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Abstract Myocardial infarction triggers reparative inflamma-
tory processes programmed to repair damaged tissue. However,
often additional injury to the myocardium occurs through the
course of this inflammatory process, which ultimately can lead
to heart failure. The potential beneficial effects of cell therapy in
treating cardiac ischemic disease, the number one cause of
death worldwide, are being studied extensively, both in clinical
trials using adult stem cells as well as in fundamental research
on cardiac stem cells and regenerative biology. This review
summarizes the current knowledge on molecular and cellular
processes implicated in post-infarction inflammation and dis-
cusses the potential beneficial role cell therapy might play in
this process. Due to its immunomodulatory properties, the
mesenchymal stromal cell is a candidate to reverse the disease
progression of the infarcted heart towards heart failure, and
therefore is emphasized in this review.
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Introduction

Ischemic heart disease including myocardial infarction (MI) is
the number one cause of death worldwide [1]. MI typically
results from a (thrombotic) occlusion of a coronary artery

leading to myocardial ischemia [2]. Typically, after diagnosis
of MI primary percutaneous coronary intervention (PCI) of the
infarct related coronary artery is performed to achieve reperfu-
sion, limit tissue necrosis and improve the clinical outcome.
Additionally, reperfusion triggers the immune system to initiate
an essentially regenerative signaling cascade programmed to
repair the damaged tissue after removal of dead cells andmatrix
debris [3]. However, this immune-mediated response needs to
be tightly regulated to prevent additional myocardial tissue
damage which may invoke congestive heart failure [4, 5].
Although PCI limits tissue damage inflicted by myocardial
ischemia, this intervention typically does not halt or even
reverse the loss of functional myocardium [6].

To limit (additional) damage to the myocardium after MI,
novel therapeutic interventions involving cell-based therapies
have emerged in order to increase our arsenal for treating
ischemic heart disease [7]. In this review we systematically
summarize the current state of knowledge on the inflammato-
ry response involved in post-myocardial infarct inflammation
and discuss how cell therapy may attenuate certain deleterious
aspects of this response and may improve cardiac function
after MI.

The Post-infarction Inflammatory Response

Myocardial ischemia results in cell death, initiating an inflam-
matory response ultimately resulting in scar formation [8].
This process of myocardial infarct healing occurs through
three successive phases: the inflammatory phase, the prolifer-
ative phase and finally the maturation phase [9, 10].

The Inflammatory Phase

The immune system comprises an innate and adaptive system.
The innate immune system regulates the non-specific
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immediate response against invading pathogens and injury,
whereas the adaptive immune system involves specific recog-
nition of foreign antigens and progresses with a delay as it
requires prior activation by innate immune cells. As a conse-
quence, the first phase of the reparative process after MI is
mediated by the innate immune system [10].

Initially, platelets are activated upon myocardial injury to
prevent bleeding. Platelets aggregate locally to form a fibrin-
rich matrix and release important growth factors such as
platelet-derived growth factor (PDGF) and Platelet-Factor 4
that aid the repair process [11]. In parallel, platelets produce
platelet activating factor thereby stimulating the influx and
adhesion of neutrophilic granulocytes to the site of injury [12].
Neutrophils are among the first innate immune cells to enter
the myocardium, which occurs within hours after the ischemic
event. Their recruitment is stimulated by Reactive Oxygen
Species (ROS) produced by activated cardiac myocytes and
vascular endothelial cells [10]. ROS (including hydrogen
peroxides, superoxide anions and hydroxy radicals) are
formed by the incomplete reduction of molecular oxygen
and activate the chemotactic cytokine interleukin (IL)-8 /
chemokine (CXC motif) ligand 8 as well as the endothelial
surface molecule intercellular adhesion molecule-1 (ICAM-
1), together coordinating neutrophil recruitment.

Upon arrival, neutrophils secrete proteolytic enzymes that
clear the infarct from dead cells and debris [10, 13]. However,
the activated neutrophils also contribute to the production of
ROS which react directly with cellular lipids, proteins and
DNA released from the damaged cells. In this context ROS act
as signaling intermediates that activate the transcription factor
Nuclear Factor-κB (NF-κB) resulting in the production of pro-
inflammatory cytokines and chemokines, but also of growth
factors important for tissue repair such as Transforming
Growth factor-beta (TGF-β) [10, 14, 15]. Tissue damage
inflicted by ROS needs to be limited as early as possible as
demonstrated in a study of MI in dogs using free radical
scavenging catalase and the anti-oxidant enzyme superoxide
dismutase-1. In this study it was shown that infarct size was
reduced only when the treatment was given prior to coronary
occlusion [16].

