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Abstract Early reperfusion after an organ ischemia is
essential to salvage tissue from eventual death. However,
abundant evidence suggests that reperfusion also elicits
pathophysiological changes responsible for additional tissue
injury after restoration of blood flow. Postconditioning
(Postcon) defined as rapid sequential intermittent interrup-
tion of blood flow applied during early moments of
reperfusion has successfully shown to attenuate organ injury,
including the heart, spinal cord, brain, kidney, liver, muscle,
lung and intestines in the experimental setting. Clinical trials
have also revealed the beneficial effect of Postcon on
myocardial infarction in patients undergoing percutaneous
coronary intervention or coronary artery bypass graft
surgery. Although there are some controversial issues
regarding the efficacy of protection with Postcon in different
animal models with comorbities, most preclinical studies
have shown that Postcon is a potent intervention to reduce
organ necrosis and apoptosis. Remote or pharmacological
Postcon has emerged as alternatives in amelioration of
cardiac reperfusion injury. This article will primarily discuss
the existing literature regarding protection of Postcon on the
heart, but there is a potential for future research into other
organ systems to identify beneficial effects of Postcon on
tissue reperfusion injury, particularly in patients undergoing
surgical revascularization.
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Introduction

Despite considerable progress in treatment and manage-
ment of ischemic heart disease in last three decades, acute
myocardial infarction is still the leading cause of patient’s
mortality after coronary occlusion, afflicting approximately
1.5 million individuals each year in the United States. More
than 30% of the patients with ventricular fibrillation die
before reaching the hospital, while 5% die largely due to
heart failure from myocardial infarction [1, 2]. The ultimate
amount of infarct tissue after an ischemic episode primarily
depends upon the severity and the duration of coronary
occlusion. Therefore, initiating reperfusion to the threatened
myocardium either by thrombolysis, percutaneous coronary
intervention (PCI) or coronary artery bypass graft surgery
(CABG) is the best therapeutic strategy to offer a chance of
survival following acute coronary occlusion [3].

Myocardial salvage by timely reperfusion is associated
with smaller infarct size, less enzyme release and better
cardiac function recovery. However, there is convincing
evidence that the sudden restoration of blood flow to
ischemic myocardium may paradoxically exaggerate injury
that is not present at the end of ischemia and could be
modified by interventions given only at reperfusion [4].
Reperfusion elicits a broad range of injury pathologies
depending upon the timing of restoration of blood flow and
involving in a number of triggers, mediators and end-
effectors responsible for vascular endothelial dysfunction,
up-regulation of adhesion molecules on the endothelium,
transendothelial emigration of inflammatory cells, tissue
edema, infarction, and apoptosis. Many of these events
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occur in the very early moments of reperfusion; however,
other events trigger a cascade of responses that take place at a
later phase, ultimately contributing to expansion of the infarct
area, ventricular dilation, thinning of the ventricular wall and
cardiac systolic or diastolic dysfunction [5]. Since reperfusion
paradoxically leads to variable amounts of salvageable
myocardium, the means and timing of restoring blood flow
continue to be a highly debated and studied topic [6, 7].

The concept of attenuating reperfusion injury was
initially introduced by Buckberg and coworkers in the late
1970s in surgical animal models and patients with acute
coronary artery occlusions [8, 9]. In their studies, controlled
reperfusion after ischemia with monitoring flow rate,
perfusion pressure, and composition of the reperfusate have
shown significant muscle salvage, less post-ischemic edema
and better function recovery compared to uncontrolled
reperfusion. In the mid-1980s, a phenomenon termed lethal
reperfusion injury was further addressed by Braunwald and
Kloner [10]. Thereafter, pharmacological interventions such
as β-blocker, anti-inflammatory agents, calcium-channel
blockers, free radical scavengers, sodium-hydrogen ex-
changer inhibitor, nitric oxide donor and adenosine have
successfully reduced infarct size and improved cardiac
function in animal models of ischemia and reperfusion.
Although it has been more than 20 years since these
protective strategies were introduced, none of the drugs that
only modify reperfusion injury has gained clinical accep-
tance for routine treatment of infarct patients. The failure to
translate these experimental therapies to the bedside has
made people argue whether we still need to continually
develop pharmacological agents (because the maximum
protection with current conventional therapies might have
already been achieved), and whether reperfusion injury
truly exists in patients [11, 12]. Increasing injury seen at
reperfusion likely occurs during ischemia because the time
frame and boundary between ischemia and reperfusion are
unknown [6]. Therefore, it is extremely valuable to explore
clinically applicable and effective therapeutic strategies to
address post-ischemic myocardial injury.

Postcon is defined as several repeated cycles of
intermittent reperfusion/re-occlusion applied after an index
ischemia, and has shown a significant reduction in infarct
size [13]. The results were validated in all species studied
by the investigators from different laboratories. Several
clinical trials have also shown promising outcomes show-
ing a reduction in infarct size and enzyme release in
patients undergoing PCI and CABG. These experimental
studies and clinical observations have demonstrated that
Postcon protects the heart from reperfusion injury through
altering events within the first minutes after revasculariza-
tion of acute myocardial ischemia. These results have also
shown that the early minutes are critical for reperfusion-
induced myocardial injury. Any operating procedure aimed

at modifying myocardial infarction may need to be con-
ducted in the early minutes during restoration of coronary
blood flow [14, 15]. This review article will summarize the
Postcon protection reported from experimental and clinical
studies, highlight unsolved issues involving the molecular
signaling mechanisms underlying Postcon protection, and
discuss potential new targets in treatment of reperfusion
injury in different organ systems with Postcon.

