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Abstract Atherosclerotic lesions initiate in regions charac-
terized by low shear stress and reduced activity of endo-
thelial atheroprotective molecules such as nitric oxide,
which is the key molecule managing vascular homeostasis.
The generation of reactive oxygen species from the vascu-
lar endothelium is strongly related to various enzymes, such
as xanthine oxidase, endothelial nitric oxide synthase and
nicotinamide-adenine dinucleotide phosphate oxidase. Sev-
eral pharmaceutical agents, including angiotensin
converting enzyme inhibitors, angiotensin receptors
blockers and statins, along with a variety of other agents,
have demonstrated additional antioxidant properties beyond
their principal role. Reports regarding the antioxidant role
of vitamins present controversial results, especially those
based on large scale studies. In addition, there is growing
interest on the role of dietary flavonoids and their potential
to improve endothelial function by modifying the oxidative
stress status. However, the vascular-protective role of fla-
vonoids and especially their antioxidant properties are still
under investigation. Indeed, further research is required to
establish the impact of the proposed new therapeutic strat-
egies in atherosclerosis.
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Introduction

Atherosclerosis is the underlying condition in most cardiovas-
cular diseases (CVDs), which are the leading cause of death in
Western societies. It is a chronic systemic disease affecting the
entire arterial tree, associated with impaired inflammatory
status [1, 2]. Moreover, endothelial dysfunction (ED) due to
decreased nitric oxide (NO) bioavailability and activity plays
a pivotal role in the initiation and progression of atheroscle-
rosis [3]. Accordingly, ED is now considered an important
early event in the development of atherosclerosis as it seems to
precede atherosclerotic lesions in coronary vessels, and even
occurs in offspring with a positive history for CVDs [4].

More specifically, NO is a key molecule managing endo-
thelial function and vascular homeostasis [5], while reduced
production of NO or increased production of reactive oxygen
species (ROS) promotes ED. Thus, oxidative stress plays a
crucial role in the pathogenesis and development of CVD [6].

Consequently, a range of antioxidant strategies have been
tested with the aim to improve ED [7, 8]. Novel antioxidants
have shown encouraging results. However, the available data
are inadequate. Recently, a growing body of evidence has
indicated the role of dietary modification. Particularly, dietary
flavonoids appear to have the potential to restore endothelial
function by decreasing oxidative stress status, though the
suggested mechanisms mediating their effects are not fully
evaluated [9, 10].

In the present review article, we aim to provide an over-
view of the physiological pathways involved in oxidative
stress and in the pathophysiology of atherosclerosis. Further,
we will focus on the available therapeutic strategies for
targeting redox signaling in vascular endothelium.
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Vascular Endothelium

The vascular endothelium consists of a thin semipermeable
layer of cells covering the internal surface of vessels and
forming a boundary between the vessel wall and blood flow.
Its structural and functional integrity is vital for the protec-
tion of the vessel wall and circulatory function. Endothelial
cells (ECs) have several functions, exerting significant auto-
crine, paracrine and endocrine actions and influencing
smooth muscle cells (SMCs), platelets and circulating
leucocytes [11].

It is worth noting that there is a considerable phenotypic
deviation between ECs in different parts of the vascular sys-
tem, expressing different surface antigens and receptors and in
turn generating different responses to the same stimulus. Sim-
ilarly, ECs’ in vivo responses may differ from in vitro re-
sponses seen in cultures of ECs’ lines used in many studies
[12].

Over the last decade, the vascular endothelium has
emerged mostly as a paracrine organ responsible for the
secretion of several beneficial substances with anti-
atherogenic effects. It regulates body homeostasis and
affects thrombosis, thrombolysis, platelet adherence, vascu-
lar tone and blood flow. It is involved in many disease
processes, including atherosclerosis, arterial and pulmonary
hypertension, sepsis and inflammatory syndromes which
are related to endothelial injury, dysfunction and activation
[13].

NO bioavailability is well-known to exert multiple actions
on the vascular endothelium (Table 1). It is capable of revers-
ing constrictive effects of acetylcholine, leading to vasorelax-
ation and maintaining the balance against various
endothelium-derived contracting factors, such as endothelin-
1 and thromboxane A2, thereby modulating vascular tone.
Beyond this role, decreased NO bioavailability crucially par-
ticipates in atherothrombosis, given the NO antithrombotic,

Table 1 Physiological role of nitric oxide [14, 15]

* Relaxing factors (particularly NO) predominate over constrictive factors
in normal endothelium

» It promotes endothelium-dependent vasodilation

« It decreases the vasoconstrictive effect of increased Ca®" in smooth
muscle cells in normal endothelium

« Its release may participate in the regulation of basal systemic and
coronary tone, especially at the level of the arterioles

« It inhibits the production of a variety of immunomodulatory cytokines
by macrophages

« It diminishes endothelial permeability, acting predominantly as an anti-
inflammatory agent

« It plays a critical role in reducing leukocyte adherence to the endothelium
« It decreases platelet aggregation and adherence
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antiapoptotic, anti-inflammatory and antioxidant effects.
Thus, several pathophysiological conditions such as accu-
mulation of ROS, oxidative stress, inflammation, increased
adhesion molecules, insulin resistance, decreased shear
stress etc., participate in the induction of ED, mainly
through a decrease in endothelium-dependent vasodilation
[14, 16, 17].

