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Summary. Urotensin II (U-II) is the most potent vasocon-

strictor known, even more potent than endothelin-1. It was

first isolated from the fish spinal cord and has been recog-

nized as a hormone in the neurosecretory system of teleost

fish for over 30 years. After the identification of U-II in hu-

mans and the orphan human G-protein-coupled receptor 14

as the urotensin II receptor, UT, many studies have shown

that U-II may play an important role in cardiovascular regu-

lation. Human urotensin II (hU-II) is an 11 amino acid cyclic

peptide, generated by proteolytic cleavage from a precursor

prohormone. It is expressed in the central nervous system

as well as other tissues, such as kidney, spleen, small in-

testine, thymus, prostate, pituitary, and adrenal gland and

circulates in human plasma. The plasma U-II level is ele-

vated in renal failure, congestive heart failure, diabetes

mellitus, systemic hypertension and portal hypertension

caused by liver cirrhosis. The effect of U-II on the vascu-

lar system is variable, depending on species, vascular bed

and calibre of the vessel. The net effect on vascular tone is

a balance between endothelium-independent vasoconstric-

tion and endothelium-dependent vasodilatation. U-II is also

a neuropeptide and may play a role in tumour development.

The development of UT receptor antagonists may provide

a useful research tool as well as a novel treatment for car-

diorenal diseases.
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Introduction

Urotensin II (U-II) was first isolated from the fish
spinal cord and has been recognized as a hormone in the
neurosecretory system of teleost fish for over 30 years
[1,2]. U-II is the most potent vasoconstrictor known
and is even more potent than endothelin-1 (ET-1) [2]
This brief review summarises what is known about the
peptide and its receptor (UT), their physiological roles
and relation to diseases.

Amino acid sequence and mRNA expression

U-II is a cyclic peptide and shares a similar sequence
with somatostatin (Table 1) [1]. U-II isoforms from
human, monkey, pig, rat, mouse and goby all contain
a conserved C-terminal cyclic hexapeptide sequence
(Cys-Phe-Trp-Lys-Tyr-Cys) that confers most of the
biological activity. The N-terminus of U-II differs in
length and sequence depending on the animal species
[3,4].

Human U-II (hU-II) is an 11 amino acid cyclic pep-
tide and is derived from a large precursor molecule
(prepro-U-II). The gene encoding the peptide, UTS2,
is located at 1p36 and contains 5 exons (Fig. 1). Human
prepro-U-II mRNA has been found in the heart, aorta,
vascular endothelial cells, leukocytes, brain, spinal
cord, kidney, lung, liver, adrenal gland, pituitary, spleen,
small intestine, colon, placenta and other tissues, with
the highest intensity in the spinal cord [5–9].

Receptor structure and expression

The receptor for hU-II turned out to be the orphan
G-protein-coupled receptor 14 (GPR14) [2,10]. This re-
ceptor, now termed UT, is a 389-amino acid protein with
seven transmembrane domains. It is homologous to rat
GPR14 and is similar to the somatostatin receptor sst4
in structure [2,10]. The gene coding for the human UT
receptor is intronless and is located at 17q25.3 [11].
The UT receptor is found in human brain, spinal cord,
leukocytes, ventricular myocardium, vascular endothe-
lial and smooth muscle cells, kidney cortex, adrenal
gland, pituitary and thyroid, with the highest density
in skeletal muscle and cerebral cortex [2,6,7,9,12]. The
distribution of U-II and its receptor suggests that U-II
may act as a local or circulating vasoactive hormone in
cardiovascular regulation. Differential distribution of
UT receptors may partly explain the variability in con-
tractile responses to U-II. U-II was previously thought
to be arterioselective because UT receptors have not
been found in human veins except umbilical veins [2,10].
More recent studies showed that hU-II contracts epi-
gastric, facial, saphenous and umbilical veins, suggest-
ing the presence of the UT receptor [12,13].