Cardioprotection by Postcon: evidence from animal
studies

Numerous studies including in vivo and in vitro models of
dog [13, 16–18], pig [19], monkey [20], rats [21], rabbits
[22] and mice [23, 24] have shown infarct-sparing effect of
Postcon on ischemic/reperfused heart after it was initially
reported from our laboratory in 2003 [13]. In addition, we
and others have also shown that Postcon reduces hypoxia/
reoxygeantion-induced cardiomyocyte necrosis and apopto-
sis [25–30]. This new strategy achieves cardioprotection
comparable to preconditioning [17]. Although the cycles of
Postcon selected in different studies are not identical, it is
generally agreed upon that animals with a faster heart rate
and higher metabolic rate should be postconditioned using
a short duration of the algorithm. While in larger animals,
the duration of alternating periods could be longer. Based
on the studies updated, the duration of each alternating
period of reperfusion and ischemia vary among different
species. In small species (i.e., rats and mice), the algorithm
of Postcon is 5–10 sec; in larger animals (i.e. dog, pig and
monkey), it runs 30–60 sec; in human and cultured
cardiomyocytes, alternating periods with Postcon is 1–
5 min. It has been speculated that the lower metabolic rate
in larger animals may decrease generation of endogenous
ligand triggers of Postcon such as adenosine, thereby
require a longer Postcon stimulus [31]. Some of the primary
physiological endpoints of protection modulated by Post-
con during reperfusion are summarized in Table 1.

Reduction in infarct size

Reduction in infarct size is considered a “gold standard” to
evaluate the efficacy of interventions tested. The first study
to demonstrate the infarct-sparing effect of Postcon was
performed in a canine model of 60 min coronary occlusion
followed by 3 h of reperfusion [13]. The initial algorithm
selected for Postcon was two cycles of 5 min reperfusion
followed by 5 min reocclusion. Failure in attenuating
infarct size made us to shorten the cycles from minutes to
seconds, because in most canines, ventricular fibrillation
occurred within the first minute after reperfusion. Surpris-
ingly, both ventricular arrhythmia and infarct size were
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significantly reduced when the ischemic myocardium was
reperfused with three cycles of 30-s reperfusion separated
by 30-s re-occlusion. Relative to the control animals,
Postcon significantly reduced the infarct size giving a
compatible level in reduction of infarct size in
preconditioned-animals (Fig. 1a). To determine whether
there is an additive effect on reducing infarct size, in a
subsequent study, preconditioning with one cycle of 5 min
ischemia/10 min reperfusion before ischemia and Postcon
with 30-s reperfusion/30-s ischemia at reperfusion were
combined in this canine model after an index 60 min
ischemia.[17] Relative to either intervention alone, combi-
nation of both protocols did not show an additive
protection, whether assessed by infarct size (Fig. 1a), free
radical production or vascular endothelial function. In
isolated rat heart, Tsang et al. [32] did not find an additive
effect with preconditioning and Postcon on infarct size. But
in the in vivo rabbit model of ischemia and reperfusion,
Yang et al. found that there is an additive effect of
preconditioning and Postcon on infarct size [33]. Further-
more, persistent beneficial effect of Postcon against infarct
size was also demonstrated in this canine model after 24 h

of reperfusion (Fig. 1b) [34], and in rabbit model after 72 h
reperfusion [35]. Subsequent studies in rat, rabbit, murine
and monkey have also demonstrated a significant reduction
in infarct size as recently reviewed by Skyschally [36] and
Downey [11].

However, the infarct-sparing effect of Postcon has not
been consistently reported in different species and in
different pathological conditions. The first negative study
with Postcon was reported by Schwartz in the in vivo pig
model [37]. Three 30/30-s cycles of Postcon did not show
an inhibition on infarct size at the end of 3 h of reperfusion.
But in Iliodromitis’s study, Postcon with eight cycles of 30-s
of reperfusion separated by 30-s reocclusion did find a
significant reduction in infarct size in pig [19]. Recently,
there are two studies from Kloner’s group showing that
Postcon with a variety of cycles in rat [38] and rabbit [39]
failed to reduce infarct size while these algorithms have
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Fig. 1 Infarct size (An/AAR), expressed the area of necrosis (An) as a
percentage of area at risk (AAR) in the in vivo canine model of
60 min coronary occlusion followed by 3 or 24 h of reperfusion,
respectively. In figure A, Postcon was applied as three cycles 5 min
reperfusion/5 min reocclusion (5/5 m) or 30 s reperfusion/30 s
reocclusion (30/30 s). Algorithm of preconditioning (Precon) was
selected as 5 min ischemia and 10 min of reperfusion. Pre+Post:
Precon and Postcon were combined. Postcon significantly reduced
An/AAR, which is equivalent cardioprotection to that of Precon. No
further reduction in infarct size with Precon plus Postcon was
detected. In figure B, reperfusion time was extended from 3 to 24 h.
Infarct size was measured after Postcon with three cycles of 30 s
reperfusion/30 s reocclusion was applied at the onset of 3 h (3 h-Post)
or 24 h (24 h-Post) of reperfusion, respectively. A significant
reduction in infarct size after 24 h of reperfusion was still detected
in postconditioned animals. The open circles represent individual data
points and the solid circles represent the means. Error bars represent
standard error of the mean. †p<0.05 vs. control (Con); *p<0.05 vs.
3 h; ††p<0.05 vs. 24 h. Data are references [13, 17, 34]

Table 1 Primary physiological endpoints of protection by Postcon
during reperfusion

Delay in washout of endogenous autacoids

Adenosine, opioids and bradyknin

Reduction of inflammatory response

Reactive oxygen species

TNFα, Interleukins-6 and 8

Neutrophil migration

Protection of vascular endothelium

p-selectin expression

Endothelium-dependent vasodilation

Stimulation of survival kinases and transmitter

PI-3K-AKT

p42/44 ERK MAPK

PKC-α and -ε

Hydrogen sulphide

Inhibition of death kinases

p38 MAPK

JNK MAPK

GSK-3β

PKC-δ

Preservation of mitochondrial function

Membrane potential

Permeability transition pore

KATP channels

Reduction in cardiomyocyte loss

Necrosis

Apoptosis
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shown to be very effective in attenuating infarct size
reported from many other studies in rats [21, 40] and
rabbits [41–43]. It is difficalut to explain these variations on
infarct size reduction with Postcon; however, unidentified
laboratory-specific variables may exist in addition to the
differences of selected algorithms [44].