Indisputably, loss of the functional integrity of the endo-
thelium and of its anti-atherogenic effects causes a shift of the
action of the endothelium towards reduced vasodilation, in-
flammation and thrombosis [18] (Fig. 1) and plays a major
role in all stages of atherosclerosis, from plaque formation to
rupture [19, 20].

Furthermore, several studies have extensively explored
ED with respect to its clinical utility as a biomarker in risk
prediction [21, 22]. In particular, ED as estimated by the
existing invasive and non-invasive techniques could serve as
a useful diagnostic and potentially prognostic tool in coro-
nary artery disecase (CAD) [23]. Regarding non-invasive
techniques, peripheral vascular endothelial function can be
assessed by strain gauge venous plethysmography, which
evaluates forearm blood flow changes in response to direct
intra-arterial administration of agonists or during reactive
hyperemia [24]. However, another technique assessing
endothelium-dependent flow-mediated dilation (FMD) of
the brachial artery using high resolution ultrasound in the
brachial circulation, has been widely accepted as a low-cost
and easily to perform test [25]. FMD has been found to
predict cardiac events in subjects with stable CAD, periph-
eral arterial disease and in post-myocardial infarction (MI)
patients [26-28].

Oxidative Stress and Atherosclerosis Pathophysiology

Atherosclerosis is well known as a disease of the large and
medium-sized arteries. It develops progressively, starting at
the beginning of life and leading to the formation of athero-
sclerotic plaques [29]. ED, which is considered an early step in
the progression of atherosclerosis, is linked to low NO bio-
availability. Low NO bioavailability is due either to decreased
production by the endothelium or increased NO inhibition by
ROS [30].

The second step in the pathophysiology of atherosclerosis
is the passage of plasma LDL into the arterial wall. The strong
association between hyperlipidemia and atherosclerosis has
been previously recognized and lipid-laden macrophages or
foam cells are documented as a hallmark of the disease [31].
More specifically, plasma LDL is transported across the en-
dothelium and is trapped in the subendothelial space where it
is oxidized to produce highly oxidized LDL. These molecules
are potent inducers of inflammatory molecules which stimu-
late inflammatory signaling by ECs, through releasing
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Fig. 1 Pathophysiological
mechanisms contributing to
atherosclerosis. Abbreviations:
NADPH, Nicotinamide adenine
dinucleotide phosphate-oxidase;
ROS, Reactive oxygen species;
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chemotactic proteins and growth factors, and by further
recruiting monocytes into the arterial wall [32].

Concurrently, monocytes entering into the arterial
wall differentiate into macrophages incorporating choles-
terol from lipoproteins and remain in the subendothelial
space. The oxidized LDL particles are taken up by
macrophages which then can induce a local inflamma-
tory response [32]. Chemokines, which are produced in
response to oxidized lipoproteins, participate in the
transendothelial migration of adherent monocytes. Ac-
cordingly, oxidative stress status alters the expression of
adhesion molecules, such as vascular cell adhesion
molecule-1 (VCAM-1). Moreover, the expression of a
number of proinflammatory cytokines and other
inflammation-induced molecules like CD40 ligand are
strongly related to redox-sensitive factors such as the
nuclear factor-kB [33, 34].

The final consequence of the evolution of atheroscle-
rosis is the formation of plaques with thin fibrous caps
which are the result of increased collagen breakdown by
matrix metalloproteinases and decreased collagen syn-
thesis by dysfunctional or apoptotic SMCs [35]. Finally,
the significant contribution of macrophages to the rup-
ture of the thin fibrous cap has been well-recognized, as
plaques are likely to rupture at sites of increased mac-
rophage content [36].

Obviously, these observations are of major impor-
tance, as they have provided not only mechanistic links
between lipoproteins and cell biology of atherosclerosis,
but have also provided concepts for potential therapeutic
interventions.

[ Recruitment ]

Y — Endothelial
Arterial wall dysfunction Adhesion and
thickening migration
ATHEROSCLEROSIS

Therapeutic Interventions Targeting Oxidative Stress

As it is widely established that ED leads to atherosclerosis,
significant effort has been devoted to improving clinical out-
come by modulating vascular redox state. There are various
therapeutic strategies intending to improve or restore ED
targeting oxidative stress. Some of them are effective while
others are promising or under investigation (Table 2).