Signal transduction

The UT receptor is coupled to the Gαq/11 signal trans-
duction pathway, the activation of which leads to an
increase in inositol triphosphate and mobilization of
intracellular Ca2+ (Fig. 2) [2,14,15]. The mechanism
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Fig. 1. Post-translational processing of the human U-II gene product. Alternative splicing of exon 2 produces a 7-amino acid fragment
as isoform a and a 34-amino acid fragment as isoform b. SP: signal peptide.

by which U-II elicits smooth muscle contraction is
complex [16,17]. It involves small GTPase RhoA and
its downstream effector Rho-kinase [18], phospholi-
pase C, protein kinase C and tyrosine kinase [19],
PKC-independent phosphylation of myosin light chain
(MLC-2) [20] as well as the Ca2+-calmodulin/MLC
kinase system, extracellular signal-regulated kinase
(ERK) and p38 mitogen-activated protein kinase [21].
Rho signalling pathway and ERK may also be involved
in U-II-induced vascular smooth muscle cell prolifera-
tion [18,22].

Post-translational processing of U-II

Human prepro-U-II, first cloned by Coulouarn et al.
[3], has a signal-peptide sequence at the N-terminal
end (Fig. 1). There are two alternative splicing vari-

Table 1. Amino acid sequences of somatostatin, U-II in
different species and URP. The conserved amino acid residues
are underlined. The two cysteine residues in U-II and URP are
linked by a disulphide bond to form a ring structure. U-II:
urotensin II; URP: urotensin-related peptide

Peptides Amino acid sequence

Human somatostatin-14 AGCKNFFWKTFTSC
Human/monkey U-II ETPDCFWKYCV
Mouse U-II QHGAAPECFWKYCI
Rat U-II QHGTAPECFWKYCI
Goby U-II AGTADCFWKYCV
Dogfish NNFSDCFWKYCV
Frog U-II AGNLSECFWKYCV
Porcine U-II(A) GPTSECFWKYCV
Porcine U-II(A) GPPSECFWKYCV
Human/rat/mouse URP ACFWKYCV

ants of human prepro-U-II, isoforms a and b, with 139
and 124 amino acid residues respectively. They differ
in the N-terminal sequence [2–4]. Mature U-II is pro-
duced from the proteolysis of prepro-U-II at the puta-
tive tribasic site, K126K127R128, in the splice variant a
and K111K112R113 in the splice variant b (Fig. 1) [2,3].
The enzymatic cleavage confers biological activity [23].
A specific urotensin converting enzyme (UCE) has not
been identified, but there are several enzymes that
can perform the proteolytic cleavage. By studying the
conversion of a 25-amino acid C-terminal fragment of
prepro-U-II to mature U-II, Russell et al. [24] demon-
strated that furin, an endoprotease which is expressed
in most cell types and localized in the trans-Golgi net-
work, [25] may function as an intracellular UCE. The
same authors also showed that trypsin, a serine pro-
tease, may act on prepro-U-II in the circulation [24].

U-II-like immunoreactivity

As both prepro-U-II and mature U-II contain the
Cys-Phe-Trp-Lys-Tyr-Cys cyclic motif, polyclonal an-
tibodies may recognise other peptides containing this
cyclic motif such as urotensin II-related peptide (URP)
(Ala-Cys-Phe-Trp-Lys-Tyr-Cys-Val) (Table 1). URP is
thought to be as the only peptide with U-II-like im-
munoreactivity in the rat brain and may be the endoge-
nous ligand for the UT receptor in rat brain [8,26]. The
seven C-terminal residues of URP are identical to those
in hU-II. This may explain the large variations in the
estimation of U-II-like immunoreactivity in different
studies [8,23,27]. Human URP is derived from a 119-
amino acid residue precursor protein encoded by a gene
at 3q29, so the gene and the precursor are different from
those of hU-II [8,26]. Although the physiological and
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Fig. 2. The signal transduction pathways involved in vasoconstriction, vasodilatation, cell proliferation and hypertrophy caused by
urotensin II (U-II). In vascular smooth muscle cell (VMSC), U-II binds to a G-protein-coupled UT receptor, leading to hydrolysis of
phosphatidylinositol 3,4,5-trisphosphate (PIP2 ) to inositol 3,4,5-trisphosphate (IP3 ) and diacylglycerol (DAG) by phospholipase C
(PLC). IP3 increases the release of Ca2+ from the sarcoplasmic reticulum or endoplasmic reticulum. U-II also mediates Ca2+ influx
through activation of a voltage-gated Ca2+ channel and a La3+-sensitive non-selective cation channel. DAG stimulates protein kinase
C (PKC) which phosphorylates CPI-17 (protein kinase C-potentiated inhibitor protein of 17 kDa), leading to inhibition of myosin light
chain phosphatase (MLCP) which catalyses the dephosphorylation of phosphorylated regulatory myosin light chain (MLC-2). Rho
kinase also inhibits MLCP by phosphorylation. Stimulation of myosin light chain (MLC) kinase by Ca2+-calmodulin complex and
inhibition of MLCP leads to increase in phosphorylated MLC-2. The increases in phosphorylated MLC-2, intracellular Ca2+ and
phosphorylation of the actin-binding protein, caldesmon, by extracellular signal-regulated kinase (ERK) or p38 mitogen-activated
protein kinase (p38MAPK) lead to contraction of VMSC. In endothelial cells, U-II stimulates the production of prostacyclin and nitric
oxide (NO) which then diffuses into VMSC, leading to increase in cGMP and relaxation of VMSC. U-II also mediates cell proliferation
and hypertrophy through activation of PKC and ERK 1/2 as well as RhoA and its downstream kinase system possibly via guanine
nucleotide exchange factor (GEF).

