
Vol.:(0123456789)

Cancer and Metastasis Reviews 
https://doi.org/10.1007/s10555-024-10192-9

REVIEW

The effect of GLP‑1R agonists on the medical triad of obesity, diabetes, 
and cancer

Shahad Sabaawi Ibrahim1 · Raghad Sabaawi Ibrahim1 · Batoul Arabi1 · Aranka Brockmueller2 · Mehdi Shakibaei2 · 
Dietrich Büsselberg1

Received: 1 January 2024 / Accepted: 21 May 2024 
© The Author(s) 2024

Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists have garnered significant attention for their therapeutic potential in 
addressing the interconnected health challenges of diabetes, obesity, and cancer. The role of GLP-1R in type 2 diabetes mel-
litus (T2DM) is highlighted, emphasizing its pivotal contribution to glucose homeostasis, promoting β-cell proliferation, and 
facilitating insulin release. GLP-1R agonists have effectively managed obesity by reducing hunger, moderating food intake, 
and regulating body weight. Beyond diabetes and obesity, GLP-1R agonists exhibit a multifaceted impact on cancer progres-
sion across various malignancies. The mechanisms underlying these effects involve the modulation of signaling pathways 
associated with cell growth, survival, and metabolism. However, the current literature reveals a lack of in vivo studies on 
specific GLP-1R agonists such as semaglutide, necessitating further research to elucidate its precise mechanisms and effects, 
particularly in cancer. While other GLP-1R agonists have shown promising outcomes in mitigating cancer progression, 
the association between some GLP-1R agonists and an increased risk of cancer remains a topic requiring more profound 
investigation. This calls for more extensive research to unravel the intricate relationships between the GLP-1R agonist and 
different cancers, providing valuable insights for clinicians and researchers alike.
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1 Introduction

 Semaglutide (US brand name Ozempic or Wegovy), a Gluca-
gon-like peptide-1 receptor (GLP-1R) agonist containing the 
active ingredient semaglutide, is approved by the Food and 
Drug Administration for its potential therapeutic role in obesity 
and diabetes mellitus (DM) similar to other agonists within the 
GLP-1R family such as liraglutide. It not only successfully reg-
ulates blood sugar levels [1] but also reduces the appetite and, 
thereby, the weight of patients [2], especially in individuals 

with obesity and type 2 diabetes mellitus (T2DM). But why 
is there even a need for such a medication? And are potential 
long-term consequences, such as promoting the development 
or spread of cancer, receiving sufficient attention?

The number of overweight people has been increasing 
rapidly in recent years due to genetic, socio-economic, life-
style, and cultural influences. Compared to the past, this not 
only affects adults but also numerous children and young 
people. Especially in American and European regions, at 
least 50% of residents now weigh more than the international 
standardized body mass index (BMI) recommends [3]. In 
this relation, a BMI of 30 kg/m2 or higher is classified as 
obese [4], whose causes lie in excessive calorie intake or 
reduced energy expenditure, and modern lifestyles promote 
both a lack of exercise and an unhealthy diet. Therefore, both 
these lifestyle factors and obesity itself represent a signifi-
cant risk factor for metabolic disease T2DM [3, 5].

DM is one of the most common metabolic diseases 
worldwide, with around 530  million people currently 
affected and an estimated 1.3 billion diabetes patients in 
2050. The most common disease forms are the well-known 
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types 1 and 2, severe diseases with chronic hyperglyce-
mia [6]. While type 1 often manifests as an autoimmune 
insulin deficiency during childhood, T2DM predominantly 
develops throughout life. Epigenetic modifications trigger a 
genetic predisposition, which leads to insulin resistance [7]. 
Concretely, tobacco smoking, alcohol consumption, unbal-
anced diet, low fitness, increased BMI as well as unhealthy 
environmental influences are the key risk factors for the 
development of T2DM, and this form accounts for 96% of 
all DM cases [6]. Due to the disrupted metabolic processes, 
numerous signaling pathways become dysregulated, result-
ing in epigenetically induced inflammation. This triggers 
the development of malignant tumors in different tissues, 
for example, the colorectal, liver, or breast cancer [8–10], 
creating a medical triad consisting of overweight, DM, 
and oncogenesis. Due to the close connection between this 
pathogenesis, it must be considered that drug manipulation 
of one of the diseases can also affect the other components 
of this interaction.

Therefore, this review presents the triangle relation-
ship of obesity, DM as well as cancer development and 
elucidates the treatment of overweight-associated T2DM 
with semaglutide, focusing on the question of whether 
the development of these conditions can be combated or 
if any severe side effects should be considered of this 
therapy.

2  The medical triad

Obesity, as well as DM, are conditions associated with a 
heightened risk of various cancers, including pancreatic, 
colorectal, breast, or liver cancer, and an increased mortal-
ity risk also accompanies them [8]. The link between these 
health issues and cancer risk is attributed to imbalances in 
the interaction of complex metabolic processes.