Angiotensin Converting Enzyme Inhibitors and Angiotensin
Receptor Blockers

According to clinical and experimental data, angiotensin
converting enzyme (ACE) inhibitors and angiotensin receptor
blockers (ARBs) seem to exert beneficial anti-atherosclerotic
and anti-ischemic effects [44—46]. Growing data indicate that
ACE inhibitors and ARBs are capable of reversing ED, ath-
erosclerosis and vascular inflammation and may decrease the
burden of CVDs [47-50] . Moreover, from data based on
vascular response to acetylcholine, on B-mode ultrasound
evaluation of atherosclerotic progression in the carotid artery
and on the progression of CAD using quantitative coronary
angiography, it is evident that ACE inhibitors and ARBs may
increase plaque stability and reduce cardiac events [51-53].
Disparity exists concerning the endothelial protective ef-
fects of different anti-hypertensive regimes. In particular, cal-
cium channel antagonists improve endothelial function in the
microcirculation while ACE inhibitors and ARBs mostly do
so in conduit arteries [54]. Interestingly, a sulthydryl group
confers to ACE inhibitors some additional properties to those
of ARBs, such as scavenging of superoxide anion, greater
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Table 2 Established and novel treatments of oxidative stress in atherosclerosis

Author Treatment Comments

Desideri G et al. 2008 [37] Zofenoprilat/Captopril In HUVECs zofenoprilat and, to a lesser extent, captopril reduced oxidative stress

Poss J te al. 2010 [38] Aliskiren In apolipoprotein E deficient mice aliskiren reduced atherosclerotic plaque area in
parallel with reduced vascular NADPH oxidase activity

Kobayashi N et al. 2010 [39]  Eplerenone Eplerenone in rats after hind limp ischemia significantly decreased the NADPH

oxidase p22, p47, gp91

Noda K et al. 2012 [40] Spironolactone/Olmesartan

In rats spironolactone in combination with olmesartan suppressed myocardial lipid

peroxidation, in association with an attenuation of NADPH

In angiotensin Il-treated rats nebivolol inhibited upregulation of the activity and

expression of the vascular NADPH oxidase

In CAD patients undergoing bypass surgery oral atorvastatin directly improves vascular

NO bioavailability and reduces vascularsuperoxide

In spontaneous hypertensive rats pioglitazone abolished the increased vascular ROS

production and NOX-1 levels

Enrichment of human vascular endothelial cells with vitamin C lowers their capacity

to oxidize LDL

Oelze M et al. 2006 [41] Nebivolol
Antoniades C et al. 2011 [17] Atorvastatin
Hermanz R et al. 2012 [42] Pioglitazone
Martin A et al. 1997 [8] Vitamin C

Tsai KL et al. 2012 [43] Coenzyme Q10

In HUVECs coenzyme Q10 attenuated the generation of ROS and improved the

antioxidant capacity

Wind S et al. 2010 [7] Triazolo pyrimidines

Specific NADPH oxidase inhibitors (triazolo pyrimidines) consistently inhibited

NADPH oxidase activity in low micromolar concentrations

HUVECs, Human vascular endothelial cells; NADPH, nicotinamide adenine dinucleotide phosphate-oxidase; CAD, Coronary artery disease; NOX-1,
NADPH oxidase 1; LDL, Low density lipoprotein; ROS, reactive oxygen species

protection against LDL oxidation and nuclear factor kappa-
light-chain-enhancer of activated B cells activation, leading to
more pronounced favorable effects on NO balance in vascular
ECs [55].

More specifically, zofenoprilat (zofenopril prodrug) and to
a less significant extent captopril, have been demonstrated to
decrease generation of ROS induced by tumor necrosis-alpha
(TNF-) in human umbilical vein ECs [37].

Moreover, ACE inhibitors, beyond their decreasing effect
on angiotensin II levels, also decrease the degradation of
bradykinin. Elevated bradykinin levels oppose the negative
actions of angiotensin II with parallel antiapoptotic actions. As
Oeseburh et al. have shown, by adding bradykinin in cultured
bovine aortic endothelial cells, bradykinin protects against
oxidative stress-induced endothelial cell senescence [56].
The endothelial protective and anti-oxidative role of bradyki-
nin was further confirmed by Kobayashi et al. who found that
treatment of hypertensive rats with quinapril and a bradykinin
B2 receptor antagonist did not achieve up-regulation of eNOS
and down regulation of lectin-like oxidized LDL receptor-1 as
was the case in rats treated only with quinapril [57].

Importantly, evidence from the EUROPA study in CAD
patients has shown that blood pressure reduction with
perindopril by itself does not explain the observed benefits
[58]. In addition, treatment with perindopril resulted in up
regulation of eNOS protein expression and activity [59]. Sim-
ilar results concering the role of perindopril on bradykinin
increase and in endothelial function improvement were also
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reported from sub-studies of EUROPA [60, 61]. Interestingly,
we have to notice that the effect of ACE inhibitors on brady-
kinin may vary between ACE inhibitors and may depend on
the degree of tissue affinity of specific ACE inhibitors, with
perindopril having the highest selectivity for the bradykinin
binding sites [62, 63].