pathological importance of URP is unknown at pres-
ence, URP exhibits a slightly higher affinity for the
human UT receptor and a slightly lower potency in the
contraction of de-endothelialized aortic rings [8,26,28].

Reverse-phase HPLC and radioimmunoassay of
brainstem and spinal cord extracts contains additional
U-II-immunoreactive peaks, which may be due to
cleavage of prepro-U-II at two other putative sites

(Arg84Lys85 and Arg100Lys101 in splice variant a and
Arg69Lys70 and Arg85Lys86 in splice variant b) (Fig. 1)
[29]. It is not known whether cleavage at these sites
has any functional importance or is simply a process
of protein degradation. Similar results were also ob-
served in cultured human SW-13 adrenocortical carci-
noma cells [30]. The anti-hU-II antibody cross-reacts
with prepro-hU-II fragment [23]. Even using more
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specific monoclonal antibodies, Aiyar et al. [27] still
found cross-reactivity and advised the cautious inter-
pretation of U-II-like immunoreactivity.

Analogues of U-II and their properties

Analogues of U-II have been used to study the re-
lationship between structure and function. The cyclic
octapeptide, hU-II(4-11) generated by elimination of
the Glu-Thr-Pro tripeptide in the N-terminal has a
higher affinity to the UT receptor and higher vaso-
constriction activity on the rat thoracic aorta than its
full-length [19]. Thus, residues 4-11 confer biological
activity and are conserved across species while the
N-terminus confers species specificity [19]. The
residues, Trp7-Lys8-Tyr9, appear to be essential for bi-
ological activity [31–33]. Kinney et al. [32] suggested
the presence of a tyrosine-binding pocket in the UT re-
ceptor and the substitution of Tyr9 with (2-naphthyl)-L-
alanine in U-II can improve the agonist activity slightly,
perhaps due to enhanced hydrophobic interaction. The
Phe6 of U-II may also interact with Met184 and Met185
of the fourth transmembrane domain of the UT recep-
tor [34]. The disulphide bridge of U-II is not essential
for biological activity, as it can be replaced by a lactam
ring [35]. The replacement of Cys5 by penicillamine in
hU-II(4-11) generates a potent agonist that has a 3-fold
higher affinity for the receptor and 20-fold more potent
in contracting the rat aorta than full-length hU-II [36].
Camarda et al. [37] generated a partial UT receptor ag-
onist by replacing Lys8 with Orn. This [Orn8]U-II acts
as a full agonist in calcium mobilization assay with a
maximal effect similar to U-II, but acts as a competitive
antagonist in the rat aorta assay, with a small and con-
sistent residual agonist activity at high concentration
[37]. Urantide ([Pen5, DTrp7, Orn8]hU-II(4-11)) is the
most potent antagonist in the rat aorta assay but an ag-
onist in the calcium mobilization assay in cultured CHO
cells transfected with the human UT receptor [38,39].