It is however difficult to denote the exact role of neutrophils
in myocardial repair. Smaller infarcts were observed upon
myocardial reperfusion in experimental animals depleted of
neutrophils, suggesting that neutrophils have a deleterious
effect in myocardial injury followed by reperfusion [17].
However, infarct sizes were not altered when neutrophil re-
cruitment was prohibited in mice deficient for ICAM-1 and P-
selectin, despite a reduction in neutrophil trafficking [18].
Initial neutrophil influx is followed by the recruitment of
monocytes, which is mainly mediated by the chemokine
monocyte chemo attractant protein-1 (MCP-1)/ chemokine
(C-C motif) ligand 2. In a study in MCP-1 deficient mice, it
was shown that the absence of MCP-1 did not alter infarct

size, but attenuated ventricular remodeling, reduced and de-
layedmonocyte/macrophage recruitment and delayed replace-
ment of cardiomyocytes with granulation tissue and dimin-
ishedmyofibroblast accumulation [19]. Phenotypically mono-
cytes can be distinguished in different subsets and numerous
studies have tried to attribute different roles to distinct subsets
as monocytes appear to be involved in both pathogenic as well
as reparative inflammatory responses. Inmice, monocytes that
express high levels of the molecule lymphocyte antigen 6c
(Ly-6C) are regarded as pro-inflammatory monocytes. In
mouse MI studies these pro-inflammatory Ly-6Chigh mono-
cytes are recruited from the bone marrow to the infarcted heart
expressing the C-C chemokine receptor 2 (CCR2), where they
remain in high numbers until 3 days after MI, scavenging
debris and secreting inflammatory cytokines and matrix
degrading proteases [20, 21].

The recruitment of neutrophils and monocytes is thus cru-
cial for the initiation of the repair process, but their contribu-
tion is determined by the actual signaling cascades that are
activated. Intracellular components released from necrotic
cardiomyocytes are sensed by innate immune cells that be-
come activated upon tissue entry [22]. The most prominent
pathways by which the innate immune system initiates a post-
infarction inflammatory response are: 1) the Toll-like receptor
(TLR)-mediated pathway; 2) the complement cascade and; 3)
the earlier mentioned ROS. These three pathways all converge
to activate NF-κB, a transcription factor that drives the ex-
pression of numerous genes. In a resting cell the NF-κB dimer
is sequestered in the cytoplasm as an inactive protein bound
by the inhibitor of κB, IκB. Upon activation of the NF-κB
pathway, the IκB protein is degraded, releasing the NF-κB
dimer which then translocates to the nucleus where it regulates
gene expression by binding specific promoter sequences.
Since NF-κB regulates so many different genes ranging from
pro-inflammatory cytokines, chemokines, matrix metallopro-
teinase (MMP) as well as genes involved in cell survival and
proliferation, [23, 24] it is considered as one of the most
important players throughout the whole process of tissue
repair. A recent review summarizes several studies highlight-
ing the participation of NF-κB in post-MI inflammation [24].
A reduction of myocardial infarct size was observed after
ischemia/reperfusion in an experimental model where
NF-κB activity was blocked by prohibiting DNA-binding
using decoy oligodeoxynucleotides, whereas a recent report
by Hamid et al. reported that prolonged activity of NF-κB in
myocardial tissue results in a chronic inflammatory state with
detrimental consequences for infarct healing [25]. Both stud-
ies underscore the role of NF-κB in post-MI inflammation
[26].

TLRs are a family of heterodimeric transmembrane pattern
recognition receptors that recognize and bind antigens derived
from pathogens or damaged tissues, the so called damage-
associated molecular patterns (DAMPs). Upon ligand binding
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most TLRs activate NF-κB leading to the expression of pro-
inflammatory cytokines such as tumor necrosis factor-α
(TNF-α), pro IL-1β and interferons. Among the ten human
TLRs identified, TLR1, 2, 4–6 and 11 are expressed on the
cell surface, whilst TLR3 and 7–9 are expressed in intracellu-
lar vesicles, mostly endosomes. TLRs are pre-assembled as
low-affinity dimers which undergo a conformational
change upon ligand binding. Although initially described
as receptors that recognize pathogen-derived molecules,
several non-pathogenic endogenous molecules have been
identified to bind and activate TLRs. For instance TLR4
binds not only to lipopolysaccharide but also to certain
heat shock proteins and extracellular matrix remnants
such as hyaluronan and fibronectin [27] suggesting a
broad role for TLR4 in tissue injury and repair. It has
been observed that TLR4 is upregulated in injured myo-
cardium of both humans and mice [28]. Also, in TLR4
deficient mice, MI induced hearts were characterized by
reduced left ventricular remodeling with preserved sys-
tolic function, but without affecting the infarct size. The
infarcted area showed increased collagen density with
fewer macrophages and reduced cytokine levels and
MMP activity, identifying TLR4 as an important compo-
nent of the post-MI remodeling process [29]. Next to
TLR activation, the release of DAMPs also triggers the
complement cascade.