There are also some controversial reports in Postcon-
induced protection in models of ageing, hyperchesterolae-
mia, obesity and diabetes. In older rats, Yin et al. found that
Postcon reduces infarct size in the in vivo model of 16 to
18-month-old rat [45]. Przyklenk et al. demonstrated that
Postcon is unable to reduce infarct size in 20- to 24 old
C57BL/6J mice [46]. But in aged wild-type and in C57BL/
6J mice, Kerstin et al. reported that reduction in infarct size
depends upon the cycles of Postcon. Significant infarct
reduction was detected when the heart was postconditioned
using five 5/5-s cycles, but not three 10/10-s cycles [47].

In a cholesterol supplemented diet rabbit model, Donato
et al. found that Postcon reduces infarct size [48]. But
Illodromitis et al. have shown that the infarct-sparing effect
of Postcon is lost in rabbits with experimental hyperlipid-
emia and atherosclerosis [49]. The degree of hypercholes-
terolaemia in different models may explain the discrepancy
of these studies [35].

Epidemiological studies and clinical trials have shown
that obesity and diabetes are risk factors for developing
acute myocardial infarction and postischemic complica-
tions. Mortality from myocardial infarction is almost
doubled in obese/diabetic patients compared with nondia-
betic individuals [50]. In genetically obese ob/ob murine
model, Bouhidel et al. recently reported that infarct-sparing
effect of Postcon is lost [51]. Wagner et al. have also found
that protective effect of Postcon does not exist in rats with
established metabolic syndrome, characterized by obesity,
dyslipidaemia and hyperinsulinaemia, relative to the wide
type rats [52]. However, in Prazyklenk’s study, they
demonstrated that the infarct size-limiting effect of Postcon
is restored by islet cell transplantation in streptozotocin-
induced diabetic mice [53]. These studies clearly demon-
strated that animals with metabolic syndromes are more
susceptible to ischemia/reperfusion injury. But, clinical
significance from these studies is unknown since blood
glucose in patients seldom reach such high concentrations
because of insulin treatment [35].

Prevention of ventricular arrhythmia

The anti-arrhythmic effect of Postcon has been universally
reported by different investigators. Na et al. initially
reported that intermittent interruption of reperfusion with
a single 5/35-s cycle of Postcon significantly reduced
ventricular tachycardia and fibrillation in a cat model with
20 min of ischemia followed by 10 min of reperfusion [54].

We have also found that three 30/30-s cycles of Postcon
reduces the occurrence of ventricular fibrillation at the
onset of reperfusion in a canine model with 60 min
ischemia [17]. Significant antiarrhythmic effect against
persistent reperfusion-induced tachyarrhythmias was further
demonstrated in the isolated rat heart by Galagudza et al.
[56]. In the in vivo rat model of 5 min ischemia, Kloner et
al. reported that four 20/20-s cycles of Postcon markedly
attenuate ventricular arrhythmia. Sasaki et al. demonstrated
that in isolated rat heart of 20 min global ischemia, Postcon
significantly terminated reperfusion arrhythmia, but pre-
conditioning failed to alter the incidence or duration of
ventricular arrhythmia [55, 57]. In a recent report, Dow et
al. demonstrated that Postcon’s benefit on reperfusion
ventricular arrhythmia is still maintained in 24-month-old
Fischer female rats relative to younger rats [58].

Attenuation in inflammatory response and endothelial
dysfunction

Data from in vivo models of ischemia and reperfusion [13]
and cultured cardiomyocytes after hypoxia and reoxygena-
tion [25] have shown that Postcon reduces the generation of
reactive oxygen species as expressed by diminished
dihydroethidium fluorescent staining in post-ischemic myo-
cardium and cultured cardiomyocytes as well as plasma
levels of malondialdehyde [17]. Postcon decreased the
surface expression of p-selectin, adherence of neutrophils
to postischemic coronary artery vascular endothelium, and
accumulation of neutrophils in area-at-risk myocardium. In
addition, Postcon also preserved post-ischemic coronary
artery endothelial function assessed by vasodilator responses
to acetylcholine [35]. However, the cause-effect relationship
between inhibition of the inflammatory response and
cardioprotection by Postcon is still a controversial topic in
the literature. In a canine model of 60 min ischemia and 3 h
of reperfusion, three 30/30-s cycles of Postcon did not alter
level of superoxide radicals measured using luminal-
enhanced chemiluminescence in blood taken from the
anterior interventricular vein draining from the area at risk
myocarium both at 3 and 24 h of reperfusion (unpublished
data). In addition, reduction in infarct size and attenuation
of cardiomyocyte death by Postcon have been previously
demonstrated in neutrophil-free culture system [25] and
isolated heart [59]. At the current time, it is not clear
whether less inflammatory response after Postcon reduces
myocardial injury or whether less myocardial injury by
Postcon produces a smaller inflammatory response [60].