Obesity can be prevented by regulating body weight, 
dieting, and exercising [9] and although obesity is pre-
ventable, the increase in body fat allows the progres-
sion of metabolic diseases. Especially interesting, these 
metabolic diseases are associated with approximately 
20% of cancer cases [10, 11]. Obesity induces metabolic 
disturbances in adipose tissue, influencing the release of 
hormones, adipokines, inflammatory cytokines, growth 
factors, enzymes, and free fatty acids [12]. Notably, each 
5% increase in BMI is estimated to correlate with a 10% 
rise in cancer-related deaths [13]. The altered physiology 
of adipose tissue in obesity releases metabolic substrates 
contributing to tumor cells’ proliferation, invasion, and 
metastasis. Two critical factors in this association are 
pro-inflammatory cytokines and adipokines. Pro-inflam-
matory cytokines produced by adipose tissue support 
tumor-promoting intercellular crosstalk in the tumor 

microenvironment [14], thus enhancing tumor cell pro-
gression, angiogenesis, and invasion as essential require-
ments for metastasis [15]. For example, breast and colo-
rectal cancer progression was attributed to obesity [16], 
and in liver and gallbladder cancers, 51% of the cases are 
caused by this overweight disease [16]. However, calorie 
deficit, active lifestyle, behavior therapy, and drug therapy 
reduce inflammatory markers and regulate insulin levels 
commonly associated with cancer progression [17, 18].

Adipokines such as adiponectin and leptin, derived from 
adipose tissue, play pivotal roles. The excessive expansion 
of adipose tissue in obesity disrupts adipokine secretion, 
fostering chronic low-grade inflammation and thereby con-
tributing to the onset of metabolic disorders like obesity and 
T2DM. Adiponectin, inversely correlated with BMI, exhibits 
protective effects against carcinogenesis based on in vitro 
models. Leptin, implicated in inflammatory, mitogenic, and 
pro-angiogenic pathways, has been associated with breast 
cancer development, with studies indicating that inhibiting 
leptin signaling reduces the growth of breast cancer induced 
by carcinogens [12].

Moreover, high adiposity contributes to elevated serum 
estrogen levels, which, in excess, can promote tumor devel-
opment by causing DNA damage, stimulating angiogenesis, 
and fostering cellular proliferation [19].

The presence of hyperglycemia and hyperinsulinemia 
in T2DM [20], leading to metabolic dysfunction, can also 
contribute to the proliferation and migration of cancer 
cells [21]. Cancer progression due to hyperglycemia was 
reported in multiple cancers, including breast, colorectal, 
brain, and pancreatic cancer [22–25]. Insulin is responsi-
ble for activating insulin receptors and insulin growth-like 
receptors. Moreover, elevated insulin levels resulting from 
hyperinsulinemia trigger insulin-like growth factor (IGF) 
signaling, activating key pathways such as phosphoinositide 
3-kinase (PI3K)/protein kinase B (Akt)/mammalian target 
of rapamycin (mTOR) and mitogen-activated protein kinase 
(MAPK) [26]. These pathways, in turn, facilitate cancer cell 
growth, survival, motility, and resistance to drugs. Further-
more, it has long been theorized that cancer cells exhibit 
heightened glucose uptake and rely on glucose as a primary 
fuel for proliferation because it is a substrate cancer cells 
use as an energy source in aerobic glycolysis, resulting in 
tumor progression [27]. This phenomenon, known as the 
Warburg effect [28, 29], is attributed to damaged mitochon-
dria in cancer cells. Hence, anticancer therapy may include 
antidiabetic drugs targeting glucose metabolism and meta-
bolic pathways that decrease the glucose uptake in cancer 
cells [30].

In summary, the intricate interplay of metabolic abnor-
malities, inflammatory responses, and hormonal influences 
in obesity and diabetes underscores their significant impact 
on cancer risk and mortality.



Cancer and Metastasis Reviews 

3  The treatment complexities

The treatment of cancer in individuals who are both obese 
as well as diabetic poses significant challenges due to the 
intricate interplay between these conditions, and address-
ing these challenges involves navigating a complex land-
scape (Fig. 1). One noteworthy obstacle is the potential 
need for higher chemotherapy doses in obese patients 
based on their body weight. However, this approach car-
ries the inherent risk of heightened side effects and drug 
toxicity. In the case of obese individuals, an elevated BMI 
has been linked to increased interactional displacement, 
primarily stemming from the continuous movement of the 
skin and subcutaneous adiposity [31]. This displacement 
shift raises concerns about a potential reduction in the 
radiation dose reaching the target cells, leading to appre-
hensions about inadvertently overdosing patients with 
radiation and chemotherapy [31, 32].

Moreover, managing diabetes during cancer treatment is 
a crucial aspect often overshadowed by the primary focus 
on cancer therapies. Chemotherapy, in particular, can influ-
ence blood sugar levels, causing fluctuations that need 
careful consideration. Additionally, the use of corticoster-
oids alongside chemotherapy to mitigate severe nausea and 
vomiting introduces another layer of complexity [33]. For 
diabetic patients, this poses a substantial threat, as corti-
costeroids are known to induce hyperglycemia [34]. The 

combination of decreased glucose uptake by the muscle 
and decreased glycogenesis further contributes to hypergly-
cemic conditions and complicates the already challenging 
task of treating cancer in individuals managing diabetes.

GLP-1R plays a significant role in the triad, making it an 
appealing target for treatment (Fig. 1). Specifically, GLP-1R 
emerged as an important pharmacological target for address-
ing T2DM, as it actively contributes to maintaining glucose 
homeostasis while promoting both β cell proliferation and 
insulin release [35]. The impact of GLP-1R agonists such 
as semaglutide extends beyond diabetes control: they play 
a multifaceted role in regulating blood glucose levels by 
reducing hunger, moderating food intake, and managing 
body weight [36]. Notably, GLP-1R agonists inhibit cancer 
progression in some malignant tumors [37–40].