Olmesartan, an ARB, has also exhibited beneficial proper-
ties regarding progression of coronary atherosclerosis
(OLIVUS) [52, 53], reduction of inflammatory biomarkers
in hypertension (EUTOPIA) [64] and improvement of
intima-media thickness (IMT) in patients with diagnosed ath-
erosclerosis [65, 66]. Of note, valsartan compared to
amlodipine has exhibited an enhanced vasodilatory response
after co-infusion of acetylcholine and L-NG-monomethyl
Arginine in a double-blind, crossover trial [67]. Even though
the underlying physiological mechanisms have not been
elucidated yet, this trial supported that valsartan reversed
ED through both NO-dependent and independent pathways,
while amlodipine had only a partial effect on NO
bioactivity.

Conclusively, although ARBs appear to have some
vasoprotective effects, in clinical trials only ACE inhibitors
have proven their efficacy in reducing total mortality in sub-
jects with heart failure [68], vascular disease [48], or diabetes
[69]. However, not all clinical trials have demonstrated that
ACE inhibitors reduce all-cause mortality in patients with
atherosclerosis and preserved left ventricular function [70].
ARBs can be used instead of ACE inhibitors but no clinical
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outcome studies have shown a beneficial effect of ARB in
stable CAD [71].

Renin Inhibitors

Aliskiren is the only direct renin inhibitor used in clinical
practice for its antihypertensive properties. Animal studies
suggest that aliskiren down-regulates pro-atherogenic cells
and reduces atherogenesis and aortic plaque areas in athero-
genic mice partly through attenuation of vascular nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidase ac-
tivity [38]. In line with this, Yamamoto et al. reported that in
NOS deficient mice the combination of aliskiren and valsartan
exerts synergistic organ-protective effects through synergistic
attenuation of oxidative stress [72]. Despite the theoretical
advantages of aliskiren in experimental studies, which have
raised expectations, the neutral or disappointing results re-
garding clinical outcome [73] warrant careful extrapolations
and further investigation.

Aldosterone Antagonists

Mineralocorticoid receptor blockers are mostly used in hyper-
tension and heart failure. Aldosterone, apart from regulating
salt homeostasis, also enhances fibrosis, inflammation and
oxidative stress. Recently, numerous experimental studies
have focused on the antioxidative potential of mineralocorti-
coid receptor blockers. Indeed in post-myocardial infarction
rats, spironolactone and angiotensin II increased NADPH
oxidase-dependent and mitochondrial superoxide production
in myocytes, and the combination of an angiotensin Il receptor
blocker and spironolactone resulted in a synergistic attenua-
tion of cardiac oxidative stress [40]. Moreover, in rats after
himdlimb ischemia, eplerenone significantly decreased the
NADPH oxidases in parallel with an improvement in the
proliferation and function of endothelial progenitor cells, in-
troducing a possible novel and effective therapeutic strategy
for the repair of atherosclerotic cardiovascular diseases [39].

Beta-Blockers

Third-generation beta-blockers have been shown not only to
avoid increased peripheral resistance, but also to stimulate
vasodilation via various mechanisms. In particular, nebivolol
which has the highest beta(1)-receptor affinity among beta-
blockers, has been associated with improvement of endothe-
lial function via its strong stimulatory effects on the activity of
eNOS and its antioxidative effects on cellular superoxide
dismutase and dimethylarginine levels [74, 75]. In particular,
it has been found that nebivolol, beyond improving blood
pressure levels, improved FMD and increased erythrocyte
cellular superoxide dismutase levels indirectly, suggesting a
beneficial effect mediated by increased NO bioavailability

[76]. Furthermore, nebivolol has been shown to significantly
affect the amount of ROS released from human ECs under
oxidative stress. Particularly this effect may be mediated, at
least in part, by the inhibition of endothelial NADPH oxidase
and also by the direct ROS scavenging effect of the drug [41,
76, 77]. Interestingly, in patients with slow coronary flow
nebivolol treatment for 6 months reduced the levels of
malondialdehyde, superoxide dismutase (SOD) and erythro-
cyte catalase [78]. Furthermore, recent studies have docu-
mented the beneficial effects of nebivolol on arterial stiffness
to a greater extent than previous agents, which may have
significant clinical implications for its use in the treatment of
CVD [55].

Statins

The 3-hydroxy-3-methylglutaryl coenzyme A reductase
(HMG-CoA) inhibitors or statins are the most commonly used
lipid-lowering agents. Recent compelling evidence suggests
that their beneficial effects may include not only cholesterol
lowering effects, but also cholesterol-independent or so-called
pleiotropic effects. These effects are mediated by concomitant
inhibition of protein isoprenylation, a process responsible for
a variety of cellular responses downstream the mevalonate
pathway [17]. Importantly, ex vivo experiments in internal
mammary arteries incubated with either atorvastatin or ator-
vastatin with mevalonate have shown that in the presence of
mevalonate atorvastatin failed to achieve a reduction in oxy-
gen free radicals confirming the key role of mevalonate inhi-
bition in the restoration of arterial redox state achieved with
statins [17]. Through these pleiotropic effects, statins are
directly involved in restoring or improving endothelial func-
tion, attenuating vascular remodeling, inhibiting vascular in-
flammatory response, and, perhaps, stabilizing atherosclerotic
plaques [79, 80]. Also, they may ameliorate ED through their
antioxidant properties, since they seem to attenuate Ang-II-
induced free radical production in SMCs by inhibiting Racl-
mediated NADPH oxidase activity and down-regulating Ang-
IT type 1 receptor expression [81]. Moreover, there is
evidence that fluvastatin may exert a superoxide or hydroxyl
radical scavenging activity and diminish susceptibility to ox-
idation, while atorvastatin has been shown to reduce vascular
mRNA expression of essential NADPH oxidase subunits
p22phox and NADPH oxidase 1, increasing at the same time
catalase expression both in vitro and in vivo [55, 82]. Further,
in 12 dyslipidemic patients with ischemic heart disease who
had received organic nitrates for a long period, fluvastatin
reduced anti-oxidized LDL antibody titer and serum 8-
hydroxydeoxyguanosine levels, while it attenuated nitrate
tolerance in subjects under organic nitrites for a long-term
period [83].