The complement system is a network of soluble and
surface bound proteins able of recognizing, tagging and
eliminating microbial intruders and foreign cells via ini-
tiation of the immune response. The complement cascade
consists of three main pathways which are all involved in
immunopathological diseases [30]. In a rat model of MI
it was shown that ischemic myocardial injury activates
the complement cascade, and mRNA and proteins of the
complement pathway are upregulated in areas of MI
[31–34]. The importance of complement pathway activa-
tion in mononuclear cell recruitment was shown in a
canine model of cardiac ischemia in which upon cardiac
reperfusion, the complement pathway induced migration
of monocytes into the myocardium [35]. Studies have
been performed in which certain elements of the com-
plement cascade have been inhibited using cobra venom
or soluble human complement receptor to antagonize
complement signaling. These studies showed a reduction
in myocardial necrosis and a decrease in infarct size
suggesting a role for the complement pathways in myo-
cardial injury [36, 37].

In conclusion, all actions combined result in recruit-
ment of leucocytes to the infarcted area, the clearance of
dead cells and debris and the activation of signaling
cascades leading to the production of a variety of essen-
tial growth factors for repair of the infarcted area, and
the transition towards the proliferative phase [38].

The Proliferative Phase

At this stage neutrophils, mononuclear cells, endothelial cells
and pericytes all work together to resolve the initial inflam-
matory reaction and direct it towards a healing process. Short–
lived neutrophils become apoptotic and release mediators
such as annexin A1 and lactoferrin that suppress further
neutrophil recruitment [39]. The Ly-6Chigh monocytes express
the orphan nuclear hormone receptor, nuclear receptor sub-
family 4, group a, member 1 (Nr4a1) which reduces the CCR2
dependent recruitment of Ly-6Chigh monocytes towards the
infarct. In addition, Ly-6Chigh monocytes differentiate into Ly-
6Clow macrophages in the local cardiac tissue. Ly-6Clow mac-
rophages clear the apoptotic neutrophils and are associated
with an increased presence of the anti-inflammatory factors
IL-10, TGF-β and vascular endothelial growth factor (VEGF)
countering the inflammatory response by recruitment of
myofibroblasts for scar tissue formation and thereby contrib-
uting to infarct healing [20, 40]. A recent study performed by
Hilgendorf et al. indicated another important anti-
inflammatory role for Nr4a1, as cardiac macrophages in
Nr4a1-deficient mice showed a more inflammatory profile
and as a result these animals had a decreased cardiac function
and increased cardiac remodeling in contrast to wildtype
controls following MI [40]. Whilst Ly-6Chigh monocyte levels
decrease, Ly-6Clow monocytes, resident in the cardiac tissue,
peak 7 days after MI and afterwards also decrease. Ly-6Clow

monocytes are also Nr4a1 dependent, as Nr4a1-deficient an-
imals had no Ly-6Clow monocytes in either the cardiac tissue
or the peripheral circulation. The role of Ly6Clow monocytes
is still under investigation, but they are important in the
inflammatory process by the clearance of endothelial necrotic
cells via TLR-7 activation [41]. A recent study showed a
similar monocyte pattern in post-mortem tissue of human
MI patients as mainly CD14+CD16− monocytes were present
in the cardiac infarct tissue in the inflammatory phase after
MI, while in the proliferative phase both CD14+CD16− and
CD14+CD16+ monocytes were observed [42]. Since
CD14+CD16− monocytes in humans are comparable to
Ly6Chigh monocytes in mice [21, 43], this indicates the mono-
cyte response is comparable between species.

The uptake of apoptotic cells by macrophages induces the
release of anti-inflammatory factors such as IL-10 and TGF-β,
and lipid mediators such as lipoxins and resolvins which
further stimulate the removal of inflammatory leukocytes
[23, 44].

After MI, IL-10 becomes highly expressed, mainly by
activated T lymphocytes and monocytes as described above.
As IL-10 inhibits the secretion of IL-1α, IL-1β, TNF-α, IL-6
and IL-8, it suppresses the ongoing inflammation process [5,
23]. In addition, IL-10 induces the production of a group of
peptidases involved in extracellular matrix (ECM) degrada-
tion called tissue inhibitor of metalloproteinases (TIMPs),
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thereby promoting ECM remodeling [10, 45, 46]. IL-10 defi-
cient mice showed an increased mortality concomitant with an
enhanced immune response during myocardial ischemia
followed by reperfusion, as measured by a higher neutrophil
recruitment, elevated plasma TNF-α and a higher expression
of ICAM-1 [47]. In a similar study elevated mRNA levels of
TNF-α and MCP-1 were also observed in the infarcted heart
of IL-10 deficient mice. However, in this study mortality rates
were similar to wild typemice due to the variable effects of IL-
10, affecting the production of numerous cytokines such as
IL-1 and IL-6 [48]. Both IL-1α and IL-1β are upregulated in
experimental models of MI and promote the inflammatory
reaction by the induction of cytokine and chemokine produc-
tion [10]. In contrast, IL-6 appears to have a beneficial role in
tissue repair [11]. IL-6 protects cardiomyocytes against apo-
ptosis and induces cardiomyocyte hypertrophy. IL-6 expres-
sion is induced in the healing infarct, and can be produced by
mononuclear cells, cardiomyocytes and fibroblasts within the
ischemic myocardium [10, 49, 50].