4  Glucagon‑like peptide‑1 receptor

The GLP-1R comprises seven hydrophobic transmembrane 
domains and a hydrophilic extracellular domain [41]. These 
receptors are expressed in multiple tissues, including the 
lung, stomach, intestine, liver, kidney, heart, pancreas, and 
regions in the central nervous system. Hence, it is a signifi-
cant target of small-molecule drugs for signaling modulation 
(Fig. 2) and treating various diseases [42]. The activation of 
GLP-1R is associated with glucose-induced insulin secretion 

Fig. 1  The link between cancer, 
obesity, diabetes, and GLP-1R’s 
effect on them. Generated using 
BioRender 
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and inhibition of α-cell glucagon release [43]. In addition, 
the activation of GLP-1R results in a cascade that activates 
adenyl cyclase via Gαs, resulting in an increased secretion 
of cyclic adenosine monophosphate (cAMP) secretion and 
activating cAMP-dependent protein kinase (PKA). GLP-1R 
can also couple with adenyl cyclase using other Gαs sub-
types such as Gαi and Gαq [44, 45]. An influx in calcium 
is reported upon activation of GLP-1R, and in combination 
with the activation of PKA, this results in insulin secretion 
[46].

GLP-1R reduces the inflammatory-induced response in 
the lungs, regulates oxidative stress and pulmonary func-
tion, and decreases excessive mucus production [47, 48]. 
Furthermore, GLP-1R affects the mucosal membrane in 
the gastric tract by decreasing gastric secretions, which 
restrict gastric acid secretions and motility [49–51]. GLP-
1R causes a reduction in hepatic steatosis and inflammation 
and increases fat metabolism mediated by increasing hepatic 

insulin sensitivity [52–54]. The GLP-1R directly influences 
renal functions by enhancing diuresis and natriuresis [55]. 
In diabetic kidney disease patients, a reduction in insulin 
levels, albuminuria, and the progression of renal failure were 
observed as a GLP-1R effect [56, 57]. Moreover, GLP-1R is 
found in the heart and blood vessels and is beneficial in heart 
rate, vascular endothelium, atherosclerosis, and hyperten-
sion [58, 59]. Since GLP-1R is a target in diabetes mellitus, 
it enhances the proliferation of β-cells and insulin secretion 
in the pancreas and reduces plasma glucose levels [60, 61]. 
The significant role of GLP-1R in the brain is to regulate 
metabolic processes, energy expenditure, and neuronal excit-
ability [62, 63]. It also causes stress responses, satiety, and 
vi0sceral illness’ in the central nervous system [63]. As an 
alarming finding, the activation of GLP-1R has been associ-
ated with developing thyroid cancer [64, 65].

On the other hand, the activation of GLP-1R in the pros-
tate attenuates cell proliferation and the progression of 

Fig. 2  Effects of GLP-1RAs on organs. GLP-1R and agonists 
decrease hypertension, atherosclerosis, inflammation, plasma glu-
cose levels, prostate cancer progression, insulin levels, albuminuria, 
renal failure progression, steatosis, gastric and acid secretion, and 
gastric motility levels amongst various organs in the body. GLP-1R 
and agonists increase heart rate regulation, vasodilation, oxidative 

stress regulation, pulmonary surfactants, β cell proliferation, insulin 
secretion and sensitivity, medullary thyroid cancer, diuresis, natriure-
sis, fat metabolism, neuronal excitability, energy expenditure, stress 
response, satiety, and visceral illness. For breasts, GLP-1R and ago-
nists lead to an increase or decrease in breast cancer progression. 
Generated using BioRender
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prostate cancer [66]. Although GLP-1R’s role is not fully 
understood or investigated in breast tissue when activated by 
different agonists, it may increase or decrease the progres-
sion of breast cancer [67, 68]. The extensive role of GLP-
1Rs and their agonists in other organs and tissues are shown 
in the overview in Fig. 2.

5  Glucagon‑like peptide‑1 receptor agonists

GLP-1R is targeted by GLP-1R agonists, which regulate 
diabetes and obesity. Although diabetic patients commonly 
use metformin, GLP-1R agonists serve as a beneficial thera-
peutic option for diabetic patients with metformin intoler-
ance. GLP-1R agonists mimic hormones that activate bio-
logical responses in GLP-1R. GLP-1R agonists fall under 
two groups: human GLP-1 backbone agents and exendin-4 
backbone agents. Dulaglutide, albiglutide, liraglutide, and 
semaglutide are human GLP-1 backbone agents. Exenatide 
and lixisenatide are classified as Exendin-4 backbone agents. 
In addition, semaglutide, liraglutide, and tirzepatide are 
GLP-1R agonists that are FDA-approved [69]. Albiglutide 
was discontinued for low prescription rates rather than safety 
concerns [70, 71]. All GLP-1R agonists have the same mode 
of function but differ in half-life duration. Exenatide has a 
half-life of 3.3–4 h, and one dose is seen to be insufficient, so 
it is taken twice daily. Lixisenatide and liraglutide have half-
lives of 2.6 h and 12.6–14.3 h, respectively and are taken 
once daily. Dulaglutide, albiglutide, and semaglutide have 
half-lives that range from 4.7 to 5.5, 5.7–6.8, and 5.7–6.7 
days, respectively [72].

GLP-1R agonists exhibit protective and regulatory effects 
on blood glucose levels but have been linked to the inhibi-
tion of tumor cell proliferation in most cancer cases, as seen 
in vitro and summarized in Table 1 [51, 73]. The fact that 
GLP-1R agonists are sometimes introduced if the patient is 
intolerant to metformin or metformin is contraindicated, or 
when patients on metformin are not achieving their HbA1c 
goals [71] represents essential background information here.