In addition, evidence suggests that statins exhibit beneficial
properties in endothelial function and arterial stiffness in CVD
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[84]. Importantly, it has been shown recently that intensive
therapy with rosuvastatin delayed progression of the mean-
IMT within 12 month in hypercholesterolemic patients [85].
Likewise, dual lipid-lowering therapy has been linked with
atherosclerosis regression, even though it has not been clari-
fied whether it contributes to significant changes in plaque
composition [86].

Thus, it seems reasonable that several data from observa-
tional and randomized studies have indicated favorable effects
of statin therapy early after the onset of acute coronary syn-
drome (ACS). In secondary prevention of CVD, the MIRACL
(Myocardial Ischemia Reduction with Aggressive Cholesterol
Lowering) study, randomly assigned 3,086 patients with un-
stable angina or non-Q-wave acute MI to atorvastatin 80 mg
or placebo for 16 weeks. Lipid-lowering therapy reduced
recurrent ischemic events, and mostly recurrent symptomatic
ischemia requiring rehospitalization [§7]. Of note, recent stud-
ies have provided evidence that statins may be administered as
adjunctive therapy in ACS and may also improve clinical
outcomes [88, 89].

Peroxisome Proliferator-Activated Receptors Agonists

Peroxisome proliferator-activated receptors (PPARSs) agonists
(fibrates, thiazolidinediones or glitazones) have been shown to
exert a broad spectrum of antiatherogenic effects in vitro, in
animal models of atherosclerosis and in humans. These
agents, which are widely used in the clinical setting,
antagonise Ang-II effects and have been shown to exert anti-
oxidant and anti-inflammatory effects [90]. Interestingly,
emerging data have suggested that they may augment endo-
thelial NO release [91], decline NADPH-dependent O, pro-
duction in human umbilical vein endothelial cells and also
reduce relative mRNA levels of the NADPH oxidase subunits.
Further, PPAR~y ligands induce both activity and expression
of Cu/Zn-SOD [92]. Moreover, in hypertensive rats pioglita-
zone reduces vascular ROS production and Nox1 levels while
it does not affect eNOS expression [42]. Interestingly, novel
thiazolidinediones (SF23) under investigation offer superior
antioxidant effects compared to rosiglitazone, preventing
ROS generation and the expression of NADPH oxidase sub-
units, Nox 1 and Nox2 [93]. Unlike rosiglitazone, these effects
are independent of nuclear factor erythroid 2-related factor 2.
Although more data are required on the effects of PPARy
agonist on cardiovascular events, due to their interference with
key processes of atherogenesis, they present additional prop-
erties to improve cardiovascular risk beyond glycemic control
in patients with DM [94].

Xanthine Oxidase Inhibitors

Xanthine oxidase catalyzes the oxidation of hypoxanthine to
xanthine and finally to uric acid. Xanthine oxidase is a source
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of ROS with detrimental effects on the progression of athero-
sclerosis. Experimental studies have also shown that xanthine
oxidase binds to endothelial cells and inactivates NO [95].

Taking into consideration the physiological role of xan-
thine oxidase, inhibition of its activity may be beneficial for
endothelial function. Several studies have examined the im-
pact of xanthine oxidase inhibitors on endothelial function
[96]. Xanthine oxidase inhibition has been tested in patients
at increased cardiovascular risk [97], in patients with CAD
[98] and with heart failure [99], with favorable effects on
endothelial function. Moreover, Yiginer et al. concluded that
in patients with metabolic syndrome allopurinol reduces oxi-
dative stress, improves endothelial function and ameliorates
myeloperoxidase, further confirming the pathophysiology of
improvement of endothelial function. Although there is a lack
of a large randomized trials, a recent meta-analysis supported
the positive impact of such an approach [96].

Strategies to Increase Tetrahydrobiopterin

Tetrahydrobiopterin (BH4) is a pteridine that is known to have
a plethora of cofactor and antioxidant roles in pathological
conditions associated with cardiovascular and endothelial dys-
function, monoamine neurotransmitter formation, the immune
response, and pain sensitivity [100]. In order for eNOS to
transport electrons to L-arginine and synthesize NO, it has to
be bound to BH4 (“coupling” of eNOS) [101]. Decreased
levels of BH4 in endothelial cells can result in eNOS
“uncoupling” and generation of oxygen radicals causing oxi-
dative damage [102, 103].