TGF-β is upregulated in experimental models of MI and
initiates the transition from inflammation to fibrosis by pro-
inflammatory cytokine suppression [38]. The secretion of
TGF-β will initiate fibroblast growth as well as angiogenesis,
whereas MMPs and TIMPs produced by the activated macro-
phages aid in the extracellular remodeling of the regenerating
cardiac tissue [5, 10]. Angiogenesis is crucial to provide
oxygen to the injured tissue and maintain cell metabolism
[10]. One of the most important angiogenic factors during
the proliferative phase is hypoxia-inducible factor 1,
expressed early after myocardial ischemia, which upregulates
the chemokine stromal cell-derived factor 1-α (SDF-1) and its
receptors CXCR4 and CXCR7 [51] and activates the release
of VEGF, one of the key growth factors in neoangiogenesis
[52]. After SDF-1 is expressed, hematopoietic stem cells and
endothelial progenitor cells are recruited to the ischemic myo-
cardium where they improve angiogenesis as has been dem-
onstrated by several studies [51, 53–57]. PDGF signaling
induces maturation of the neovessels via the formation of a
mural coat of pericytes surrounding the vessel. Withdrawal of
PDGF from this process leads to apoptosis of the endothelial
cells [58].

Inhibition of TGF-β during the early inflammatory phase
after myocardial injury results in a significant increase in
mortality and an exacerbated left ventricular dilatation via
enhanced cytokine synthesis in mice [59] Moreover, TGF-β
inhibits immune cell proliferation and stimulates fibroblasts to
produce ECMproteins such as collagens, fibronectin, tenascin
and proteoglycans and ultimately suppresses matrix degrada-
tion via inhibition of proteinases such as plasminogen activa-
tors and collagenases while stimulating production of protein-
ase inhibitors such as plasminogen activator inhibitor-1 and
TIMPs [60–62]. Resident cardiac fibroblasts entering the in-
farcted tissue differentiate to myofibroblasts that express

contractile proteins such as α-smooth muscle actin.
Myofibroblast differentiation is induced by mechanical stress,
TGFβ/Smad3 signaling and alterations in the composition of
the ECM such as up regulation of ED-A fibronectin [63, 64].
These myofibroblasts are predominantly present in the infarct
border zone and have a high proliferative capacity [10, 65].
They are the main source of ECM proteins needed to generate
a collagen scar [66]. Induction of the pro-inflammatory cyto-
kine TNF-α diminishes ECM collagen synthesis followed by
an increase of theMMP activity of cardiac fibroblasts [10, 67].
However, TNF-α deficient mice are protected from cardiac
rupture and chronic dysfunction following infarction [68],
indicating the pleiotropic role of the cytokine.

One of the important ECM constituents is hyaluronan, a
high molecular weight polymer under physiologic conditions,
which becomes degraded upon tissue injury. Hyaluronan frag-
ments stimulate endothelial cells and macrophages to secrete
pro-inflammatory cytokines and chemokines and clearance of
these fragments precedes the resolution of the inflammatory
phase [10, 69, 70]. Finally, there is an accumulation of mast
cells during cell proliferation and fibrosis [71]. The exact role
of mast cells in the process of cardiac inflammation and repair
is still under investigation, but one function of mast cells
might be the regulation of fibrosis by the secretion of MMPs
[72], inducing tissue remodeling. The summation of these
processes finally leads to the formation of highly vascularized
granulation tissue and abolition of the pro-inflammatory en-
vironment enabling repair.

The Maturation Phase

The formation of the scar, initiated during the proliferative
phase, is followed by its maturation when endothelial cells
have proliferated to form an extensive microvascular network.
Only a part of these vessels mature through the mural wall
formation by pericytes and myofibroblasts. These mature
vessels aid scar stabilization by providing oxygen and nutri-
ents [23]. However, the remainder of neovessels do not mature
and undergo apoptosis together with the remaining
myofibroblasts [63]. The highly-vascularized granulation tis-
sue formed during the inflammatory phase, is finally replaced
by a collagen-rich scar, completing the process of infarct
healing [10]. The site of coronary occlusion, duration of
ischemia and timing of reperfusion all influence the inflam-
matory process and therefore the time course of infarct healing
will vary between individuals.

After completion of the reparative response, some fibro-
blasts remain in the non-infarcted myocardium and may be-
come activated via increased wall stress where they contribute
to ventricular remodeling and ventricular dysfunction by pro-
ducing matrix proteins and proteases [63]. Increasing the
number of myofibroblasts as well as the number of capillaries
by blocking frizzled signaling via Wnt3a and Wnt5a
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antagonizing peptides reduced infarct size and increased in-
farct thickness in a mouse model of MI, suggesting that
preservation of cardiac function after MI can (amongst others)
be influenced by modulation of myofibroblasts [73].