Based on the sequence similarity between U-II
and somatostatin, Rossowski et al. [19] reported
that somatostatin analogues PRL-2882, PRL-2903 and
PRL-2915 can act as rat UT receptor antagonists. The
somatostatin antagonist, SB-710411, is also a rat UT
receptor antagonist [40]. However, it potentiates the
contractile response to endothelin-1, limiting its use-
fulness in pharmacological experiments [41]. Interest-
ingly, it is a full agonist at both monkey and human UT
receptors, indicating that the functional response to UT
receptor modulators may vary with species [42,43]. The
neuromedin B receptor antagonist, BIM-23127, with se-
quence similarity to SB-710411, has also been identified
as a potent competitive antagonist of both human and
rat UT receptors [44].

The development of UT receptor antagonists can
advance the understanding of the pathophysiological
role of U-II and the design of new drugs. Using a func-
tional mammalian cell-based assay to screen a library
of 180,000 small organic molecules, a highly selective

non-peptide human UT receptor agonist with an EC50
of 300 nM, AC-7954, was discovered [45]. Using a phar-
macophore model based on the structure-function re-
lationship data and the NMR solution structure, Flohr
et al. [31] identified by virtual screening 10 out of 500
compounds that can inhibit U-II induced calcium mo-
bilization. Clozel et al. [46] reported a new potent and
specific non-peptide UT receptor antagonist, palosuran
(ACT-058362) which can inhibit U-II-induced calcium
mobilization, mitogen-activated protein kinase phos-
phorylation and constriction of rat aortic rings without
any antagonistic effect on the actions of other vasocon-
strictive agents. Intravenous administration of palo-
suran in a rat model of renal ischaemia improved re-
nal glomerular and tubular dysfunction [46]. Clinical
studies of palosuran in renal diseases are currently in
progress.

Role in the cardiovascular system

In human, hU-II can cause the vasoconstriction of coro-
nary, mammary and radial arteries as well as saphenous
and umbilical veins [12]. It is about 50 times more po-
tent than ET-1 in causing contraction of these arter-
ies and just under 10 times more potent than ET-1 in
contracting veins. However, the maximum response is
significantly lower than that achieved by ET-1, and ap-
proximately 30% of coronary and mammary arteries
respond to ET-1 but not to U-II [12]. This may be due
to the low density of high-affinity receptor in vascu-
lar smooth muscle cell of these vessels. The contractile
effect of U-II, like ET-1, is of slow onset and long dura-
tion when compared with other vasoactive agents such
as potassium chloride, noradrenaline and angiotensin
II [13,47,48]. The UT receptor is involved because iso-
lated thoracic aortic rings from UT receptor knockout
mice do not respond to hU-II [49].

U-II causes vasoconstriction in rat pulmonary
artery but not the small pulmonary arteries of both rat
and human [50]. The effect is enhanced by endothelium
removal, raised vascular tone, nitric oxide (NO) syn-
thase inhibition and in pulmonary hypertension [50].
However, Bennett et al. [51] did not find any vasocon-
strictive activity of U-II in isolated perfused human
lungs and isolated human pulmonary arteries in en-
dothelial dysfunction.

The vascular actions of U-II vary with species, vas-
cular beds and even regions of the same vascular beds
[13,52–55]. U-II does not have any effect on human
small subcutaneous resistance arteries and veins, hu-
man skeletal muscle small resistance arteries or mouse
isolated thoracic and abdominal aortae [52–54].

The species and regional variations in U-II re-
sponses may be due to differences in receptor density,
enzymatic conversion of the peptide, and the activity of
endothelium derived relaxing factors, in which recep-
tor density seems to be the predominant factor. U-II
contracts rat thoracic aorta much more than abdomi-
nal aorta because of the higher UT receptor density
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in rat thoracic aorta as demonstrated by radioligand
binding assay and RT-PCR [53,56,57]. The human coro-
nary artery has a lower receptor density compared to
rat aorta and this may account for the greater effect
of U-II on the rat aorta compared to human coronary
artery in vitro [12]. Douglas et al. [53] argued that
the effect of endothelium derived relaxing factors could
not explain the variations of U-II response in in vitro
studies as regional and species differences still exist in
endothelium-denuded vessels and instead suggested a
spare receptor reserve hypothesis. In this hypothesis,
most of the UT receptors are occupied by U-II in a
“pseudo-irreversible manner” with a very slow recep-
tor dissociation rate. Thus when there is a lack of spare
receptor reserve, there may only be a small number of
unoccupied UT receptors available for binding U-II. In
such tissue, the response could be very variable or low.
Moreover, different extent of UT receptor desensitiza-
tion in different species or tissues may also contribute
to the regional and species variations of U-II response.