Given the key pathophysiological role of BH4 in vascular
function it is not surprising that redox disequilibrium can be
achieved by increasing BH4 levels. Experimentally, incuba-
tion of isolated vessels (human coronary arteries) with BH4
results in an improvement of endothelial function [104].
Moreover, oral administration of BH4 to ensure continuous
BH4 availability in hypercholesterolemic apolipoprotein E-
knockout mice improves endothelial dysfunction and attenu-
ates increased mRNA expression of NADPH oxidase compo-
nents [105]. Similarly, in hypercholesterolaemic patients en-
dothelial dysfunction and oxidative stress can be reversed by
chronic oral treatment with BH4. Thus, oral supplementation
with BH4 may provide a rational therapeutic approach to
maintain NO synthesis and low levels of free oxygen radicals
and to prevent cardiovascular disease [106]. Interestingly,
statins can also increase BH4 levels. In patients with CAD
atorvastatin not only increases BH4 levels with a parallel
improvement in NO bioavailability, but also decreases oxygen
radicals [17]. Moreover, in diabetic rats telmisartan prevented
down regulation of BH4, eNOS uncoupling and the increase
in NADPH oxidase and ROS with a parallel restoration of
endothelial function. These findings provide evidence how
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telmisartan can restore endothelial dysfunction in diabetic
models through up-regulation of BH4 [107].

Antioxidant Vitamins

Even though oxidative stress plays a vital role in the evolution
of atherosclerosis, and antioxidants have been enthusiastically
used in the treatment and prevention of cardiovascular dis-
ease, the role of antioxidant vitamins is a matter of long
debate, as the results of prospective, randomized and clinical
studies have not been as encouraging as expected [108].
Several data have illustrated positive responses of vitamin C
and vitamin E. Specifically, they were considered as inhibitors
of LDL oxidation by ROS scavenging and as mediators that
increase NO bioavailability. Moreover, vitamin C has been
shown to improve endothelial NO synthase (eNOS) coupling
by scavenging ROS, while vitamin E suppresses eNOS ex-
pression (protein kinase C- dependent) [109, 110]. Moreover,
several data have demonstrated positive responses of these
vitamins in hypertensive patients, as combined treatment sig-
nificantly improved ED and arterial stiffness, effects which
were associated with changes in plasma markers of oxidative
stress [111, 112]. Additionally, favorable effects of combined
administration of vitamins C and E on endothelial function,
inflammatory process and thrombosis/fibrinolysis have also
been revealed in chronic smokers [113, 114]. In terms of CVD
endpoints, a few studies using different combinations of anti-
oxidant vitamins have reported encouraging results [108].

However, a large meta-analysis including over 77,000 sub-
jects has shown neutral effects concerning the clinical out-
come [115]. Similarly, vitamin supplementation has also been
unconvincing in the progression of atherosclerosis [116].
Moreover, neither vitamin E nor vitamin C supplementation
reduced the risk of major CVDs in the long-term [117], and
likewise, in females at high risk for CVDs, no beneficial
effects have been observed for ascorbic acid or (3-carotene
on cardiovascular events [118]. Thus, despite the encouraging
data from basic-science studies using several vitamin supple-
ments, antioxidant treatment with vitamins has not been prov-
en an ideal strategy to reduce cardiovascular risk. Further, the
effects of vitamins in some occasions have turned to be even
detrimental, given that oral vitamin E supplementation may
actually have pro-oxidant effects [109].

Folic Acid

Folic acid and its circulating metabolite 5-methyltetrahydrofolate
(5-MTHF) have been shown to exert effects on vascular func-
tion, independently of the effects on oxidized or reduced plasma
homocysteine [119, 120]. 5-MTHE, via improved eNOS activity
and coupling as well as scavenging of peroxynitrite radicals, has
been considered to improve endothelial NO bioavailability and
decrease vascular superoxide production both in vivo and

ex vivo, leading to a remarkable improvement of vascular
tetrahydrobiopterin bioavailability [121, 122]. However, large
randomized data derived from prospective folate supplementa-
tion revealed no beneficial effects of folic acid, B6 and B12
vitamins on cardiovascular risk [119, 123].