Inhibition of cytokine release and apoptosis

Reperfusion triggers pro-inflammatory cytokine release and
apoptotic cell death [61]. In cultured neonatal rat cardio-
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myocytes of 3 h hypoxia and 3 h reoxygenation, Sun et al.
showed a reduction in generation of superoxide anion
detected by lucigenin-enhanced chemiluminescence, cyto-
chrome c release, and dihydroethidium fluorescence after
three 5/5 min cycles of hypoxic Postcon [25]. Several other
studies in cultured cardiomyocytes and isolated heart have
also reported attenuation of apoptosis, inhibition of mPTP
opening and preservation of mitochondrial integrity by
hypoxic Postcon [25, 62–64]. A recent study in a rat model
of 30 min ischemia and 3 h reperfusion by Kin et al.
demonstrated that three 10/10-s cycles of Postcon reduce
the levels of tissue necrosis factor alpha and interleukin-6,
consistent with an attenuation in the number of apoptotic
cells in area-at-risk myocardium [65].

Cardioprotection by Postcon: evidence from clinical
trials

Recently, Hansen et al. performed a systemic review and
meta-analysis from six studies with a total of 123 patients
who underwent PCI with or without Postcon in multiple
centers. These studies were randomized based on the age,
gender and comorbidity on admission. The results revealed
that STEMI patients undergoing primary PCI greatly
benefitted from Postcon over standard care for reduction
of infarct size, peak CK release and left ventricular ejection
fraction [66]. In addition, at the time of writing this article,
there are 24 clinical trials of Postcon or remote Postcon
either enrolling patients or ready for launch, and three on
“pharmacological” Postcon with sevoflurane and adenosine
for STEMI patients undergoing PCI or CABG procedures
(search from ClinicalTrials.gov).

Resolution in ST-segment elevation

In a pilot study in 2005, Laskey [67] first reported that two
90/90-s cycles of repeated balloon inflation and deflation
separated by 3–5 min of reperfusion during angioplasty
reduced the magnitude of ST-segment elevation compared
to controls. The rate of ST-segment resolution was faster at
the end of the PCI procedure. Furthermore, coronary flow
velocity reserve was significantly improved in “condi-
tioned” hearts compared to the standard-of-care cohort. In
2008, the authors further demonstrated the beneficial effects
of Postcon during PCI for STEMI patients on measures of
myocardial perfusion and microcirculatory function. They
found that ST segment resolution is faster and hyperemic
coronary vasodilator response is greater in postconditioned
patients. In addition, a peak of serum CK activity was
significantly lower when compared with controls. Although
there is a concern regarding embolism of atherosclerotic
debris in distal coronary arteries by repetitive inflation and

deflation during PCI, distal perfusion was significantly
improved by this maneuver in this study. No angiographic
or clinical complications were found [68].

Reduction in creatine kinase release and inflammatory
response

The first study to demonstrate reduction in infarct size by
Postcon in patients was reported by Ovize and his
colleagues in a multi-center randomized clinical trial [69].
The patients that achieved a TIMI flow grade of 2–3 at
completion of the angioplasty/stent procedure were ran-
domized to receive either standard of care treatment or four
60/60-s cycles of Postcon. Infarct size estimated from the
area under the CK curve at 72 h of reperfusion was
significantly less, and greater coronary blood flow was
achieved in patients with Postcon. The results of this study
were intriguing because it is a “proof of concept” study to
demonstrate reperfusion injury in patients. This observation
was extended by Ma et al. in 2006 [70]. They showed that
Postcon significantly reduces the levels of CK, CK-MB and
malondialdehyde, and increases the velocity of coronary
blood relative to patients who underwent conventional PCI.
After 8 weeks, the wall motion score index (WMSI)
calculated by DeltaWMSI was significantly improved and
endothelium-dependent vasodilation was enhanced. In a
retrospective study, Darling et al. reported a similar result
that reduced CK release was seen in STEMI patients who
underwent more than 4 cycles with inflations of the
angioplasty balloon at the time of reperfusion compared
with those who received less than 3 inflations [71].
Coincidental results were also reported in another recent
retrospective study from 433 STEMI patients by Wang et
al. [72]. Significant reduction in peak CK release, faster
resolution in ST-segment and improvement in left ventric-
ular ejection fraction were observed in postconditioned
patients with more than 3 cycles repetitive low-pressure
balloon inflations within 10 min of reflow during primary
PCI.

Persistent attenuation in infarct size and apoptosis

Emerging experimental evidence suggests that post-
ischemic injury is an on-going process that continues up
to delayed phases of reperfusion, as evidenced by the extent
of myocardial necrosis and progressive induction of
apoptosis over reperfusion time [5, 73]. Although experi-
mental studies have shown that Postcon reduces infarct size
after 24 h of reperfusion in canine [13, 16–18, 35] and 72 h
of reperfusion in rabbit [41], little is known whether
application of Postcon at the onset of reperfusion perma-
nently reduces infarct size after a prolonged reperfusion in
patients.
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Reduction in infarct size after a prolonged reperfusion
was initially reported by Yang and his colleagues in 2007
[74]. In 23 patients, three 30/30-s cycles of Postcon reduced
the area under the CK activity curve during the first 72 h of
reperfusion, consistent with the previous report from
Ovize’s group. Importantly, at 7-d of reperfusion, infarct
size expressed as percent left ventricle, detected by single-
photo emission computed tomography (SPECT) was 27%
less than in the control patients, suggesting a long-term
protection of Postcon.

Soon thereafter, another study was reported by Ovize
and his colleagues in 2008, consisting of two groups of
patients randomized for area-at-risk myocardium, collateral
flow and duration of ischemia [75]. The authors found that
infarct size, also determined using the SPECT method, was
39% less than the control group at 6 months when the
patients were postconditioned using four 60/60-s cycles of
repeated deflation and inflation. At one year after this
intervention, left ventricular ejection fraction in postcondi-
tioned patients exhibited a 7% increase compared with
controls.