In conclusion, inflammatory processes play a crucial role
initially clearing the debris of apoptotic cells but also regulat-
ing essential repair mechanisms to form mature scar tissue.
However, an elaborate immune response clearing as much
damaged cellular tissue as possible also induces undesirable
collateral damage to surrounding healthy tissue.

Therapeutic Approaches TargetingCardiac Inflammation
and Ischemia–Reperfusion Injury After Myocardial
Ischemia

The progress made in understanding cardiac inflammation
initiated experimental studies aiming to modulate the unwant-
ed cardiac tissue injury induced by post-MI inflammation and
reperfusion therapy. Initial studies targeting pathways of oxi-
dation, inflammation, sodium-hydrogen exchange, nitric ox-
ide metabolism and metabolic pathways showed positive re-
sults on clinical parameters such as reduction of infarct size;
however these results need confirmation in large trials [74,
75]. The purine analogue acadesine, which increases adeno-
sine levels in energy-deprived tissues, has been studied as a
pharmalogical intervention in an ischemia-reperfusion setting
[76]. A meta-analysis summarizing all studies that have tested
acadesine in 4043 patients undergoing coronary artery bypass
grafting (CABG) surgery, suggested a 27 % reduction of the
perioperative occurrence of MI (3.6 vs 4.9 %, P=0.02) and a
26 % decrease in the combined outcome of stroke/MI/cardiac
death (7.6 vs 4.6 %, P=0.04) [77]. However, the largest trial
performed called the Reduction in cardiovascular Events by
acaDesine trial in subjects undergoing CABG surgery (RED-
CABG), was stopped after 3080 of the originally projected
7500 study participants were randomized because of a low
expectancy to obtain statistically significant differences. This
underscores that beneficial effects are variable.

One of the earliest results of pharmacological intervention to
inhibit the inflammatory response after MI was described by
Roberts et al. who infused multiple doses of the anti-
inflammatory drug methylprednisolone in patients with MI and
reported an augmentation of the infarct size and accentuation of
malignant arrhythmias. These catastrophic results of the meth-
ylprednisolone study made clear that an absolute suppression of
the immune system after MI is not desirable for it also interferes
with the reparative aspects of the immune response [23, 78].

A growing number of alternative promising therapeutic
interventions targeting the cardiac inflammation process, in-
cluding ischemic pre- or post-ischemic conditioning, has been
proposed and in part already investigated in patients or is about

to be examined in clinical trials [79–81]. Recently, Padfield
et al. determined the effects of etanercept, a TNF-α antagonist,
in patients after MI. Whereas they observed a modest anti-
inflammatory effect possibly through a decrease in neutrophil
recruitment and IL-6 concentrations, TNF-α levels were in-
creased as were platelet activators and aggregators, making it
less suitable as a therapeutic candidate to treat MI [82]. In
another study, patients were treated with intravenous immu-
noglobulin after PCI, however without any beneficial effect on
either cardiac function or remodeling [83]. A large trial inves-
tigating the effects of pexelizumab, an antibody binding the
C5 component of complement, did not influence mortality or
development of heart failure in cardiac patients [84].

Other promising therapeutic interventions showed con-
trasting results. The immunosuppressive drug cyclosporine
that inhibits the opening of mitochondrial permeability-
transition pores caused smaller infarct sizes and attenuated
left ventricular remodeling in initial clinical trials when ad-
ministered after primary PCI [85, 86]. However this was not
reproduced in a more recent trial where cyclosporine was
injected before thromobolytic treatment [87]. Blockade of
the IL-1 receptor by anakinra attenuated cardiac remodeling
in a first small pilot study in MI patients [88]. A second study
however, did not confirm these results [89].

So far, the effects of different anti-inflammatory therapies
are incongruent and their clinical applicability remains un-
clear. More importantly, this therapeutic approach will only
attenuate the results of the inflammation process itself, among
which the remodeling process. Here lies a role for the still
emerging field of cell-based therapy, as this may influence the
post-MI inflammation process, but also potentially regenerate
the infarcted tissue [90].

Cell-Based therapy

While the amount of therapeutic strategies to treat ischemic
events has increased dramatically the past decade, patients are
often still prone to develop heart failure, since there are no
therapeutic options available to reverse the loss of functional
myocardium. Therapeutic cell therapy has the advantage that
it can be delivered locally into infarcted tissue, either as a cell
suspension or on a supportive scaffold. Additionally, genetic
modification allows for cells to be custom-tailored to improve
results.