Human U-II induces a biphasic response in perfused
rat heart, a transient decrease in coronary flow fol-
lowed by sustained vasodilatation that can be inhibited
by a cyclooxygenase inhibitor and an NO synthase in-
hibitor [58]. Endothelium-dependent vasodilation was
also observed in methoxamine-precontracted small
mesenteries arteries and phenylephrine-precontracted
renal artery [57,59], and ET-1-precontracted small pul-
monary arteries and abdominal resistance arteries
[55]. This might be due to the release of the NO or
endothelium-derived hyperpolarizing factor from an in-
tact endothelium [50,57]. NO plays an important role in
the regulation of cardiac function and vascular tone [60].
It is possible that the vasoconstricting effect of U-II is
unmasked in endothelial dysfunction in which NO pro-
duction is impaired. U-II upregulates endothelial nitric
oxide synthase (eNOS) [61]. In rat renal artery, hU-II
induces NO synthesis in the intact endothelium, result-
ing in vasodilatation [59].

U-II also exhibits cardiostimulant effects in hu-
man heart in vitro [62]. In a concentration-dependent
manner, hU-II increases the contractile force without
changing the contraction duration in right atrial trabec-
ulae from non-failing hearts, and causes a small increase
in contractile force in right ventricular trabeculae from
explanted hearts [62]. It also enhances plasma extrava-
sation in specific vascular territories, and may there-
fore be involved in the development of oedema in heart
failure [63].

A biphasic haemodynamic response was observed
after bolus injection of hU-II in conscious rats [64]. The
initial response was a prostanoid-mediated mesenteric
and hindquarter vasodilatation, tachycardia and a small
fall in blood pressure. After 30–60 min of injection, a
second phase response was observed, including tachy-
cardia and NO-dependent hindquarters vasodilatation
with a modest rise in blood pressure [64,65].

Intravenous administration of U-II at low dose
(<30 pmolkg−1) in anaesthetized monkeys increases

cardiac output and reduces peripheral resistance while
a higher dose decreases myocardial function, cardiac
output, stroke volume, heart rate, carotid and coronary
blood flow with an increase in vascular resistance which
culminates in severe pulmonary hypertension, myocar-
dial depression and fatal circulatory collapse [2,66].
In anaesthetized rats, intravenous bolus hU-II injec-
tion decreases cardiac contractility, mean arterial blood
pressure and left ventricular systolic pressure [67]. Re-
cently, the cat has been found to be a useful model to
study as isolated feline arteries are highly responsive
to U-II [68]. Infusion of U-II in the cat doubles the sys-
temic vascular resistance and blood pressure without
marked changes in the heart rate or cardiac output [68].

In vivo, U-II causes potent vasoconstriction in man
with a dose-dependent reduction in forearm blood flow
[69]. However, in another study, an increase in blood
pressure or peripheral resistance was not observed fol-
lowing the infusion of U-II in healthy men [70]. More-
over, intravenous U-II infusion did not affect systemic
haemodynamics or arterial stiffness, even with a 100-
fold increase in plasma U-II levels [71]. As U-II can
cause both endothelium-independent vasoconstriction
and endothelium-dependent vasodilatation, the net ef-
fect can be variable, depending on the balance between
vasoconstriction and vasodilatation. In the studies of
Wilkinson et al. [70] and Affolter et al. [71], the vasodi-
latation effect of U-II may mask its vasoconstriction
effect. The vasoconstriction effect in the study of Bohm
et al. [69] may be due to loss of vasodilator capacity and
loss of NO. This loss of vasodilator capacity has been
observed in the skin vessels of heart failure patients
[72].

Role in the kidney

In fish, U-II affects sodium transport, lipid and glu-
cose metabolism [1]. The urinary hU-II concentration
is about 3 orders of magnitude greater than the plasma
concentration [5]. U-II may play a role in the regula-
tion of GFR via the tubuloglomerular feedback and the
reflex control of glomerular filtration rate (GFR) [73].
In the kidney, U-II has vasodilator and natriuretic ef-
fects. Increases in renal blood flow and GFR were ob-
served after the infusion of synthetic hU-II into the
renal artery of anesthetized rats and this can be com-
pletely inhibited by a nitric oxide synthase inhibitor
[59].