The effect of GLP-1R agonists liraglutide and exendin-4 
was examined in vitro on LOVO, CA-77, MCF-7, MDA-
MB-231, KPL-1, MB-468, 4TI, BT483, ZR751, LNCap, 
PC3, ALVA-41, DU145, LNCap, PANC-1, MiaPaCa-2, 
PANC, CT26, SKOV3, OVCAR3, OVCAR4, A2780, and 
ES-2 cell lines that are expressed in several cancers includ-
ing colorectal, pancreatic, thyroid, breast, prostate, ovarian, 
and colon (Table 1).

Liraglutide concentrations of 10–1000 nM implemented 
for 24–72 h showed an increase in apoptosis, G2/M phase 
arrest, Bax/Bcl-2 ratio, p38 MAPK activation, PKA expres-
sion, cAMP, caspase-3, GLP-1R expression, migration, ROS 
generation, NOX4 expression, VEGF, and proliferation of 
breast cancer in only one study. Nonetheless, a decrease 

in PI3K, Akt, mTOR, proliferation, migration, invasion, 
p-ERK1/2, growth, colony formation, and inflammation 
represented by nuclear factor κB (NF-κB) expression, cell 
viability, and an overall decrease in proliferation was noted 
with applying liraglutide (Table 1).

In addition, exendin-4 at 0.1–100 nM concentrations for 
24–96 h increased GLP-1R activation, p53, p21, p38, cAMP, 
Bax/Bcl-2 ratio, and p38/MAPK activation. A reduction in 
proliferation, NF-κB activation, migration, invasion, migra-
tion, colony formation, Cyclin D1, p-Akt, ERK-MAPK path-
way, cAMP, and GSK3 accompanied this increase (Table 1). 
Figure 3 shows an overview of the mentioned effects of the 
two GLP-1R agonists and their influence on numerous sign-
aling pathways.

Some of the significant GLP-1R agonists studied other 
than semaglutide are liraglutide and exendin-4. Both ago-
nists affect cancer in vitro by decreasing the proliferation and 
metabolic pathways at varying concentrations. Liraglutide 
and exendin-4 are initially antidiabetic drugs but can affect 
tumorigenesis, suggesting GLP-1R agonists as a potential 
treatment for different cancers as found in vivo (Table 2). 
Notably, an increase in calcitonin (Fig.  4), particularly 
observed in thyroid cancer, indicates cancer development 
[75], given its role as a tumor marker in medullary thyroid 
neoplasia [86]. More research is needed to understand the 
effect of other agonists, as cancer research is lacking. GLP-
1R agonists are typically combined with metformin or other 
antidiabetic drugs. The combination of GLP-1R agonists 
with each other has not been studied previously, suggesting 
that due to their similar mode of action, there would not be 
an enhancement in therapy from this combination.

The effect of GLP-1R agonists liraglutide and exendin-4 
was examined in vivo on CD-1, MCF-1, MDA-MB-468, 
MDA-MB-231, 4T1, LNCap, PANC-1, MIA PaCa-2, CT26, 
SKOV-3, and Apc(Min/+) cell lines expressed in cancers 
such as thyroid, breast, prostate, pancreatic, colon, ovarian, 
intestinal, and liver (Table 2).

Both liraglutide and exendin-4 decrease the size, weight, 
and proliferation of pancreatic, breast, prostate, ovarian, 
intestinal, liver, and colon cancer. Liraglutide slows down 
and sometimes even inhibits tumor growth of cancers in 
mice in in vivo studies. Moreover, it downregulates the pro-
tein levels of cell proliferation marker PCNA, decreases cell 
viability and number, and upregulates the protein levels of 
pro-apoptotic markers [91]. In addition, this GLP-1R ago-
nist activates AMPK, inhibiting the proliferation of various 
cancerous cells, making it a promising cancer treatment [92].

Exendin-4 significantly inhibits different cell lines and 
induces apoptosis through the mechanism modification 
of apoptosis-related genes, which plays a role in extrinsic 
pathways and cell survival genes [78]. Specifically in colon 
cancer and prostate cancer, exendin-4 increased intracellular 
cAMP levels while inhibiting glycogen synthase kinase 3 
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Table 1  GLP-1R agonist’s effect on cancer in in vitro studies 

Cancer type Cell line GLP-1R agonist Concentration and 
duration

Serum concentration 
of drug

Results References

Colorectal cancer LOVO Liraglutide 10−5 mol/L,  10−8 
mol/L,  10−11 mol/L 
for 24, 48, or 72 h

Ν/Α ↓ PI3K
↓ Akt
↓ mTOR
↓ Proliferation
↓ Migration
↓ Invasion
↑ Apoptosis

 [74]

Thyroid cancer CA-77 GLP-1 (7–37) 
agonists

10−8 M from 3–48 h Ν/Α ↑ cAMP
↑ CGRP
↑ CT

 [75]

Breast cancer MCF-7, MDA-
MB-231, KPL-1

Exendin-4 0.1–10 nM for 0–3 
days

0.44 ± 0.07 ng/mL ↓ Proliferation
↓ NF-κB activation
↑ GLP-1R activation

 [76]

Breast cancer MCF-7, MDA-
MB-231, KPL-1

Exendin-4 combined 
with metformin

10 nM for 0–3 days Ν/Α ↓ Proliferation
↑ GLP-1R activation

 [77]

Breast cancer MCF-7 Exendin-4 0.25, 0.5, 1, 1.5, 2, 
3, 5, 7.5, or 10 µM 
for 72 h

5 µM ↓ Migration
↓ Invasion
↓ Colony formation
↓ Proliferation
↑ Apoptosis

 [78]

Breast cancer MCF-7, MDA-
MB-231, MDA-
MB-468

Exendin-4 1, 10, or 50 nM for 
14 days

Ν/Α ↓ Colony formation
↓ Cyclin D1
↓ p-Akt
↑ p53
↑ p21
↑ p38
↑ cAMP

 [79]

