 mg/dL), developed more extensive ath-
erosclerotic lesions in the aorta, carotid, iliac, and coronary
arteries, compared to non-transgenic rabbits [101]. Interest-
ingly, lesional apo(a) co-localized with immature smooth
muscle-like cells, which were identified by positive vimentin
and absent smooth muscle α-actin staining [101]. Prior work
has implicated apo(a) in smooth muscle cell proliferation in-
vitro via TGF-β activation [68] and shown that there is in-
creased activated TGF-β, detected immunologically in aortas
of mice expressing apo(a) [102]. WHHL rabbits expressing
apo(a) with Lp(a) levels of 8–10 nmol/L (equivalent to ~3mg/
dl) developedmore coronary atherosclerosis compared to con-
trols [103]. A separate study examining transgenic WHHL
rabbits with Lp(a) levels of 15mg/dl, demonstrated that apo(a)
transgenic animals develop much more complex atheroscle-
rotic lesions compared to controls, despite having similar
sudanophilic lesion burden [97]. Lesions in transgenicWHHL
rabbits consisted of lipid core, fibrous cap, and striking vas-
cular calcifications (rare in non-transgenic controls) which are
intimately co-localized with Lp(a). Furthermore, the addition
of Lp(a) to cultured vascular smooth muscle cells promoted

Fig. 2 Schematic depicting selected plasma apo/lipoproteins in the Lp(a) mouse (left) and rabbit (right) animal models. apo(a) = apolipoprotein(a);
huApoB-100 = human apoB-100; mApoB-100 = murine apoB-100; rApoB-100 = rabbit apoB-100
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calcium deposition in a dose dependent manner and was as-
sociated with dysregulation of calcium homeostasis with in-
creased alkaline phosphatase activity and decreased osteopon-
tin expression [97].

In summary, the overall work from animal models has
complemented findings from large genetic studies in humans
demonstrating that Lp(a) and apo(a) are risk factors for ath-
erosclerotic cardiovascular disease. However, it is interesting
to note transgenic mice with Lp(a) levels of 9–25 mg/dl did
not have increased atherosclerosis compared to mice only
transgenic for h-apoB, but in contrary, transgenic rabbits with
Lp(a) levels from 3 to 11 mg/dL developed more severe and
complex atherosclerosis compared to controls. These findings
suggest that differences in species specific thresholds to the
adverse effects of plasma Lp(a), and/or differences in the
amount of Bfree^ apo(a) relative to Lp(a) between these spe-
cies may be involved in atherogenesis. As Lp(a) is not natu-
rally expressed in mice or rabbits, these animals may not have
evolved to develop the same downstream signaling targets
that potentially exists in humans, and therefore Lp(a) trans-
genic animals may expectedly have phenotypes which do not
perfectly align with that in humans. Also, with the exception
of the model developed by Teivainen et al. [87] all transgenic
animals express apo(a) cDNA driven by an exogenous pro-
moter (Table 1). Though these model may be sufficient to
address the question of whether apo(a) and Lp(a) contributes
to cardiovascular disease, they do not reflect the complexity of
LPA transcriptional regulation in humans. Finally, all mouse
and rabbit models to date have expressed only one apo(a)
isoform either 17 K which is present in humans or 8 K, which
is not present naturally. With over 40 apo(a) isoforms present
in humans, it has not been possible to fully represent the range
of human Lp(a) variability.

Future Directions

A consistent observation in atheromas from humans and
apo(a) transgenic animals is that apo(a) is found in plaque.
In mice, mutations in the apo(a) KIV10 LBS, a domain impli-
cated in fibrin binding, plasminogen activation and OxPL
binding, diminishes the effect of this protein on arterial reten-
tion and foam cell formation. Future in vivo studies, carefully
delineating the role and relative contributions of each of these
aspects of apo(a) function in the development of cardiovascu-
lar disease, are needed.