Omega-3 Polyunsaturated Fatty Acids

The omega-3 polyunsaturated fatty acids (omega-3 PUFAs)
eicosapentaenoic acid and docosahexaenoic acid are present
mainly in oily fish and commercially available supplements,
which are available either over the counter (as fish oils) or as
concentrated pharmaceutical preparations. The use of omega-
3 PUFAs has been associated with substantial cardiovascular
benefits in subjects with diabetes mellitus, heart failure and
cardiovascular risk factors [124—126]. Omega-3 PUFAs also
improve endothelial function and arterial elastic properties in
subjects with metabolic syndrome and in healthy smokers
[127, 128]. The beneficial effects of omega-3 PUFAs on
endothelial function are attributed to reduced production of
inflammatory cytokines, reduced levels of adhesion molecules
and suppression of thromboxane production [129, 130]. Ex-
perimental data have also shown that omega-3 PUFAs exert
favorable effects on lipid metabolism and on the oxidant/
antioxidant status of offspring of diabetic rats [131]. Similarly,
supplementation of human aortic endothelial cells with omega
three fatty acids decreases ROS formation. Therefore it seems
that this fatty acid acts as an indirect anti-oxidant in vascular
endothelial cells, hence diminishing inflammation and, in
turn, the risk of atherosclerosis and cardiovascular disease
[132]. Moreover, 2 month treatment with omega-3 PUFAs in
patients with atherosclerotic lesions significantly decreased
malondialdehyde [133]. Recently, eicosapentaenoic acid and
docosahexaenoic acid supplementation was shown to lower
plasma lipoperoxide concentrations in mild cognitive impair-
ment patients, further establishing the antioxidant role of
omega-3 PUFAs [134].

Polyphenols-Flavonoids

It is evident that lifestyle factors such as smoking, alcohol
consumption and obesity are risk factors for the development
of impaired endothelial function. There is significant evidence
that emphasizes the importance of a variety of strategies to use
lifestyle modification to improve endothelial function and
cardiovascular status. In this direction, many epidemiological
research studies have shown that dietary factors, such as red
wine, Greek coffee and tea consumption, rich in polyphenols,
have been associated with a reduced risk of CVDs and bene-
ficial effects on endothelial function [135, 136]. Polyphenols
consist of a large number of molecules, further divided ac-
cording to their chemical structure into the subcategories of
phenolic acids, flavonoids, stilbenes, and lignans [137].
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Even though the mechanisms by which polyphenols act as
antioxidants are not fully elucidated, it seems that they are
reducing agents or hydrogen atom-donating molecules, thus
playing a role as free radical scavengers. In particular, several
free hydroxyl groups participate in the scavenging effects of
flavonoids, while hydroxyl groups in an ortho position of ring
B is a key structure [138]. It has become evident that the most
effective antioxidant actions of flavonoids are dependent on
indirect mechanisms that inhibit enzymes such as xanthine
oxidase, lipoxygenases, and NADPH oxidases which produce
ROS [139]. Also, polyphenols exert antioxidant activities via
inhibition of NADPH oxidase, 15-lipoxygenase, cytochrome
p450 and myeloperoxidase, while further evidence advocates
that they may prevent LDL oxidation by their binding to LDL,
or act via alterations in gene expression resulting in changes in
cell communication [140].

Many in vivo trials have assessed the effects of a variety of
fruit polyphenols on different CVD risk factors, including ED
[141]. Interestingly, the majority of data have indicated that
grape products might produce hypotensive, hypolipidemic
and anti-atherosclerotic effects, potentially through ameliorat-
ing oxidative stress as measured in terms of oxidation bio-
markers and maintenance of endothelial function [10, 142,
143]. Randomized intervention studies in humans have pre-
sented additional evidence of a causal relationship between
vascular health outcomes and flavonoid intake. A meta-
analysis which included 133 human studies with polyphenol
interventions showed that cocoa significantly increased acute
and chronic FMD of the brachial artery [144]. The intake of
polyphenol-rich sources (red wine, cocoa, green tea and
berries) has been shown to favor cardiovascular health via
an improved lipid profile, anti-atherosclerotic, anti-
hypertensive and anti-inflammatory effects, as well as direct
actions on ECs [145]. Indeed, green tea supplementation
decreased several cardiovascular risk factors, including body
composition, dyslipidemia, inflammatory status, and antioxi-
dant capacity, in rats fed an atherogenic diet [146]. More
evidence concerning the favorable effect of tea in endothelial
function is provided by a recent meta-analysis of nine studies
[147]. The effect of tea on FMD is constant and independent
of the population and type of tea and can be attributed to the
effect of dietary flavonoids in reducing SOD mediated NO
breakdown [148] and the inhibition of NADPH oxidase ac-
tivity [149].

Another source of phenolic compounds is olive oil, with
hydroxytyrosol and oleuropein as the most representative
[150]. The Mediterranean diet and olive oil consumption were
associated with decreased risk factors and lower LDL choles-
terol levels [151]. Moreover, olive oil consumption was asso-
ciated with improved endothelial function [152, 153]. The
ATTICA study documented that adherence to Mediterranean
diet and increased olive oil consumption is associated with
increased total antioxidant capacity in healthy subjects [154].
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Further insights into the mechanisms of atherosclerosis pro-
tection by olive oil consumption are provided by the docu-
mentation of the inhibitory effect of hydroxytyrosol in super-
oxide anion and F2-isoprostanes production [155, 156].
Oleuropein inhibits also oxidation of LDL and superoxide
production [157].

Despite the ample experimental and epidemiological data,
there are only a few studies examining the effect of flavonoids
on clinical endpoints in atherosclerosis [158].

