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Abstract
T cells, a key component of cancer immunotherapy, undergo a variety of histone modifications and DNA methylation changes 
since their bone marrow progenitor stages before developing into  CD8+ and  CD4+ T cells. These T cell types can be catego-
rized into distinct subtypes based on their functionality and properties, such as cytotoxic T cells (Tc), helper T cells (Th), 
and regulatory T cells (Treg) as subtypes for  CD8+ and  CD4+ T cells. Among these, the  CD4+  CD25+ Tregs potentially 
contribute to cancer development and progression by lowering T effector (Teff) cell activity under the influence of the tumor 
microenvironment (TME). This contributes to the development of therapeutic resistance in patients with cancer. Subsequently, 
these individuals become resistant to monoclonal antibody therapy as well as clinically established immunotherapies. In this 
review, we delineate the different epigenetic mechanisms in cancer immune response and its involvement in therapeutic resist-
ance. Furthermore, the possibility of epi-immunotherapeutic methods based on histone deacetylase inhibitors and histone 
methyltransferase inhibitors are under investigation. In this review we highlight EZH2 as the principal driver of cancer cell 
immunoediting and an immune escape regulator. We have addressed in detail how understanding T cell epigenetic regula-
tion might bring unique inventive strategies to overcome drug resistance and increase the efficacy of cancer immunotherapy.
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1 Introduction

Since its inception, the field of “epigenetics” has expanded 
revealing its role in population survival, human develop-
mental programming, and immune system adaptation. Epi-
genetic modifications, including DNA methylation, histone 
posttranslational modifications, and noncoding RNAs, exert 
intricate control over T cell development and function [1]. 
They play a fundamental role in mediating the adaptive 

capabilities of T cells and their ability to respond to envi-
ronmental cues [1]. By understanding the epigenetic mecha-
nisms, we can gain insights into how T cells differentiate, 
form stable lineages, and adapt to changing conditions. This 
comprehensive review explores the mechanistic aspects of 
epigenetic regulation in T cells and highlights its signifi-
cance in the fields of immunology and cancer research.

Central to immune responses, the immune cells comprise 
of various subsets, including T and B lymphocytes, derived 
from the thymus and bone marrow, respectively. Notably, T 
cell development involves dynamic DNA rearrangements 
facilitated by DNA methylation and histone modifications, 
which helps to orchestrate the intricate process of lineage 
commitment and stability. Recent investigations have sig-
nificantly advanced our knowledge of T cell subsets and 
their developmental trajectory, shedding light on the criti-
cal role of the epigenetic regulation. Antigen stimulation 
guided by specific cytokines directs T cell differentiation [2]. 
Chromatin remodeling, a key process driven by epigenetic 
modifications, modulates the transcriptional accessibility of 
key cytokine genes such as IL-17, IFN-g, and IL-4, thereby 
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influencing T cell activation and effector functions [2]. 
Based on this cytokine secretion pattern, T cells are further 
categorized into distinct subsets:  CD8+ and  CD4+ T cells 
which are committed to their lineage of cytotoxic T cell (Tc 
cells) and helper T cell (Th cells), respectively.

Within the  CD4+ T cell population, natural regulatory 
T cells (nTregs) and natural killer T cells (NKT cells) 
represent unique subsets that arise from distinct differen-
tiation processes in the thymus [3]. Tregs have emerged as 
sophisticated regulators of immune responses, suppressing 
the proliferation and effector functions of various immune-
responsive cells, including NK cells, Tc cells, B cells, 
and antigen-presenting cells (APCs) [4]. Studies utilizing 
thymectomized mice and subsequent rescue experiments 
with  CD4+ T cell transfers have provided valuable insights 
into the essential role of these cells in immune control and 
suppression [5, 6]. The development and differentiation of 
Tregs are intricately governed by specific transcription fac-
tors that orchestrate transcriptional programs, and ultimately 
suppress the expression of immune-responsive cells [7]. This 
intricate mode of epigenetic regulation allows the modula-
tion functionality of Tregs in diverse pathological condi-
tions, including cancer [7].

This comprehensive review delves into the molecu-
lar intricacies of epigenetic regulation in T cell develop-
ment and function. Unravelling the underlying epigenetic 
mechanisms provides critical insights into immunological 
processes and offers potential avenues for therapeutic inter-
ventions in cancer. The elucidation of epigenetic controls 
governing human T cell development holds promise for the 
creation of new approaches to manipulate immune responses 
and overcome drug resistance, ultimately advancing immu-
notherapeutic strategies in cancer treatment and prevention.