Moreover, certain stem cell populations such as mesenchy-
mal stromal cells (MSCs) have the additional advantage of
diminishing the deleterious effects of the inflammatory re-
sponse that accompanies repair by secretion of different para-
crine factors acting on several immune cell populations [91,
92]. However, the potential of cell therapy to influence post-
MI inflammation has not been studied extensively yet, leaving
for the moment a gap in our knowledge about the effect and
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capacity cell therapy might have in modulating post-MI in-
flammation. The field of stem cell transplantation was accel-
erated a decade ago by a preclinical study that reported im-
proved cardiac regeneration upon infusion of bone marrow-
derived cells into a cardiac ischemic mouse heart [93]. These
results initiated a new area of research, exploring the potential
of cell therapy to regenerate the diseased heart and clinical
trials quickly followed.

The ideal cardiac regenerative therapy involves a cell type
that is easily accessible, produces the optimal combination of
paracrine factors, is able to engraft in the injured cardiac tissue
niche, can possibly even differentiate into a cardiomyocyte or
other desired cardiac cell types, and can be delivered via a safe
and minimally invasive procedure. In search for this cell type,
a variety of cell populations are being studied, all initially
aimed toward regenerating cardiac tissues, each having their
own advantages and limitations [94].

Transplantation of various cell types such as hematopoietic
and non-hematopoietic bone marrow-derived stem cells as
well as MSCs and other adult stem cells has been performed
in experimental and clinical studies with the purpose to stim-
ulate neoangiogenesis [95]. It is reported that therapeutic cell
therapies can regulate tissue inflammation through paracrine
mechanisms acting on angiogenesis, apoptosis and scar for-
mation and are able to potentiate recruitment of endogenous
stem cells to the site of injury [90, 92]. In addition, there are
cell types that have proven to be able to form de novo
cardiomyocytes, such as embryonic stem cells, induced plu-
ripotent stem cells and cardiac progenitor cells (CPCs) [96].
The CPCs can be isolated from the adult heart and show
spontaneous electrical activity and action potentials upon
appropriate in vitro differentiation [97].

In the cardiac field, the effect of cell therapy has been
studied in different animal models, but studying inflammation
has not been a main focus in these studies (Table 1).

Mesenchymal Stromal Cells

Over the last years many studies have focused on the thera-
peutic potential of MSCs in different diseases in animals and
humans, due to their versatile nature which includes their
immunomodulatory capacities. This cell type was first de-
scribed by Friedenstein et al. in 1968 and has already been
studied in clinical trials [98]. The MSC is a rare population of
multipotent cells, present in bone marrow and other mesen-
chymal tissues like adipose tissue. MSCs are poorly defined
but ex vivo expanded MSC populations are traditionally char-
acterized by the presence of surface antigens CD90, CD73,
CD105 and MHC-I and the absence of characteristic hemato-
poietic cell surface antigens such as CD45, CD34, CD80 and
MHC-II. MSCs are capable of differentiating into multiple
mature cell lineages including chondrocytes, osteoblasts and

adipocytes. Due to its limited plasticity and restricted lifespan
the MSC has a major theoretic advantage regarding safety
compared to the ES and IPS cell, with a reduced risk of
tumorigenicity, a major concern of therapeutic cell products.
Whilst most cell populations are studied for their potential to
regenerate damaged tissues, the MSC is additionally capable
of dampening deleterious aspects of the immune response that
accompanies injury. Inhibition of undesired immune re-
sponses by MSC infusion has been observed in experimental
animal models for various diseases and underscores the po-
tential of MSCs for clinical immune regulation [99]. The
clinical applicability of MSCs for immunological disease
was initially shown in patients with graft-versus-host disease
(GvHD) after bone marrow transplantation [100] . In a suc-
cessive phase II study it was found that MSC administration
improved the manifestations of GvHD in the majority of
patients [101]. These positive results of MSC therapy led to
MSCs entering various clinical trials. Notwithstanding the
positive effects of MSCs, the cellular and molecular mecha-
nisms responsible are complex, probably multifactorial in
nature and poorly understood.

MSCs are immunosuppressive in vitro, evidenced by their
ability to suppress the proliferation of T-cells and their effect
on cytokine profiles [102–104]. Furthermore, MSCs are able
to induce the formation of CD4+CD25+FOXP3+ regulatory
T cells [105], and interfere with the differentiation, maturation
and function of antigen presenting dendritic cells, thereby
directly affecting processes such as immunity and tolerance
[106]. Huang et al. showed that neither infusion of allogenic
nor syngeneic MSCs after MI in rats elicited a significant
immune response, confirming the lack of immunogenic sur-
face antigen expression or expression of antigens in an immu-
noregulatory fashion on such MSCs. Syngeneic MSC therapy
improved cardiac function up to 6 months after infusion when
compared to controls, whereas allogeneic MSC therapy im-
proved cardiac function up to 3 months only. However,
in vitro treatment before infusion ofMSCswith 5-azacytidine,
VEGF or TGF-β in an effort to stimulate differentiation
towards myogenesis, endothelial cells or smooth muscle cells
respectively, altered the immunogenic surface antigen expres-
sion profile of these cells, potentially triggering an immune
response in vivo after allogeneic MSC infusion [107].