Breast cancer 4T1, MCF-7, MDA-
MB-231, MDA-
MB-468, BT483, 
ZR751

Liraglutide 0, 10, 100, or 1000 
nM for 24, 48, or 
72 h

Ν/Α ↑ GLP-1R expres-
sion

↑ Proliferation
↑ Migration
↑ ROS generation
↑ NOX4 expression
↑ VEGF

 [67]

Prostate cancer LNCap, PC3, 
ALVA-41, DU145

Exendin-4 0.1–10 nM for 0, 24, 
48, 72, or 96 h

N/A ↓ ERK-MAPK 
pathway

↓ Proliferation
↑ cAMP

 [80]

Prostate cancer LNCap Liraglutide 
combined with 
Docetaxel

10, 20, 40, or 80 µM 
for 48 h

Ν/Α ↑ G2/M phase arrest
↑ Apoptosis
↓ p-ERK1/2
↓ p-Akt

 [81]

Prostate cancer LNCap Exenatide or lira-
glutide

0, 1, 10, or 100 nM 
for 24 h

Ν/Α ↓ Proliferation
↓ Cell viability
↑ Apoptosis
↑ Bax/Bcl-2 ratio
↑ p38 MAPK activa-

tion

 [82]

Pancreatic cancer PANC-1, Mia-
PaCa-2, PANC

Liraglutide 0, 10, 100, or 1000 
nM for 48 h

Ν/Α ↑ GLP-1R expres-
sion

↑ PKA expression
↑ cAMP
↑ Apoptosis
↑ Bax
↑ Caspase-3
↓ Growth
↓ Colony formation
↓ NF-κB expression

 [68]
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Table 1  (continued)

Cancer type Cell line GLP-1R agonist Concentration and 
duration

Serum concentration 
of drug

Results References

Pancreatic cancer MIA PaCa-2, 
PANC-1

Liraglutide 0, 10, 50, 100, 500, 
or 1000 nM for 
72 h

Ν/Α ↓ Colony formation
↓ Viability
↓ Migration
↓ Invasion
↓ Proliferation
↓ p-Akt

 [83]

Colon cancer CT26 Exendin-4 5 or 50 nM Ν/Α ↓ p-ERK1/2
↓ GSK3
↑ cAMP
↓ Proliferation
↑ Apoptosis
↓ Colony formation
↓ Viability

 [84]

Ovarian cancer SKOV3, OVCAR3, 
OVCAR4,

A2780, ES-2

Exendin-4 0, 1, 10, or 100 nM 
for 96 h

Ν/Α ↓ Proliferation
↓ Colony formation
↓ Migration
↓ Invasion
↓ p-Akt
↑ Apoptosis

 [85]

Fig. 3   Liraglutide and Exendin-4 decrease NF-κB, cell prolifera-
tion, and phosphorylated ERK in cancer. Liraglutide decreases Pl3K, 
Akt/PKB, and cell division while increasing GLP-1Rs, NOX4, ROS, 
caspase, MAPK, cAMP, Bcl-2, PKA, and cell apoptosis levels. 

Exendin-4 decreases Cylin D1 while increasing GLP-1Rs, MAPK, 
p21, p53, cAMP, Bcl-2, and cell apoptosis. Generated using BioRen-
der
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and ERK-MAPK activation, leading to an increase in apop-
tosis [93]. Moreover, exendin-4 inhibits migration, cell inva-
sion, and colony formation of many cancers, making it a 
possible treatment for malignant cells, specifically in pros-
tate cancer. Exendin-4 suppresses cell proliferation through 
the inhibition of ERK-MAPK [80]. Lastly, a combination 
of exendin-4 and metformin has been shown to attenuate 
different forms of cancer at a more noticeable rate [94, 95].

6  The popular GLP‑1R agonist semaglutide

Semaglutide is a long-acting GLP-1R agonist structur-
ally similar to GLP-1 but resistant to proteolytic cleavage 
[96] and is given as a subcutaneous injection to patients 
with T2D. This is because, in comparison to GLP-1, sema-
glutide has two amino acid substitutions, which makes it 
less vulnerable to degradation by the proteolytic enzyme 

Fig. 4  GLP-1R agonists were 
studied in thyroid cancers. 
Both Liraglutide and Exendin-4 
increase the levels of GLP-
1R, RET/PTC, mTOR, and 
calcitonin expression amongst 
patients with thyroid cancer. 
Generated using BioRender
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dipeptidyl peptidase-4 (DPP-4) [97] and gives it the dis-
tinct advantage of increased albumin affinity [96]. Moreo-
ver, due to these substitutions, semaglutide has a prolonged 
half-life of approximately 168 h, which is impressive given 
the knowledge that native GLP-1 has a half-life of 2 min, 

in comparison [98, 99]. This progress in scientific devel-
opment enables a 1-week administration of the drug, mak-
ing them an efficient alternative to other antidiabetic drugs, 
such as metformin, which requires two daily doses, and the 
updated metformin, which requires daily doses [100, 101]. 