Coenzyme Q10

Coenzyme Q10 is essential for mitochondrial oxidative phos-
phorylation and adenosine triphosphate production and is
located mostly in the mitochondria but also in lysozomes,
Golgi and plasma. It exerts antioxidant activities either by
directly reacting with free radicals or by regenerating tocoph-
erol and ascorbate from their oxidized state. Coenzyme Q10 is
either synthesized in tissue or is obtained from diet [159-161].
In human umbilical vein endothelial cell cultures treated with
oxidized LDL, coenzyme Q10 protects endothelial cells from
oxidative stress-induced injury by up-regulation of eNOS and
down-regulation of inducible nitric oxide synthase [43]. The
antioxidant properties of coenzyme Q10 can possibly explain
the improvement in endothelial function of subjects at risk, as
documented in a recent metanalysis of five trials [162].

Endocannabinoid System- Cannabinoid Receptors
Antagonists

Recent data suggests that the endocannabinoid system con-
tributes to the progression of atherosclerosis and can modulate
oxidative stress and endothelial dysfunction. Despite the fact
that cannabinoid receptors antagonists are not in use in
cardiovascular practice, several experimental studies have
documented favorable effects. Tiyerilli et al. concluded that
inhibition of the cannabinoid receptor one with rimonabant in
apolipoprotein E deficient mice leads to decreased NADPH
oxidase activity and ROS production together with endothelial
protective effects [163]. Beneficial effects were also reported
with rimonabant in subjects with metabolic risk factors and
carly atherosclerosis raising expectations for a novel and
efficacious treatment of patients at risk [164]. Nevertheless,
adverse psychiatric effects reported in clinical studies prevent
cannabinoid receptors antagonists from being used in clinical
practice.

NADPH Oxidase Inhibitors

As previously described, NADPH oxidases are key molecules
in vascular oxidative stress. Consequently, approaches to in-
hibit their action have gained attention, as potential
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modification of NADPH oxidase can restore endothelial func-
tion and ameliorate the progression of atherosclerosis.

Diphenylene iodonium was one of the first oxidase inhib-
itors [165]. Data suggest that diphenylene iodonium abolished
NADPH oxidase-mediated ROS formation, but also inhibited
other flavo-enzymes such as NO synthase (NOS) and xan-
thine oxidase which may induce toxicity [7] .

Apocynin, is another direct NADPH oxidase inhibitor
which has only minor efficacy due to the fact that it is a pro-
drug requiring metabolic activation [7] . Nevertheless,
Kinkade et al., in an atherosclerotic mice model, concluded
that apocynin attenuates the progression of atherosclerosis,
potentially by its ability to inhibit generation of superoxide
by NADPH oxidase through its ability to inhibit translocation
of the subunit p47phox (subunit of the NADPH oxidase)
[166]. Liu et al. also found that in mice inhibition of NADPH
oxidase by apocynin reduced endotheial NOS activation and
platelet adhesion, which are likely responsible for the arrest of
plaque growth and improvement of vascular mechanical prop-
erties [167]. Similarly, 7 days treatment with apocynin re-
duced endothelial cell adhesion molecule expression in ath-
erosclerotic mice but without a detectable change in oxidative
burden [168].

Several other direct NADPH inhibitors have also been
studied with limited efficacy and specificity [169]. Favorable
results have also been reported with selective NADPH oxi-
dase inhibitors which selectively bind to the p47phox subunit
of NADPH oxidase inhibited Nox1 and Nox2 but not Nox4
[170].

Interestingly, the novel NADPH oxidase inhibitor
VAS3947, used in low micromolar concentrations, consistent-
ly inhibited NADPH oxidase activity, but did not inhibit
xanthine oxidase or endothelial NOS activities. Nevertheless,
the mechanisms of actions of triazolo pyrimidines such as
VAS3947 are unclear and we cannot exclude the possibility
that VAS3947, in addition to inhibiting NADPH oxidases,
also interferes with alternative sources of ROS that have not
yet been elucidated, such as the mitochondrial electron chain
[7].

Despite the preliminary positive results regarding the use of
direct NADPH oxidase inhibitors we have to notice that data
are based on experimental studies. There are no clinical data
yet and a major efforts have to be made before the possible use
of this agents in clinical practice.

Conclusions

The endothelium is considered of major importance in main-
taining vascular homeostasis while oxidative stress has a
central role in the progression of endothelial dysfunction.
Several established treatments, with proven cardiovascular

utility, such as angiotensin converting enzyme inhibitors and
angiotensin receptor blockers, beta-blockers and statins, be-
yond their main action, have antioxidant effects and can
restore endothelial function. Additionally, novel strategies
such as antioxidant supplementation, peroxisome
proliferator-activated receptors agonists and dietary flavo-
noids may also have a role against oxidative stress and endo-
thelial dysfunction, exerting anti-inflammatory and anti-
thrombotic actions at the same time. Nevertheless, their im-
pact on clinical outcome has not been established yet and
further studies are required to establish their clinical
usefulness.
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