Role in the nervous system

The presence of U-II-like immunoreactivity and the UT
receptor in the motor neurons in the spinal cord and
the brain stem suggests a potential role of U-II in the
central nervous system [3,6,10]. Prepro-U-II expres-
sion in the ventral horn of the spinal cord and facial nu-
cleus motor neurons is reduced in neurons expressing
androgen receptor [74]. How androgen interferes with
U-II expression is unclear but androgen can cause the
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promotion of motor neuron growth and regeneration as
well as the prevention of normally occurring cell death
in the sexually dimorphic spinal nucleus [75–77].

hU-II is interestingly expressed in the motor neu-
rons of the human spinal cord motorneurons, like calci-
tonin gene-related peptide [3,78]. U-II stimulates spon-
taneous neurotransmitter release from the motor nerve
terminal in frogs [79]. U-II induces c-fos in the cin-
gulate cortex and periaqueductal grey [80]. These ar-
eas integrate cognitive and emotional responses, and
control motor, endocrine and autonomic functions. In-
tracerebroventricular (ICV) administration of hU-II in
rats increased rearing and grooming, and motor activ-
ity as well as the plasma levels of thyroid stimulating
hormone and prolactin without changing the levels of
dopamine or serotonin (5-HT) levels, showing that U-II
has behavioural and endocrine effects in the central ner-
vous system [81].

Intracerebroventricular administration of U-II elic-
its a pressor and tachycardic response via activation of
the sympathetic nervous system [82]. hU-II has differ-
ent effects in different parts of the brain. Microinjection
of U-II into the A1, but not A2 area of the rat medulla
causes a dose-dependent hypotensive and bradycar-
diac response while microinjection into either the par-
aventricular or arcurate nucleus increases the arterial
blood pressure and heart rate slightly and transiently
[83]. In conscious unstressed sheep, intracerebroven-
tricular administration of U-II leads to secretion of
adrenocorticotropic hormone (ACTH) and epinephrine
by stimulating the sympathoadrenal medullary and the
hypothalamic-pituitary-adrenal axes [84]. This is then
accompanied by increased cardiac output, raised ar-
terial pressure, peripheral vasodilatation and hyper-
glycemia. In contrast, intravenous administration of
U-II produces only a positive chronotropic effect [84].

Whereas U-II causes Ca2+ influx from intracellular
stores in vascular smooth muscle through L-type Ca2+
channels via protein kinase C, it causes Ca2+ influx in
the spinal cord neuron through N-type Ca2+ channels
via protein kinase A [18,19,85].

Table 2. Plasma U-II levels in different diseases in man. Plasma U-II levels are expressed as mean ± SD or median (ranges).
Plasma U-II levels originally expressed in pg/ml are converted to pmol/l

Number of subjects
Disease (control:patient) Control (pmol/l) Patient (pmol/l) p-value Reference

Heart failure 88:74 1.9 ± 0.9 3.9 ± 1.4 <0.0001 87
Heart failure 220:126 6.6 (3.1–42.6) 22.1 (3.1–49.2) 0.001 86
Congestive heart failure 18:21 16.3 ± 4.4 166.2 ± 49.5 <0.001 23
Renal dysfunction 24:12 4.4 ± 1.0 13.1 ± 3.1 <0.0001 6
Diabetes mellitus

With proteinuria 22:6 4.4 ± 2.0 7.3 ± 0.9 0.0018 7
Without proteinuria 22:10 4.4 ± 2.0 7.8 ± 0.6 <0.0001

Cirrhosis and portal hypertension 15:50 2592 (72–8640) 8856 (1,152–29,808) <0.001 91
Essential hypertension 62:62 8.8 ± 0.9 13.6 ± 1.4 0.005 90

Plasma U-II levels in human diseases

U-II circulates in human plasma and its plasma level
is elevated in renal failure [6], congestive heart failure
[23,86–89], diabetes mellitus [7], systemic hypertension
[90] and portal hypertension caused by liver cirrhosis
(Table 2) [91].