Table 2  GLP-1R agonist’s effect on cancer in in vivo studies

Cancer type Cell line GLP-1R agonist Concentration and dura-
tion

Results References

Thyroid cancer CD-1 wild-type mice Liraglutide and exenatide 0.03, 0.3, or 3.0 mg/kg for 
13 weeks

↑ Calcitonin
↑ C-cell hyperplasia
↑ GLP-1R
↑ mTOR activation
↑ pS6

 [87]

Breast cancer MCF-7 cells into athymic 
nude mice

Exendin-4 and exandin 300 pmol/kg body weight/
day Ex-4 or 3 nmol/kg 
body weight/day exendin 
for 6–9 weeks

↓ Tumor size
↓ Proliferation
↓ Ki67
↓ NF-κB activation
↑ Serum insulin

 [76]

Breast cancer MCF-7 cells into athymic 
mice

Exendin-4 combined with 
metformin

300 pmol/kg body weight/
day for 8 weeks

↓ Tumor volume
↓ Tumor weight
↓ Ki67
↑ GLP-1R

 [77]

Breast cancer MDA-MB-468 and 
MDA-MB-231 cells into 
athymic nude mice

Exendin-4 500 ng or 2 µg per day for 
6 weeks

↓ Tumor weight
↓ Tumor size

 [79]

Breast cancer 4T1 cells in BALB/cfC3H 
mice

Liraglutide 400 µg/kg for 2 weeks ↑ Tumor volume
↑ Metastasis

 [67]

Prostate cancer LNCap cells into athymic 
mice

Exendin-4 24 nmol/kg body weight/
day or 300 pmol/kg body 
weight/day

↓ Tumor size
↓ P504S, prostate cancer 

marker
↓ Ki67
↓ Proliferation
↓ p-ERK-MAPK

 [80]

Prostate cancer LNCap cells into athymic 
mice

Exendin-4 combined with 
metformin

300 pmol/kg body weight/
day for 6 weeks

↓ Tumor volume
↓ Tumor weight
↓ Ki67
↓ P504S
↓ Proliferation

 [88]

Pancreatic cancer PANC-1 cells into nude 
mice

Liraglutide 0.2 mg/kg twice daily for 
4 weeks

↑ Chemosensitivity
↑ Bax
↓ Tumor volume
↓ Tumor weight
↓ Ki67

 [68]

Pancreatic cancer MIA PaCa-2 in male 
athymic nude mice

Liraglutide 0.2 mg/kg for 4 weeks ↓ Tumor growth  [83]

Colon cancer CT26 cells into BALB/c 
mice

Exendin-4 10 nmol/kg for 2 weeks ↑ Apoptosis
↓ Proliferation

 [84]

Ovarian cancer SKOV-3 cells into female 
nude mice

Exendin-4 500 ng/day or 2 µg/day for 
28 days

↓ Tumor size
↓ Tumor weight
↓ Tumor volume

 [85, 89]

Intestinal cancer Apc(Min/+) mice Exendin-4 For 1 month ↑ Small bowel weight
↑ Small bowel length
↑ Large bowel weight

 [89]

Liver cancer N/A Liraglutide N/A ↓ Body weight
↓ Fasting blood glucose
↓ Tumor lesions
↓ Fat deposition
↑ Insulin-positive β-cells

 [90]
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Furthermore, semaglutide is superior to other GLP-1R ago-
nists, such as liraglutide, which uses similar pharmacologi-
cal mechanisms but only has a half-life of 13 h and therefore 
has to be injected subcutaneously daily. This is underscored 
by the results of a clinical trial comparing the development 
of obese adults who received either semaglutide or liraglu-
tide in addition to nutritional advice and physical activity, 
and significantly greater weight loss was achieved in the 
semaglutide group [102].

Semaglutide, as a GLP-1R agonist, works very similarly 
to GLP-1 by potentiating glucose-stimulated insulin secre-
tion from the pancreatic β-cells while suppressing gluca-
gon secretion by pancreatic α-cells [103]. Therefore, anti-
diabetic medication decreases blood sugar levels, reduces 
body weight through a reduction in appetite [94], and lowers 
glycated hemoglobin (HbA1c), all while having a low risk 
of causing hypoglycemia [104]. Although GLP-1R agonists 
exhibit protective and regulatory effects on blood glucose 
levels, they have been positively correlated with tumor pro-
gression in patients with diabetes [51, 73].

7  Semaglutide’s role in the medical triad 
of diabetes, obesity, and cancer

The prevalence of T2DM has increased significantly in the 
past decades. It is likely to be the fifth most common cause 
of death, following an 8% attribution to the mortality rate in 
the USA, Canada, and the Middle East [105]. Patients with 
T2DM tend to secrete less insulin following a glucose-heavy 
meal possibly due to decreased levels of glucagon-like pep-
tide-1 (GLP-1) [96]. Characterized by insulin resistance, grad-
ual progressive loss of insulin secretion by β-cells, and being 
heavily driven by being overweight or obese [98], T2DM 
leads to hyperglycemia, excessive urine production, increased 
risk of cardiovascular disease, and changes in energy metabo-
lism [106]. To lessen the effects of these symptoms, patients 
with T2DM are encouraged to improve their eating lifestyles 
and increase their physical activity [107].

Nevertheless, despite the positive outcomes of exercise 
and diet, recommended glycemic levels (e.g., HbA1c < 7.0%, 
53.0 mmol/mol for nonpregnant adults) [108] may some-
times be challenging to achieve. Therefore, the addition of 
glucose-lowering agents is recommended by the American 
and European Diabetes Associations to control and/or mini-
mize the risk of cardiovascular disease and microvascular 
complications [103]. In this regard, semaglutide is becoming 
increasingly important, as demonstrated in Table 3, which 
summarizes the previous results of phase 3 clinical trials.