After Yang and his colleagues published their first study
to show a reduction in infarct size in patients [74], in a
subsequent clinical trial, they further compared the efficacy
between three 30/30-s cycles and three 60/60-s cycles of
Postcon on infarct size. Although they found no significant
difference in reduction in infarct size using these two
Postcon algorithms (personal communication, unpublished
data), in their follow-up analysis reported by Zhao et al. in
2009, three 60/60-s cycles of Postcon significantly reduced
soluble plasma Fas/APO-1 and Fas ligand, the surrogate
markers for myocardial apoptosis. These beneficial effects
were accompanied by an improvement in left ventricular
function 7 days after stenting [76]. Along with long-term
attenuation in infarct size with four 60/60-s cycles of
Postcon [74, 75], it is clear from this observation and others
that 60/60-s cycles of Postcon provide better recovery from
injury in patients with acute myocardial infarction with
regards to tissue necrosis, cardiac dysfunction and myocar-
dial apoptosis.

Protection of Postcon in cardiac surgery

Cardiac surgery (i.e. coronary artery revascularization,
congenital lesion repair and valve replacement) is associat-
ed with ischemia/reperfusion injury for most of the
operations performed. During the last decades, much
progress has been made to reduce myocardial injury during
aortic clamping by the induction of electromechanical arrest
and profound cardiac cooling with cold crystalloid solu-
tions or protection with blood cardioplegia. However, rapid
restoration of coronary blood during aortic declamping
induces further reperfusion damage. Despite a great number

of experimentally-developed therapeutic strategies and
clinical studies to address reperfusion injury, a significant
portion of the surgical population may still experience
substantial morbidity related to adverse cardiovascular
events after cardiac surgery. Very few interventions have
been incorporated in routine clinical practice. Postcon can
be applied by declamping and reclamping the aorta when
surgical procedure is completed or intermittently delivering
blood through the cardioplegia line to mimic the perfusion
pattern of Postcon at the onset of aortic clamp release.

In surgical repair of Tetrology of Fallot in children, Luo
et al. first reported that three 30/30-s cycles of Postcon (i.e.
aortic declamping and reclamping) at the onset of aortic
clamp release significantly reduces plasma troponin I and
lactate levels compared with the control patients during
reperfusion [77]. In a progress report, they found that the
rate of morbidity, the time of ventilation and ICU stay,
the dose of inotropic agents were significantly less in the
postconditioned patients. In adult patients undergoing valve
replacement using cardiopulmonary bypass and standard
crystalloid cardioplegia solution, Luo et al. further analyzed
the change of plasma CK-MB over time in patients with
and without Postcon. Plasma CK-MB was significantly
lower in the postconditioned patients relative to the control
group with identical cardiopulmonary resuscitation proto-
cols at 4 and 8 h after reperfusion. There is a concern
regarding repetitive aortic clamping, particularly for elderly
patients who have some degree of atheromatous plaques in
the aorta, which may cause emboli in the distal coronary
artery or induce stroke and focal ischemia. However, no
adverse effects were reported from their studies [78].

Protective mechanisms targeted by Postcon

There are a number of intrinsic reperfusion processes that
contribute to reperfusion-induced myocardial injury. These
consequences include the generation of free oxygen
radicals, neutrophil accumulation, endothelial dysfunction,
rapid recovery of tissue acidosis, loss of calcium homeo-
stasis, myocardial stunning and necrosis, all of which have
the ability to cause greater tissue damage within a few
minutes after restoration of blood flow. Although under-
standing of the precise cellular signaling pathways with
Postcon is still evolving, based on the reports from different
experimental settings, diverse signaling mechanisms by
targeting on these events have been proposed. As depicted
in Fig. 2, Postcon reduces superoxide free radical genera-
tion and lipid peroxidaion, attenuates inflammatory and
endothelial cell-cell interactions [13], preserves actions of
endogenous autacoids such as adenosine, opioids, bradyki-
nin via G-protein-coupled receptor (GPCR) [79–82],
stimulates survival kinases such as the p42/44 ERK MAPK,
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PI-3K-Akt and protein kinase C-ε [32, 79, 83], reduces
activity of death kinases including the JNK MAPK and the
p38 MAPKs, inhibits phosphorylation of inducible tran-
scription factor (i.e., NF-κB) [65] and glycogen synthase
kinase-3β [84], slows down recovery of tissue pH [85],
activates mitochondrial KATP channels [33, 86], and inhibits
mitochondrial permeability transition pore (mPTP) opening
[41, 86]. Delay in application of Postcon, even for a few
minutes, eliminates these cellular events, suggesting that
these signaling cascades are quickly activated during early
periods of reperfusion, and work as causative mechanisms
for protection [21].

However, it is not clear from previous studies how these
signaling cascades are linked. For example, administration
of different receptor antagonists either for adenosine,
opioid, or bradykinin alone at the onset of reperfusion
abrogated infarct reduction by Postcon [79, 82, 87].
Blockade of survival kinases or reactivation of death
kinases also eliminated protection by Postcon. It is possible
that, in response to oxidant stimulation, the endogenous
autacoids, survival and death protein kinases could be
altered in a parallel manner at certain time points during
reperfusion. On the other hand, the activation of some

protein kinases may also depend on the status of other
isoforms of protein kinases. For example, the PKC
activation relies upon PI-3K-Akt phosphorylation, and the
PKCε translocation inhibitor blocks ERK1/2 activation [88,
89]. These data suggest that there is cross-talk among
protein kinases. At the current time, however, we do not
know exactly whether survival or death protein kinase-
mediated signaling mechanisms occur simultaneously, and
how they are balanced in modulation of infarct size by
Postcon.