2  T cell maturation stages and epigenetic 
regulation

The various types of T cells originate from progenitor cells 
derived from the bone marrow. These cells undergo line-
age commitment, progressing through different stages and 
expressing distinct clusters of differentiation (CD) surface 

markers [8]. This maturation process, known as lymphopoie-
sis or lymphoid hematopoiesis, involves specific epigenetic 
modifications that enable the functionality of relevant genes, 
while repressing alternative lineage genes [9]. During lym-
phoid lineage differentiation, CpG methylation plays a cru-
cial role in both thymic development and peripheral differ-
entiation [10]. Genes associated with the lymphoid lineage 
get DNA hypomethylation, while myeloid lineage genes get 
DNA hypermethylation [10].

One of the major regulators involved in T cell differen-
tiation is Ikaros, a transcription factor that plays a crucial 
role in chromatin remodeling. Ikaros targets the nucleosome 
remodeling and deacetylase (NuRD) chromatin remodeler 
complex [11–13]. The NuRD complex consists of various 
components, including HDAC1, HDAC2, MTA1, MTA2, 
MBD3, Rbp46/48, and Mi-2β [14]. The interaction between 
Ikaros and the NuRD complex helps regulate the chromatin 
topology and gene expression through histone deacetylase 
activity [11–13]. Previous studies have shown that Mi-2β, 
a component of the NuRD complex, downregulates stem 
cell genes (like Mdmdc2, Mpl, Ndn, Tgm2, Tek, Ebi3) and 
early myeloid-promoting genes (like Csf1r, Il6ra, Egr1, 
Il6st) [15]. In contrast, Ikaros functions in downregulating 
the stem cell program in lympho-myeloid primed progeni-
tors (LMPPs) through the formation of heterochromatin 
region by increasing H3K9Me3 and decreasing H3K9Ac and 
upregulating lymphoid-promoting genes, such as Ptcra (pre-
TCRα) [16, 17], Cd4 [18], and TdT (terminal deoxynucleoti-
dyl transferase) [19] (Fig. 1A and B). Even the mice lacking 
Ikaros gene expression develop thymomas which lead them 
to attain a phenotype similar to pre-T cell which after its 
reintroduction instantly led to its rapid differentiation to DP 
(double-positive)-like thymocytes [20]. Apart from this the 
Chip-Seq analysis of human B-ALL cells — Nalm6 cell line 
(B cell acute lymphoblastic leukemia) has shown an asso-
ciation of Ikaros with HDAC1 thus forming Ikaros-HDAC1 
complex over 934 gene targets which characterized the pres-
ence of strong H3K27Me3 and H3K4Me3 with moderate 
H3K9Me3 and absence of H3K9Ac [21]. Thus, after T cells 
are activated, Ikaros helps in recruiting Mi-2/HDAC to these 
heterochromatin regions, thereby restructuring the chromatin 
for lymphocyte differentiation [11].

Interestingly, Ikaros has been found to regulate double-
negative thymocytes through polycomb repressive com-
plex 2 (PRC2)-mediated gene silencing, independent of 
the NuRD complex [22]. It has been shown that Ikaros 
binding results in recruitment of PRC2 which causes sup-
pression of various genes like Cd9, Ctnnd1, Glt1d1, and 
Cttnbp2nl through H3K27 trimethylation in the DN3 stage 
(double negative) [22]. Interestingly Ikaros and PRC2 also 
have been found to downregulate the transiently elevated 
expression of certain Notch target genes, including Hes1, 
Scn4b, and Mpzl2 (Fig. 1B) in DN2 and DN3 cells [23]. It 

Fig. 1  Epigenetic mechanism of T cell differentiation from HSC. A 
Active chromatin marks like H3K4 trimethylation and H3K9 acetyla-
tion on promoter of stem cell genes like MP1, TGM2, and MDMC2 
leading to stem cell regeneration. B Repressive chromatin complexes 
like Ikaros and NuRD complex or Ikaros and PRC2 complex inhibit 
the transcription of myeloid-promoting genes leading to transition of 
DN1- to DN3-. C Repressive chromatin complexes like IKAROS and 
PRC2 or IKAROS and DNMT1 inhibit the transcription of myeloid-
promoting genes and removal of these complexes activates the tran-
scription of lymphoid-promoting genes leading to transition of DN4 
to DP

◂
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was found that it requires Ikaros to be efficiently silenced 
in DN4 and DP cells, although IKAROS expression 
decreases in the DP thymocytes, but the gene repression 
is still sustained through the epigenetic memory [22].