Semaglutide was tested in clinical trials on individuals 
with obesity and diabetes. Phase three of the clinical tri-
als was conducted using semaglutide concentrations rang-
ing from 0.5 to 2.0 mg for 30–104 weeks. A decrease in 

body weight, blood pressure, HbA1c, fasting insulin, insulin 
resistance, plasma glucagon, total cholesterol, lipids, FPG, 
SMBG, cardiovascular death, nonfatal stroke, and myocar-
dial infarction are observed with the use of semaglutide 
in monotherapy or in combination with other antidiabetic 
drugs. (Table 3). However, an increase in gastrointestinal 
adverse events, diarrhea, hypoglycemia, nausea, neoplasm, 
treatment-emergent adverse events, pancreatic enzymes, 
diabetic retinopathy complications, and pancreatic cancer 
was observed to accompany the treatment using semaglu-
tide. Several clinical trials implemented a combination of 
semaglutide treatments with sulfonylurea, sitagliptin, basal 
insulin, metformin, or other antidiabetic drugs (Table 3).

Altogether, clinical trials in phase 3 that applied semaglu-
tide in monotherapy and combined with other antidiabetic 
drugs yielded similar results. However, suppose semaglutide 
is reduced to $1711.03 per year. In that case, it will be con-
sidered cost-effective and preferable treatment compared to 
other GLP-1R agonists and antidiabetic drugs [123]. The 
decrease in HbA1c caused by semaglutide is accompanied 
by a reduction in body weight, which is unique to semaglu-
tide as an antidiabetic medication. Therefore, injections of 
semaglutide can assist individuals in maintaining a healthier 
lifestyle with a decrease in the rate of potential cardiovas-
cular diseases [124]. The effect of semaglutide alone is suf-
ficient to the result in positive outcomes. Still, these positive 
results can be enhanced when in combination with other 
drugs, such as metformin, which allows for an effective treat-
ment plan with no increase in adverse symptoms usually 
seen with the treatment of semaglutide alone [121, 122, 125, 
126]. Furthermore, the possible promotion of cancer cell 
growth is increasingly being discussed with contradictory 
results (Table 4) that require clarification.

Semaglutide is associated with increased neoplasm and 
tumorigenesis, specifically in the thyroid, bladder, colorec-
tal, and pancreas. Doses of 0.5–1.0 mg yielded 1–155 cases 
of cancer development in the treatment period of 30–104 
weeks. Lower cases were reported in the thyroid, bladder, 
colorectal, and pancreas compared to a treatment period of 
104 weeks with 0.5 mg of semaglutide, which yielded 155 
cases of neoplasm. On the contrary, for the same treatment 
period but at a drug concentration of 1.0 mg, there was only 
1 case of thyroid cancer (Table 4).

Semaglutide, among other antidiabetic drugs, has shown 
an association with cancer as it alters the rates of tumo-
rigenesis and proliferation. This GLP-R1 agonist seems to 
increase oncogenesis in multiple tissues, including the thy-
roid, bladder, pancreatic, and colorectal [97, 110, 121].

Pharmaceutical companies have issued a warning about 
the use of formulations of semaglutide with those who have 
thyroid cancer or are at risk of developing it [128]. Despite 
some studies showing cases of cancer development, the 
numbers reported are as minimal as one case. There is no 
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Table 3  Semaglutide’s effect on type 2 diabetes and obesity in phase 3 trials

Sustain number Number of 
participants

Concentration and treatment 
duration

Monotherapy vs. combined 
therapy

Results Reference

1 388 0.5, or 1.0 mg for 30 weeks Monotherapy ↓ HbA1c
↓ Body weight
↑ Nausea
↑ Diarrhea

[109]

2 1231 0.5, or 1.0 mg for 56 weeks Both, combined with 100 mg 
sitagliptin

Monotherapy:
↓ HbA1c
↓ Body weight
Both:
↑ Hypoglycemia
↑ Nausea
↑ Diarrhea

[110]

3 813 1.0 mg for 56 weeks Monotherapy ↓ HbA1c
↓Fasting insulin
↓Insulin resistance
↓Plasma glucagon
↓ Body weight
↑ Gastrointestinal adverse events
↑ Neoplasms

[111]

4 1089 0.5, or 1.0 mg for 30 weeks Combined with metformin alone 
or with sulfonylurea

↓ HbA1c
↓ Body weight

[112]

5* 397 0.5, 1.0 mg for 30 weeks Combined with basal insulin ↓ HbA1c
↓ Body weight
↑ Neoplasms
↑ Pancreatic cancer

[97]

6 3297 0.5, 1.0 mg for 104 weeks Monotherapy ↓ HbA1c
↓ Body weight
↓Cardiovascular death
↓ Nonfatal stroke and myocar-

dial infarction
↓ Mean systolic blood pressure
↑ Diabetic retinopathy compli-

cations

[113]

7 1201 0.5, 1.0 mg for 24 weeks Monotherapy ↓ HbA1c
↓ Body weight

[114]

8 788 1.0 mg for 52 weeks Combined with metformin ↓ HbA1c
↓ Body weight
↑ Gastrointestinal adverse events

[115]

9 302 1.0 mg for 37 weeks Combined with sodium-glucose 
cotransporter-2 (SGLT-2) 
inhibitors and metformin or 
sulfonylurea

↓ HbA1c
↓ Body weight
↑ Gastrointestinal adverse events

[116]

10 577 1.0 mg for 30 weeks Combined with oral antidiabetic 
drugs

↓ HbA1c
↓ Body weight
↓ FPG
↓ SMBG
↑ Gastrointestinal adverse events
↑ Improvement in total choles-

terol and triglycerides

[117]

11 1748 1.0 mg for 52 weeks Combined with metformin and 
insulin glargine

↓ HbA1c
↓ Body weight
↓ Systolic blood pressure
↑ Gastrointestinal adverse events

[118]

FORTE 961 1.0 or 2.0 for 40 weeks Combined with metformin and 
with or without sulfonylurea