We recently demonstrated that MSCs act on monocyte
differentiation, promoting the formation of anti-
inflammatory IL-10 producing cells with low antigen present-
ing capacity [108]. MSCs have also been reported to inhibit
the proliferation of B lymphocytes upon anti-Ig antibody,
soluble CD40 ligand or cytokine-mediated activation [109]
and have been suggested to inhibit IL-2- and IL-15-induced
natural killer-cell proliferation [110]. In summary, these stud-
ies demonstrate the immunomodulatory capacities of MSCs
in vitro, however the biological relevance of these findings
in vivo is still largely unknown [111].
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The first in vivo results were obtained in an experimental
model of GvHD in which systemically infused MSC im-
proved survival of mice transplanted with haplo-identical
hematopoietic stem cell grafts [112, 113]. However, in another
study injection of a single dose of MSCs did not ameliorate
GvHD [114]. In the cardiac field, MSC infusion has been
studied in different animal models. MSC transplantation after
MI in a rat model showed an attenuation of the decline in
cardiac function and the remodeling process, which may be
explained by the anti-inflammatory properties of MSCs as the
expression of TNF-α, IL-1β and IL-6 was reduced in these
animals [115]. Infusion of MSCs in a rat MI model using a
Langendorff apparatus also resulted in the highest preserva-
tion of cardiac function when compared to controls, most
likely by a decrease of the pro-inflammatory cytokines
TNF-α, IL-1 and IL-6. In addition, apoptosis was reduced,
suggesting a beneficial role for MSC in apoptotic signaling,
possibly via a signal transducer and activator of transcription 3
pathway [116]. This decrease in the pro-inflammatory cyto-
kines TNF-α, IL-1 and IL-6 was also observed after injecting
MSCs combined with either atorvastatin [117] or simvastatin,
in a porcine MI model [118]. Herrmann et al. showed
that infusion of MSCs, both naïve cells and cells pretreated
with TGF-α decreased infarct size and preserved cardiac
function, possibly through lowering of the TNF-α, IL-1β
and IL-6 expression and increasing VEGF expression in a
rat MI model [119]. The increased expression of VEGF by
MSC therapy was also demonstrated after application of
MSC/silk fibroin/hyaluronic acid patches in an MI model in
rats, in addition to a decreased inflammatory response as
demonstrated by reduced CD 68 expression [120]. Kim
et al. showed preservation of cardiac function by infusion
MSCs as well, with enhanced MSC engraftment and cardiac
function preservation after TNF-α stimulation [121]. Lee et al.
infused MSCs in an experimental MI mouse model where
cells were afterwards cells entrapped in the lungs forming
micro-emboli [122]. Subsequently, signals from the injured
heart induced MSCs to secrete the anti-inflammatory protein
tumor necrosis factor-inducible gene (TSG) 6 protein which
suppresses the excessive and thereby deleterious inflammato-
ry response involved in cardiac ischemia. This limited the
protease release by macrophages and neutrophils, decreasing
the damage to cardiomyocytes. Ultimately, an improvement of
cardiac function and a decrease in scar formation of the left
ventricle was observed. TSG-6, secreted by MSCs, has been
shown to be a key anti-inflammatory factor in many other
experimental disease models such as bleomyocin-induced
lung injury, sterile cornea injury, and zymosan-induced peri-
tonitis [123–126].

The importance of the SDF-1 release by MSCs in the
process of cardiac repair of MI was recently demonstrated in
a model in conditional cardiac myocyte CXCR4 null mice
[127]. In the absence of CXCR4, the SDF-1 receptor,

preservation of cardiac function by MSCs is no longer ob-
served, possibly due to a decrease in the recruitment of stem
cells or an increase in apoptosis. An earlier study injected
MSCs that over-expressed SDF-1, which resulted in increased
angiogenesis through VEGF expression and subsequently
preservation of cardiac function [128].

Dayan et al. showed that MSC therapy after MI in a mouse
model decreased the number of monocytes and pro-
inflammatory M1 phenotype macrophages. Also, in vitro
and in vivo data demonstrated that the amount of M2 pheno-
type macrophages, which are associated with an anti-
inflammatory phenotype, was increased, which was thought
to be mediated by MSC secretion of the anti-inflammatory
factor IL-10 [129]. This MSC-mediated switch from M1
phenotype to M2 phenotype macrophages was recently con-
firmed by another group [130]. In vitro experiments proposed
that the modulation of macrophages may be dependent on
cell-to-cell contact, as the secretion of reparative cytokines
was highest in cultures of MSCs mixed with macrophages
[130].