Ikaros also plays a role in regulating DNA methylation. 
It has been observed that Ikaros colocalizes with DNA 
methyltransferase at the replication fork during the S phase 
of the cell cycle [24]. Remarkably, deletion of the DNA 
methyltransferase DNMT1 during thymic development 
at the double-negative stage leads to a significant reduc-
tion in double-positive T cells and mature peripheral T 
cells [25]. Recent studies have used Comprehensive High-
throughput Arrays for Relative Methylation (CHARM) to 
identify differentially methylated regions (DMRs) associ-
ated with gene expression datasets [26]. These studies have 
revealed the negative regulation of TGF-beta signalling by 
selective hypomethylation of SMAD7 during early stages 
of thymocyte development [26] (Fig. 1C). Furthermore, 
genes such as Arl4c and Lck undergo DNA demethylation 
during lymphopoiesis, while Gcnt2 transcripts are hyper-
methylated and downregulated, suggesting their role in 
aiding myeloid potential and their loss during lymphoid 
lineage commitment [26].

Following T cell development, the transcription factor 
Bcl11b plays a crucial role in suppressing self-renewal 
and multipotency in double-negative thymocytes [27–29]. 
Knockdown of Bcl11b leads to the inhibition of thymocyte 
differentiation and accumulation in the double-negative 
stage, accompanied by impaired T cell development [27]. 
Additionally, Bcl11b has been found to reprogram DN2,3 
and double-positive (DP) thymocytes into natural killer 
(NK)-like cells, suggesting its role in determining cell fate 
[30].

The CD4 locus provides another example of epigenetic 
regulation during T cell development [31]. In DP T cells, 
the CD4 locus is hypermethylated, but CD4 expression 
remains high compared to double-negative (DN) cells and 
cytotoxic  CD8+ T cells [32]. Enhancer sequences E4(p) 
and E4(m), located upstream of the CD4 transcription start 
site, drive optimal CD4 expression in DP-T cells, resulting 
in the growth of single-positive  CD4+CD8− T cells [32]. 
Transcription factors such as TCF1 [32], LEF1 [32], Bcl11b 
[33], and Satb1 [34] are involved in regulating the expres-
sion of these enhancers. Following the expression of E4(p) 
and E4(m), DNA demethylases TET1 and 3 cause demeth-
ylation of CD4 during thymocyte maturation, which results 
in the formation of single-positive (SP)  CD4+CD8− T cells 
[32] (Fig. 2A).

In  CD8+ T cells the activity of E4m is repressed through 
Runx by binding at an intronic silencer S4 and thus regu-
lating Dnmt1-mediated hypermethylation of CD4 gene 
[31, 35]. Once E4p and E4m are expressed it leads TET1 
and TET3 to cause locus demethylation of CD4 during the 

thymocyte maturation which results in the formation of SP 
 CD4−CD8+ T cells [32] (Fig. 2B).

These recent findings shed light on the intricate molec-
ular mechanisms and epigenetic regulation involved in T 
cell development. Various transcription factors and protein 
complexes are involved in orchestrating the differentiation 
and lineage commitment of T cells. Further research in this 
field continues to uncover additional details and provide a 
comprehensive understanding of T cell development.

2.1  T cell subtypes

The  CD4+ and  CD8+ T cells are classified into several sub-
sets based on their function and classifications. Within this 
group,  CD4+ T cells are classified into distinct populations 
of Th and Treg cells, whereas  CD8+ T cells are divided into 
numerous subsets of cytotoxic T cells.

2.2  Helper T cells

Th cells are the category of  CD4+ T cells which are further 
categorized into Th1, Th2, and Th17 T cells. Among these, 
Th1 and Th2 cells play a major role in promoting B cell 
class switching to complement-fixing antibodies [36, 37], 
which provides defense against intracellular pathogens, and 
induces a delayed hypersensitivity response (DTH) to stop 
the spread of harmful bacteria [38]. Other than these, there 
are Th17 cells, which are essentially defined by the produc-
tion of IL-17 and provide host defense against microorgan-
isms, like extracellular bacteria and some fungi, for which 
Th1 or Th2 immunity is not well suited [39]. Th17 cells 
are crucial for host defense, but they have also drawn a lot 
of interest recently because they are the main pathogenesis 
mediators in a number of inflammatory and autoimmune 
diseases.