↓ HbA1c
↓ Body weight
↓ Blood pressure
↑ Gastrointestinal adverse events

[119]
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conclusive evidence that semaglutide induced cancer devel-
opment in tissue, which may imply that the development of 
cancer may pertain to other causes rather than semaglutide 

application [129]. On the contrary, several authors report 
mitigation of cancer proliferation using the same dose of 
0.5–1.0 mg semaglutide ingested by diabetic patients and 

*Represents a single case

Table 3  (continued)

Sustain number Number of 
participants

Concentration and treatment 
duration

Monotherapy vs. combined 
therapy

Results Reference

Japan 308 0.5 mg, or 1.0 mg for 30 weeks Monotherapy ↓ HbA1c
↓ Body weight
↓ Blood pressure
↓ VLDL cholesterol and triglyc-

erides
↑ Treatment of emergent 

adverse events

[120]

Japan 601 0.5, or 1.0 mg for 63 weeks Both monotherapy and com-
bined with an oral antidiabetic 
drug

↓ HbA1c
↓ Body weight
↓ Insulin ratios
↓ Blood pressure
↓ All lipids (except free fatty 

acids and HDL cholesterol)
↑ Treatment of emergent 

adverse events
↑ Pancreatic enzymes

[121]

China 868 0.5, or 1.0 mg for 30 weeks Combined with metformin ↓ HbA1c
↓ Body weight
↓ Systolic blood pressure
↓ Total cholesterol
↑ Gastrointestinal adverse events
↑ Amylase and lipase

[122]

Table 4  Semaglutide’s involvement with cancer as an adverse effect

Cancer type Concentration and duration Number of 
participants

Number of events 
in placebo

Number of events 
caused by semaglutide

Reference

Neoplasms 0.5 mg or 1.0 mg for 56 weeks n = 818 n = 0 n = 14 [110]
EAC-confirmed neoplasms 1.0 mg for 56 weeks n = 813 N/A n = 15 [111]
EAC-confirmed neoplasms 0.5 or 1.0 mg for 30 weeks n = 397 n = 1 n = 5 [97]
Neoplasms 0.5 or 1.0 mg for 104 weeks n = 136 n = 70 n = 66 [113]
Neoplasms 0.5 or 1.0 mg for 24 weeks n = 601 N/A n = 6 [114]
Neoplasms 1.0 mg for 52 weeks n = 367 N/A n = 3 [115]
Neoplasms 1.0 mg for 37 weeks n = 302 n = 5 n = 4 [116]
Neoplasms 1.0 mg for 30 weeks n = 577 N/A n = 9 [117]
Neoplasms 1.0 mg for 52 weeks n = 874 N/A n = 11 [118]
Neoplasms 0.5 or 1.0 mg for 63 weeks n = 595 N/A n = 44 [121]
Neoplasms 0.5 or 1.0 mg for 30 weeks n = 578 N/A n = 23 [122]
Thyroid 1.0 mg for 104 weeks n = 1648 n = 4 n = 1 [127]
Thyroid 1.0 mg for 56 weeks n = 818 n = 0 n = 1 [110]
Bladder 1.0 mg for 30 weeks n = 205 N/A n = 1 [120]
Bladder 1.0 mg for 56 weeks n = 818 n = 0 n = 1 [110]
Pancreatic 0.5 mg for 30 weeks n = 722 N/A n = 1 [112]
Pancreatic 1.0 mg for 30 weeks n = 397 N/A n = 1 [97]
Colorectal 0.5 mg for 30 weeks n = 397 n = 1 n = 1 [97]
Colorectal 0.5 or 1.0 mg for 63 weeks n = 595 N/A n = 18 [121]



Cancer and Metastasis Reviews 

for similar periods. The increase in semaglutide is gradual 
and can be altered to scale up every 30 days when ingested 
orally. This accumulation may aid semaglutide’s action 
against cancer cells [130]. There is a pool of research on the 
effect of liraglutide and exendin on cancer. However, there 
is a lack of research data on the impact of semaglutide in 
vitro and in vivo, which limits its efficiency in tumor therapy. 
Further research must be conducted to understand the effects 
of semaglutide on cancer as it belongs to the GLP-1R family 
along with liraglutide and exendin and may provide similar 
results.

8  Conclusions

Semaglutide, like many other GLP-1R agonists, is used in 
diabetes and obesity to decrease glucose levels and man-
age body weight, which plays a role in tumorigenesis. The 
insufficient in vivo studies on semaglutide and limited in 
vitro research raise concerns about the imperative for more 
comprehensive investigations into its effects. Specifically, 
there is a need to elucidate a descriptive mechanism through 
which semaglutide reduces diabetes and obesity and poten-
tially influences cancer. Although there is a lack of direct 
studies on semaglutide, the observed actions align with those 
of other GLP-1R agonists, indicating a potential impact on 
cancer. There is a notable increase in thyroid cancer with the 
use of GLP-1R agonists, including semaglutide. The use of 
GLP-1R agonists increases calcitonin gene-related peptide 
(CGRP) in thyroid cancer. Overexpression of pS6, mTOR 
activation, calcitonin, and C-cell hyperplasia reported in 
in vivo suggest the increased proliferation and tumorigen-
esis [75, 87]. Despite the cancer cases recorded with the 
use of semaglutide, other factors may have contributed to 
cancer development with no association with semaglutide 
[129]. However, whether Semaglutide’s effect is mitigating 
or exacerbating remains unclear, emphasizing the necessity 
for further research on the outcome of GLP-1R agonists on 
cancer, specifically thyroid cancer.
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