Renal dysfunction

The plasma U-II concentration is 2-fold higher in pa-
tients with renal dysfunction not on haemodialysis and
3-fold higher in patients on haemodialysis compared to
healthy individuals [6]. Although there is no correla-
tion between blood pressure and urinary U-II level, a
higher urinary U-II level was observed in patients with
essential hypertension, patients with both glomerular
disease and hypertension, and patients with renal tubu-
lar disorders, but not in normotensive patients with
glomerular disease [5]. Abundant U-II-like immunoac-
tivity is observed in the distal convoluted tubules and
the epithelial cells of tubules and ducts in the normal
kidney as well as renal clear-cell carcinoma [73].

In Type 2 diabetic patients, plasma and urinary U-II
levels are higher in those with renal dysfunction than
those with normal renal function [92]. This may be due
to increased production of U-II by various organs as
well as by renal tubular cells as a result of renal dam-
age [5,6]. In diabetic nephropathy, there are dramatic
increases in the expressions of U-II and UT receptor in
the tubular epithelial cells [93].

Diabetes

The elevation in plasma U-II level in diabetic patients
is independent of the level of blood glucose [7]. Insulin
secretion in the rat pancreas in response to glucose and
arginine can be inhibited by U-II [94,95]. A single nu-
cleotide polymorphism (SNP) at rs228648 (T21M) in the
UTS2 gene is correlated with genetic susceptibility to
type 2 diabetes in Han people [96]. It is noteworthy
that the SNP at rs2890565 (S89N) has been associated
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with increased insulin resistance and susceptibility of
developing type 2 diabetes in Japaneses [97,98].

Systemic hypertension

As U-II is a potent vasoconstrictor, its role in hyper-
tension is worthy of investigation. In the anaesthetised
cat, intravenous administration of hU-II induces a clas-
sical systemic hypertensive response with increases in
mean blood pressure and systemic vascular resistance
[68]. In a small pilot study, 10 normotensive and 10
hypertensive patients have similar cerebrospinal fluid
(CSF) and plasma concentrations of U-II, although the
average mean arterial blood pressure and CSF U-II
concentration show a positive correlation in the hyper-
tensive patients [99]. However, in a study of 62 hyper-
tensive patients and 62 normotensive sex-age-matched
controls, plasma urotensin II level is raised in hyperten-
sive patients compared to normotensive controls and is
directly related to the systolic blood pressure [90].

Pulmonary hypertension

Since endothelial dysfunction has a central role in the
initiation and progression of pulmonary hypertension,
the vasoconstricting effect of U-II on pulmonary artery
may be unmasked in pulmonary hypertension [50,100].
In rats with pulmonary hypertension, U-II-like im-
munoreactivity in pulmonary artery endothelial and
smooth muscles cells is raised [101]. In chronic hypoxic
rats that have pulmonary hypertension and right ven-
tricular hypertrophy, there is up-regulation of UT re-
ceptor in the right ventricle [102]. At present, not much
is known about the role of U-II in human pulmonary
hypertension. Bosentan, an ET-1 antagonist, has been
used for the treatment of human pulmonary hyperten-
sion with considerate success. It would be of interest to
study if modulation of U-II is of benefit in patients with
pulmonary hypertension.

Atherosclerosis

There is increased expression of U-II in atheroscle-
rotic carotid arteries and aortae [9]. The observation of
U-II-like immunoreactivity in the lipid-laden smooth
muscle and macrophage-rich regions of human coro-
nary atherosclerotic plaque suggests a role of U-II in
the development of atherosclerosis [2]. U-II acts syner-
gistically with mildly oxidized low density lipoprotein
in inducing vascular smooth muscle cell (VSMC) prolif-
eration [103]. Serotonin (5-HT), contained in platelets,
also interact synergistically with U-II to induce VSMC
proliferation that may contribute to the rapid develop-
ment of atherosclerosis in hypertensive vascular dis-
ease [104]. Thus, U-II expression in atherosclerotic
plaques may stimulate VSMC proliferation. Moreover,
locally released U-II may cause coronary vasoconstric-
tion and induce myocardial ischaemia [105].

Ischaemic heart disease

U-II may play a role in myocardial ischaemia and acute
myocardial infarction. In the myocardium of chronic hy-
poxic rats, there is increased UT receptor expression
[102]. There are increased expressions of U-II and its
receptor in both infarct and noninfarct zones of rat left
ventricle after myocardial infarction [15]. U-II also in-
duces the expression of procollagens α1(I) and α2(III)
and fibronectin in neonatal cardiac fibroblasts [15].