To further elucidate the relative contributions of OxPL on
Lp(a) to atherogenesis, one could determine if an antagonist of
the inflammatory properties of OxPL, such as E06 [104],
would attenuate atherosclerosis in animals expressing Lp(a).
The ideal model for such a study would be a rabbit model,
however, transgenic mice expressing high levels (>50 mg/dl)

of Lp(a) [h-apoB-100 and apo(a)], such as the one developed
by Schneider et al. [72], may be appropriate as well.

An interesting phenomenon is that mice [87] and WHHL
rabbits [97] expressing Lp(a) develop ectopic, vascular calci-
fication. Elevated Lp(a) levels in humans is associated with
coronary artery calcium [14, 105] in some studies but not all
[16, 17] as well as uniformly in calcific aortic stenosis to date
[10, 15, 19, 20]. In humans, calcified atheromas and aortic
valves are associated with more advanced disease, which re-
inforces the pathogenic role of Lp(a).

Proposed Animal Models to Elucidate the Mechanisms
of Lp(a) in the Development and Progression
of Atherosclerosis and Aortic Stenosis

AS is a progressive disease affecting approximately 12 % of
the population over the age of 75, for which there is currently
no effective medical therapy [106]. Affected valves are char-
acterized by progressive fibrosis, thickening and most impor-
tantly, calcification [107, 108]. As mentioned above, LPA
SNPs associated with elevated plasma Lp(a) levels predict
development of aortic valve calcification and stenosis [19,
20], and plasma Lp(a) levels of >50 mg/dl predicted progres-
sion of AS [10].

Early lesions on human stenotic aortic valve leaflets con-
tain oxidized lipids, apoB and apo(a) [60, 109–111]. Similar to
atherosclerosis, advanced aortic valve stenosis is characterized
by ectopic calcification within this normally compliant tissue.
Oxidized LDL (OxLDL) are highly enriched in OxPL
[112–114] and have been implicated in promoting valvular
ectopic calcification and bone formation, features that are pro-
nounced in severe AS. Bone formation within the diseased AV
is driven by the differentiation of vascular cells into osteo-
blasts [109], via bone morphogenic protein (BMP) signaling
and upregulation of osteoblastic transcription factors includ-
ing RUNX2 and MSX2. BMP2 [114–117] as well as RUNX2
[118] and MSX2 [119] expression in vascular cells are upreg-
ulated following exposure to OxLDL. OxLDL exposure also
suppresses osteoprotegerin [120], an inhibitor of vascular cal-
cification via the RANK-L pathway [121, 122]. Finally, ex-
posure to OxLDL in vitro stimulates extracellular matrix cal-
cium deposition by vascular cells [118, 119, 123, 124] as well
as upregulation of alkaline phosphatase [112, 119, 123, 125,
126], reminiscent of the observations with Lp(a) by Sun et al.
[97] in vitro and in transgenic WHHL rabbits.

To better understand the role of OxPL on Lp(a) in athero-
sclerosis and AS and its therapeutic implications, an animal
model will be necessary. Although WHHL transgenic rabbits
expressing Lp(a) develop vascular calcification, WHHL rab-
bits do not develop hemodynamically significant AS [127]. To
date, the only animal model that develops clinically-
significant AS is the mouse apoB-100only/LDLR-deficient
mouse fed a high cholesterol diet for 1 year [127, 128].
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Therefore, LDLR-deficient mice which express high levels
(>50 mg/dl) of Lp(a) would be the most clinically relevant.
Moreover, one model will not be adequate to study the effect
of apo(a) isoform sizes. Development of a number of animal
models that express different sizes of apo(a) isoforms, from
very small, such as 3 KIV2 repeats which is the smallest iso-
form described in humans, to very large with >30 KIV2 re-
peats will be highly informative. As these apo(a) constructs
already exist [29, 75, 129, 130], the generation of transgenic
mouse models can be accelerated. Within these models, the
development and progression of aortic stenosis in Lp(a)/
LDLR-deficient mice compared to Lp(a)-LBS-mut/LDLR-
deficient mice or Lp(a)/LDLR-deficient mice which express
high levels of E06 will provide further insight into the contri-
bution of this pro-inflammatory and pro-calcific lipid towards
Lp(a) mediated atherosclerosis and AS.
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