As potential executors, the opening of mitochondrial
KATP channels and the closing of mPTP have been reported
to be cardioprotective during reperfusion [33, 86]. Several
recent studies have confirmed that the infarct-sparing effect
of Postcon is abrogated by the mitochondrial KATP channel
blocker, 5-hydroxydecanoate, but not by the sarcolemmal
KATP channel blocker, HMR1098 [33]. The collapse of
mitochondrial membrane potential and the opening of
mPTP in the inner mitochondrial membrane, which occur
in the early minutes of reperfusion, have been linked to the
pathogenesis of both necrosis and apoptosis [90, 91]. This
opening of mPTP, associated with intracellular Ca2+

overload [91], has been proposed to disrupt permeability
characteristics of the membrane, resulting in an influx of
normally impermeable proteins with subsequent mitochon-
drial swelling, breakdown in protein gradient and collapse
of oxidative phosporylation [92]. The releasing of cyto-
chrome c from mitochondria activates downstream “execu-
tion response” via caspases that stimulates rupture of the
outer membrane, apoptosis and necrosis [93–95]. It has
been suggested that inhibition of mPTP depends upon
activation of mitochondrial KATP channels [96]. The
possible link between the KATP channel and the mPTP
indicates that mitochondrial KATP channels may be consid-
ered more of a mediator than its previous role as an end-
effector organelle [97]. However, it is unknown how
opening of the mitochondrial KATP channel by Postcon is
associated with inhibition of mPTP. In addition, it will be
important to know whether there is a functional link among
survival kinases, mitochondrial KATP channel and mPTP to
explain the molecular mechanisms responsible for protec-
tion by Postcon.

It is generally agreed upon that inhibition of mPTP with
Postcon is a final step in a complex series of cellular events
responsible for cell protection [33, 41, 86]. The mPTP
remains in a largely closed state during ischemia and
increases its open probability during early reperfusion.
Opening of the mPTP is considered as key event in
reperfusion-induced cell death. Argaud et al. first reported
that Postcon reduces calcium-induced opening of the mPTP
in mitochondria isolated from the area-at-risk myocardium
[41]. In cultured cardiac muscle cells, Mykytenko et al. also
found that hypoxic Postcon maintains mitochondrial mem-
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P38, JNK
GSK-3β
PKC-δ
Bax

Cell Death  

Mitochondria

Ca2+

Cytochrome c

(-) (+)

(-) (+)

mPTPmKATP

K+

(-)

(-)

(+)

Fig. 2 Simplified schematic diagrams of reperfusion salvage by
Postcon. Protection with Postcon may be derived from its parallel, up-
or down-stream direct or indirect effects on inflammatory responses,
endogenous autacoids, survival and death protein kinases, mitochon-
drial KATP channel (mKATP) and mitochondrial permeability transition
pore (mPTP). The current theory regarding signalling mechanisms
underlying protection is that Postcon activates G protein-coupled
receptors on the cell membrane via endogenous autacoids followed by
modulation of protein kinase pathways, which has been proposed to
inhibit p38, JNK MAPK, PKCδ, GSK-3β and stimulate PI-3K-AKT,
ERK MAPK and PKCε. The rebalance among these death and
survival protein kinases by Postcon may initiate a down-stream
opening of mKATP and closing of mPTP responsible for inhibition of
necrosis and apoptosis
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brane potential and inhibits opening of the mPTP [86].
Accordingly, pharmacological inhibition of the mPTP with
cyclosporine A during reperfusion has shown a reduction in
infarct size similar to that in postconditioned animals [98].
Piot et al. has recently reported that administration of
cyclosporine A at the time of reperfusion reduces infarct
size evidenced by less creatine kinase release and delayed
hyperenhancement on MRI in patients [99]. This is the first
study to show that patients who undergo PCI can be
pharmacologically postconditioned. Due to a lack of
clinical evidence to show infarct-sparing effect by pharma-
cological interventions, these results are promising although
it is a “proof of concept” small clinical trial.

Remote Postcon

The first study to demonstrate infarct-sparing effect with
remote Postcon was reported by Kerendi et al. in a rat
model of ischemia and reperfusion in 2005 [100]. In that
study, a renal artery was ligated for 5 min and then released
at the onset of coronary artery reperfusion. Compared to the
control animals with abrupt reperfusion, infarct size was
reduced by nearly 50%. This remote protection was
abrogated by an adenosine receptor antagonist. In a
subsequent study with a swine model of acute myocardial
infarction, Andreka et al. also found that four 5/5 min
cycles of blood pressure cuff inflation/deflation applied to
the lower limb at the onset of balloon deflation after
90 min coronary occlusion reduce infarct size and creatine
kinase release at 72 h after reperfusion [101]. These
observations suggest that remote Postcon releases soluble
and circulating mediators such as adenosine that can sustain
the transit time between a remote organ and an ischemic/
reperfused heart.

The first human study to demonstrate the protective
effect of remote Postcon on endothelial function after
20 min ischemia followed by reperfusion was performed
by Loukogeorgakis in 2006 [102]. They found that remote
Postcon applied in an arm or leg at the onset of reperfusion
significantly preserves flow-mediated vasodilatation. Pro-
tection was blocked by a non-selective KATP channel
blocker, glibenclamide [103]. A recent clinical observation
reported by Bøtker et al. at the American College of
Cardiology 58th Annual Scientific Session in 2009 dem-
onstrated that upper-limb ischemia with four 5/5 min
inflation/deflation using a standard blood pressure cuff
initiated during ambulance transfer (named as remote
perconditioning) reduces myocardial infarct size measured
by SPECT imaging after 30 days of standard PCI in STEMI
patients. Although the protective mechanisms underlying
remote Postcon are unknown, these data have clearly
demonstrated the feasibility and safety in application of

remote Postcon as an adjunct to current reperfusion
strategies.