Hypertrophy can be induced by hU-II in vitro
in cultured neonatal rat cardiomyocytes [15,106,107].
hU-II stimulates the expression of atrial natriuretic
peptide and brain natriuretic peptide, protein syn-
thesis and morphological changes in cardiomyocytes
[106,107]. The hypertrophy of cultured cardiomyocytes
is enhanced significantly when UT receptor is over-
expressed and can be inhibited by the UT recep-
tor antagonist, BIM-23127 [15,108,109]. The hypertro-
phy of cardiac myocytes is mediated by the mitogen-
activated protein kinases, ERK1/2 and p38 in an epider-
mal growth factor receptor-dependent signalling path-
way [108]. It may also be mediated by IL-6, the release
of which can be stimulated by U-II [109].

Heart failure

U-II is one of several neurohormonal systems activated
in congestive heart failure [23,86–89]. In the diseased
hearts of patients with end-stage heart failure, expres-
sion of U-II and its receptor is upregulated in cardiomy-
ocytes, endothelial cells and vascular smooth muscle
cells [89]. U-II is also expressed in macrophages and
myofibroblasts in patients with ischaemic heart disease
and its expression in subendocardial myocytes suggests
a role in myocardial contractility [89]. An inverse corre-
lation is observed between U-II expression or plasma
U-II and ejection fraction [88,89]. In heart failure,
U-II may also be elevated in diastolic myocardial dys-
function [110]. U-II may increase cardiac contractility
[62] and the peripheral vascular tone [72]. Although
increased contractility might be beneficial in the short
term, prolonged activation might lead to myocardial re-
modelling. Indeed, U-II induces cardiac fibroblast pro-
liferation, increases collagen type I gene expression and
decreases matrix metalloproteinase-1 gene expression
[15,111,112]. It is of interest to note that U-II causes
vasodilatation in the skin vessels of normal healthy
subjects but vasoconstriction in heart failure patients,
which may due to the unmasking of the vasoconstric-
tion effect of U-II in endothelial dysfunction, common
in heart failure diseases [72].

Mitogenesis

U-II may also act as a growth stimulating factor in tu-
mors in an autocrine/paracrine manner [113,114]. U-II
is mitogenic and induces arterial smooth muscle cell
proliferation via the RhoA/Rho-kinase pathway [18].
There are expressions of U-II and UT receptor in



72 Ong et al.

various human tumour cell lines, such as T98G glioblas-
toma cells, IMR-32 neuroblastoma cells, BeWo chorio-
carcinoma cells, SW-13 adrenocortical carcinoma cells,
DLD-1 colorectal adenocarcinoma cells and HeLa cer-
vical cancer cells [30]. Cultured SW-13 adrenocorti-
cal carcinoma cells secrete adrenomedullin, ET-1 and
U-II, all of which can promote tumour cell growth [30].
Indeed, U-II stimulates the proliferation of cultured
SW-13 cells and VMRC-RCW human renal carcinoma
cells [113]. U-II stimulates DNA synthesis in a dose-
dependent manner and induces c-myc expression in qui-
escent renal epithelial (LLCPK1) cells [114].

Therapeutic potential

A UT receptor antagonist may have clinical use in the
treatment of systemic, pulmonary and portal hyperten-
sion, and cardiac and renal failure. Palosuran is a non-
peptide UT receptor antagonist. Intravenous adminis-
tration of palosuran protects against renal ischaemia
in a rat model [46], perhaps by inhibiting U-II me-
diated renal vasoconstriction. Clinical studies of palo-
suran are now in progress to examine its effect on dia-
betic nephropathy.

Conclusions

U-II is the most potent vasoconstrictor known,
causing endothelium-independent vasoconstriction and
endothelium-dependent vasodilatation. There is in-
creasing evidence that U-II is associated with cardio-
vascular diseases, atherosclerosis, diabetes, renal dys-
function and hypertension although the results of some
studies are ambiguous. More research is needed to elu-
cidate the physiology and pathophysiology of U-II and
its receptor. The role of URP in the cardiovascular and
nervous system and its relationship with U-II is wor-
thy of investigation. The development of UT receptor
antagonists may provide a useful research tool as well
as a novel treatment for cardiorenal diseases.
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