While the therapeutic effectiveness of MSCs has been
shown in a number of studies as described above, the mech-
anisms through which MSCs act remain still unknown.
Purported beneficial immunomodulatory factors derived from
MSCs in addition to TSG-6, include inducible nitric oxide
synthase, indoleamine dioxygenase, CCL2, SDF-1, IL-10 and
prostaglandin E2. In addition, immunomodulatory effects
may rely on pathways acting on specific immune cell popu-
lations or via cell-cell contact with dendritic cells, macro-
phages or other cells of the immune system [90, 91, 111,
130–132]. Clearly this must be studied more intensively and
much progress will be made when the in vivo fate of MSCs
can be determined to clarify the cellular interactions that are
made during the initiation and ongoing process of repair.

Clinical Trials of MSCs

MSC therapy is at present being studied in various clinical
trials for their efficacy in inflammatory and degenerative
disorders. However, when entering the clinical arena potential
risks have to be taken into account: the immunogenicity of the
cells, the biosafety of medium components, the risk of ectopic
tissue formation and potential in vitro transformation of cells
during expansion [133].

The ClinicalTrials.gov web-based resource has summa-
rized a large number of clinical trials that involve MSC
therapy targeted against various diseases. One of the key
clinical trials performed is a phase II trial in which 55 patients
with steroid resistant acute GvHD were treated with MSCs
[101]. In the 60 months follow up, infusion of in vitro ex-
panded MSCs was considered a possibly effective therapy for
this specific patient group. The mode of action of MSCs in
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GvHD seems highly related to their immune modulatory
properties.

In the cardiac field MSC therapy has also been evaluated in
numerous studies [134]. In 2004, a study of autologous bone-
marrow-derived MSC infusion in patients with acute MI was
performed [135]. In 69 patients undergoing PCI after acute MI
significant improvements in left ventricular function were
found, which were assessed by echocardiographic monitoring.
The first phase-I, randomized, double blind, placebo-con-
trolled, dose-escalation study of intravenous allogeneic adult
MSCs in patients with acute MI was completed in 2009,
suggesting it was safe to use allogeneic MSCs in patients after
acute MI [136]. The same group reported in 2012 a direct
comparison of autologous versus allogeneic bone marrow-
derived MSCs in ischemic cardiomyopathy patients showing
low rates of treatment-emergent serious adverse events, in-
cluding immunologic reactions. A recent trial in ischemic
cardiomyopathy patients showed no adverse effects of MSC
injection and encouraging beneficial results, though the study
size was small [137]. Injection of MSCs in chronic ischemic
cardiomyopathy patients during CABG surgery showed a
promising improvement of cardiac function and decreased
scar size, however due to lack of placebo and small study size
results are not conclusive [138]. Our group recently reported
that intramyocardial injection of autologous MSCs using the
NOGA injection system in acute MI patients was safe up to
5 years after injection, and was associated with improved
cardiac function as compared to baseline [139]. In aggregate,
the MSC injection favorably affected patient functional ca-
pacity, quality of life, and ventricular remodeling [140].

The current experimental and clinical data available indicate
that MSC therapy is feasible and safe, and neither early toxicity
nor later side effects have been found to date. However, long-
term follow up studies in larger patient cohorts are warranted to
give definitive answers whether long-term adverse events may
occur [141]. The latest findings suggest that patients receiving
cell therapy mainly experience beneficial results on clinical
outcomes instead of objective parameters regarding cardiac
function [134]. At present it is not clear whether the beneficial
effect of MSCs in cardiac patients is also caused by a beneficial
effect on post-MI inflammation or by other mechanisms. More
research is needed to address this issue.

Summary and Future Perspectives

This review describes the role of the immune system in the
healing processes following an acute ischemic event. The
inflammatory response that occurs after MI is a precarious
balance, since it is indispensable in the clearance of cell debris
and ultimately the formation of a collagen scar but the path-
ways necessary for a timely initiation, suppression, resolution,

and containment of the inflammatory response can also cause
additional injury to the heart. When certain aspects of this
inflammatory process triggered by cardiac injury are exces-
sive, ultimately infarct expansion and adverse remodeling of
the infarcted heart can occur [142, 143]. However, it is not
fully known if suppression of the detrimental part of the
inflammatory response would prevent the adverse remodeling
and concomitant worse outcome in patients withMI and if this
therapeutic goal can be reached clinically. Modulating the
immune response after myocardial damage is a road less
travelled that might be a promising therapeutic option for
cardiac disease. Of all cell types, the MSC currently seems a
suitable candidate for this specific goal, based on the proven
immunomodulatory properties, in addition to the ability to
secrete angiogenic factors such as VEGF, important for
neoangiogenesis [144, 145]. Infusing MSCs in the ischemic
myocardium therefore might not only improve cardiac func-
tion by dampening excessive immune responses but also
induce growth of new vasculature. Recapitulating the studies
on the physiologic function of MSCs in regulating the im-
mune system in the hematopoietic niche and their ability to
modulate immunity in cardiac disease might be a feasible
option to move forward [146–148].
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