Attenuation of reperfusion injury by Postcon
in other organs

The role of Postcon in attenuation of reperfusion injury in
other organ systems including the spinal cord, brain,
kidney, muscle, liver, lung and intestine has been recently
studied and summarized in Table 2.

Reduction of spinal cord and brain injury

In spinal cord with infrarenal aorta occlusion-induced
ischemia, Jiang et al. demonstrated that four 60/60-s cycles
of Postcon significantly increased the Tarlov score and
number of intact motor neurons in rabbit [104]. Protection
was still preserved when application of Postcon was
delayed 5 min after reperfusion, but with no protection
after 10 min. Also, they found that additive neuroprotective
effects on the spinal cord when preconditioning and
Postcon were combined [105]. Song et al. found that
attenuation in spinal cord injury during 48 h of reperfusion
with three 30/30 s cycles of Postcon is associated with up-
regulation of endogenous antioxidant enzymes activities
[106]. Wang et al. demonstrated that several different
algorithms of Postcon from 15/15-s to 60/60-s protect
neuronal loss and cytochrome c release at 7 d of reperfusion
after 10 min global cerebral ischemia in rats [107]. In
addition, neuroprotection with Postcon has been associated
with preservation of endogenous antioxidant enzymes[108]
and down-regulation of cytochromec c release and caspase
3 activity [109]. Interestingly, Burda et al. [110] showed
that Postcon performed 2 days after reperfusion in a rat
model of global ischemia still robustly reduces hippocam-
pal injury. Zhao and his colleagues recently reported that 3
or 6 h of delay in application of Postcon after focal
ischemia significantly reduces infarct size and improves
behavioral outcomes, showing there is a wide window in
application of Postcon after stroke [111–113].

Renal protection

The mortality rate after reperfusion of the ischemic kidney
after renal transplantation is associated with delayed graft
dysfunction due to increased necrosis of renal tubules.
Szwarc et al. reported that three 30/30 s cycles of Postcon
reduce the level of serum creatinine and improve kidney
function 8 days after grafting [114]. Liu et al. demonstrated
that Postcon-exerted protection is evidenced by increase in
nitric oxide release and NO synthase expression [115].
Recently, Serviddio et al. found that Postcon with a
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consecutive sequence of 3, 6 and 12 min of reperfusion,
separated by 5 min of reocclusion reduces creatinine and
BUN levels. Protection was associated with preservation of
mitochondrial function after 24 and 48 h of reperfusion
[116]. Furthermore, attenuation of reperfusion injury with
Postcon in kidney has been also associated with phosphor-
ylation of Akt and ERK1/2 by Chen et al. [117] and
preservation of antioxidant enzymes such as superoxide
dismutase, catalase and glutathione perokidase by Yun et al.
[118]. We have recently reported that attenuation of renal
ischemia/reperfusion injury by Postcon involves adenosine
receptor and PKC activation [119].

Muscle preservation

The first study using human atrial appendages was reported
by Sivaraman et al. [120]. Atrial trabecula were isolated
and mounted on a superperfusion apparatus and subjected
to 90 min of hypoxia followed by 120 min of reoxygena-
tion. Four 30/30-s cycles of hypoxic Postcon improved the
recovery of contractile function relative to the baseline
values. Protection was abolished in the presence of either
LY294002, a PI3K inhibitor or UO126, a MEK1/2
inhibitor. In an elegant study by McAllister et al. [121],
reperfusion of latissimus dorsi muscle flaps after 4 h
ischemia showed a time-dependent expansion of muscle
infarction with a peak at 24 h. Four 30/30 s cycles of
Postcon applied at onset of reperfusion reduces muscle
infarction significantly at 48 h of reperfusion. Protection
was mimicked by the mPTP inhibitor cyclosporine A or
NIM-811, and abolished by mPTP opener atractyloside.
Furthermore, protection was associated with a decrease in
muscle myeloperoxidase activity and mitochondrial calci-
um concentration. In a rat model of 4 h limb ischemia
induced by infrarenal cross-clamping of the abdominal
aorta followed by 4 h of reperfusion, Szijarto et al.
demonstrated that six 10/10-s cycles of aortic Postcon
induce a significant reduction in systemic inflammatory
response and preservation in microcirculatory flow
character [122].

Protection in hepatic reperfusion injury

The first study to demonstrate protection of Postcon on
liver injury was reported by Sun et al. in a rat model of
ischemia and reperfusion. The authors found that Postcon
reduces hepatocellular apoptosis and preserves mitochon-
drial ultrastructure. Protection was accompanied by up-
regulation of Bcl-2 and inhibition of superoxide free radical
generation [123]. In a rat model of liver transplantation,
Wang et al. demonstrated that lower cytokine levels and
preserved antioxidase contents as well as reduced TNFα
and MIP-2 expression are seen at 6 h of liver graft in

postconditioned animals [124]. Similar findings were also
observed by Wu et al. [125]. They found that Postcon
preserves the endogenous antioxidant enzyme activity and
inhibits inflammatory response, giving a level of protection
comparable to preconditioning. A comparative study
between preconditioning and Postcon was recently reported
by Wang et al. using a rat model of liver ischemia/
reperfusion during transplantation. Mortality rate and
hepatocellular apoptosis were equally inhibited either by
preconditioning or Postcon, reflected by preserved hepato-
cyte function and reduced Fas gene expression [126].

Attenuation of reperfusion injury in lung and intestine

Protection of Postcon on reperfusion-initiated lung and
intestine injury has been recently reported. Xia et al.
demonstrated that three 30/30-s cycles of Postcon reduces
lung wet/dry weight ratio and malondiadehyde content.
Protection was abolished using a heme oxygenase-1
inhibitor [127]. Similar findings were also demonstrated
by Liu et al. using the same algorithm of Postcon in rat.
Ischemia/reperfusion-induced damage in lung evidenced by
increased wet/dry weight ratio, pulmonary permeability
index and inflammatory responses were significantly
inhibited by Postcon similar to levels in preconditioned
animals [128]. In rat model of mesenteric ischemia and
reperfusion, Santos et al. found that intestinal mucosa
injury evidenced by significantly-increased Chu’s score and
wet/dry weight ratio was abolished by Postcon [129]. Liu et
al. reported similar findings that either preconditioning or
Postcon alone provides significant protection; additive
effects on attenuation of intestinal injury, cytokines gener-
ation and neutrophil infiltration were detected when both
interventions were applied in a same animal [130].

Unsolved issues

Many fundamental questions regarding protection by
Postcon remaine unanswered. Although the majority of
published experimental studies and clinical observations
have demonstrated a protective effect of Postcon on
different organ systems, there is variability in attenuation
of the infarct size with different cycles of Postcon,
particularly in the heart. The optimal cycle length to be
applied is unknown at the present time. Differences in
species, ischemic time and pathological states may underlie
these inconsistent observations [31, 36]. Therefore, it is
necessary to further explore these signaling pathways by
matching different algorithms to study protocols.

Pharmacological Postcon has been proposed as a future
direction in treatment of ischemic heart disease based on
the investigation of Postcon. As stated above, multiple
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signal-transduction pathways have been demonstrated to
participate in infarct reduction by Postcon. Although drugs
such as adenosine, nitric oxide, opioids or bradykinin when
administered at reperfusion have shown to be effective in
reducing infarct size in animal studies, no drug has been
approved for limiting infarct size in patients with acute
coronary syndrome [11]. Therefore, the design strategy of
reperfusion therapeutics to salvage tissue injury will be a
challenging task because mechanical Postcon may adjust
the balance among multiple death and survival signals to
exert its protection, which cannot be mimicked by treatment
with a single drug.

The duration of ischemia beyond which Postcon can
salvage tissue injury has not been well defined. Many
randomized clinical trials have shown beneficial effects of
early reperfusion within 12 h and possibly up to 24 h after
acute myocardial infarction. Although studies have shown
that the infarct-sparing effect of Postcon is lost after 45 min
of coronary occlusion in animal models [131], the benefits
of Postcon applied during late reperfusion, particularly in
asymptomatic patients with ongoing ischemia in ischemic
border regions that are prone to arrhythmias and necrosis,
have yet to be determined in clinical studies. In these cases,
reperfusion is warranted to preserve the border areas that
may be underperfused even if the interventions occur many
hours or days after the initial infarction. It is possible that
application of Postcon after prolonged ischemia may
improve blood supply and reduce the work demand without
clearly salvageable myocardium. It was previously reported
that the infarct zone expands during reperfusion and infarct-
sparing effect of Postcon is abolished when it is applied a
few minutes after reperfusion [35]. However, a recent
animal study has provided experimental evidence that six
15/15 min cycles of Postcon applied at 3 or 6 h of
reperfusion after focal ischemia significantly reduce infarct
size and tissue edema for up to 2 months, suggesting a
long-term protection. Therefore, it is necessary to investi-
gate whether a delay in application of Postcon either after
prolonged ischemia or reperfusion has a significant impact
on in-hospital mortality and long-term survival.

We have previously shown that there is a comparable
reduction in infarct size by Postcon and preconditioning
[13, 17]. However, it is generally agreed upon that
preconditioning is more potent than Postcon in initiating
endogenous protective mechanisms [11]. Preconditioning is
applied before coronary occlusion and Postcon is applied
after irreversible ischemic damage. Preconditioning may
increase “damage threshold” of the myocardium during
ischemia, but Postcon may increase tolerance of the
myocardium for reperfusion-initiated injury. A recent study
reported by Cohen’s group helps differentiate this relation-
ship. These investigators studied cynomolgus monkeys
with 90 min coronary occlusion followed by 4 h of

reperfusion [20]. They found that two 10/10 min cycles of
preconditioning reduced infarct size by 95%, but six 30/
30-s cycles of Postcon only decreased the infarct size by
38%, which is equal to level of protection by Postcon in
human. It is generally accepted that Postcon protects
against the cause of cell death occurring during reperfusion,
making it applicable as a therapeutic intervention for
patients with acute myocardial infarction. Therefore,
obtaining such a beneficial effect by simple manipulation
of reperfusion has garnered much clinical interest [69].
Multiple-center clinical trials are needed to further demon-
strate whether Postcon should be selected as a conventional
intervention for the treatment of infarct patients.

Concluding summary

At the current time, Postcon intervention in case of acute
myocardial infarction is still in its infancy. Skepticism
exists with this treatment method especially when it is
applied in different models with comorbities. Although
human studies have shown its sustained clinical benefit by
reducing tissue injury after acute myocardial infarction,
large double-blinded, randomized clinical trials with con-
ventional therapeutic endpoints are imperative to clarify the
role of Postcon in treatment of myocardial infarction. Since
no drug has shown clinical benefit in treatment of infarct
patients in the last 20 years, pharmacological Postcon
through identifying a single mechanism to mimic mechan-
ical Postcon should be cautiously considered. Remote
Postcon has shown clinical efficacy and safety in mitigating
myocardial injury in patients. However, to derive meaning-
ful efficacy data for improving immediate and long-term
prognosis after myocardial injury requires more mechanis-
tic investigations. It remains to be determined whether
animal data showing protection with Postcon on other
organ systems can be incorporated into future clinical trials.
Thus, Postcon as a simple mechanical intervention that can
be selectively applied during reperfusion may have a broad
prospect in treatment of different organ systems after
ischemia and reperfusion [132].
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