Helper T cells are subject to epigenetic regulation through 
repression based on H3K27Me3 on Tbx21 (Th1), Gata3 
(Th2), and Rorc (Th17) [40]. This process inhibits differen-
tiation programs that are inactive when antigenic stimulus is 
not present [40]. T cells undergo epigenetic reprogramming 
upon  CD4+ activation, which involves the enrichment of the 
histone acetyltransferase enzyme p300 [41]. This enrichment 
results in the deposition of global activation marks involving 
histone activation and other permissive histone methylation 
marks, such as H3K4Me3, which enriches cytokines and 
their receptors, such as Il7r, Il17f, Il10, Il17a, and Il2ra [42, 
43]. When these cytokines are activated, the Ifng gene in 
Th1 cells experiences histone acetylation due to the acti-
vation of the STAT4-T-bet axis, and the Il4 locus in Th2 
experiences histone acetylation due to the activation of the 
STAT6-GATA3 axis [42]. Furthermore, it has been dem-
onstrated that the engagement of the SWI/SNF chromatin 
remodeling complex by the Th17 master transcriptional 
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regulator retinoic acid-related orphan receptor γt (RORγt) 
is necessary to promote chromatin accessibility of IL-17A, 
IL-17F, and IL-23R [44].

Furthermore, a subpopulation of follicular helper T cells 
known as Tfh cells, which express CXCR5, aid in the dif-
ferentiation and maturation of B cells in response to the 
humoral immune response of the pathogen, which is con-
trolled by IL-21 autocrine signalling [45]. These Tfh cell 
function and differentiation are determined by the BCL6 
which through their signalling circuit controls the transcrip-
tion factor regulating its expression [46]. In addition to an 
increase in expression, IL-6 signalling cascade also helps 
in initiating the Tfh differentiation program through the 

engagement of STAT1 and STAT3 promoters that in vivo 
increase BCL6 in  CD4+ T cells [47].

2.3  T regulatory cells

Treg cells are a subset of  CD4+ T cells that play an impor-
tant role in immunological homeostasis and suppressing 
excessive immune responses. Among the  CD4+ single posi-
tive (SP-CD4+) T cell population, the Treg cells, also known 
as thymic-derived or nTreg cells, possess distinct phenotypic 
characteristics [48]. They express the α chain of the IL-2 
receptor (CD25) and the forkhead box P3 (FOXP3) nuclear 
transcription factor, which are critical for their regulatory 
functions [48, 49].

Fig. 2  Epigenetic regulation of 
T cell maturation. A TET1/3 
binds to promoter and EXON1 
of CD4 removing methylation 
from DNA and activating its 
transcription, thus maturing 
to  CD4+  CD8−  CD3+ T cells. 
B RUNX3 binds to intronic 
region S4 and assists DNMT1 
to hypermethylate the promoter 
of CD4 thereby repressing its 
transcription thus maturing to 
 CD4−  CD8+  CD3+ T cells
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The development and function of Treg cells can be pro-
foundly affected by genetic alterations at the FOXP3 locus 
on the chromosomes [50]. Mutations in this region can lead 
to dysregulation of Treg cell function, resulting in lym-
phoproliferative and autoimmune diseases, and in severe 
cases, even death [50]. To better understand the regulation 
of FOXP3 expression, scientists examined the alignment of 
the FOXP3 locus across different species. This analysis has 
revealed the presence of highly conserved regions, including 
the promoter and three non-coding regions, which collec-
tively regulate the expression of the FOXP3 gene [51]. These 
noncoding regions are referred to as conserved non-coding 
sequences (CNS) 1, 2, and 3, which function as an enhancer 
facilitating the binding of various transcription factors that 
induce FOXP3 expression [51]. Among these conserved 
regions, CNS-1 is located 2 kb downstream of the transcrip-
tion start site (TSS) and serves as a sensor for transforming 
growth factor-beta (TGF-β) [51]. CNS1 contains binding 
sites for SMAD proteins and NFAT, allowing it to respond to 
TGF-β signalling [52]. Upon stimulation of the T cell recep-
tor (TCR) and TGF-β, there is an induction of H3K4Me3 at 
CNS1, which leads to the opening of the chromatin struc-
ture and allows access to Smad3 [53]. Another conserved 
region, CNS2, stabilizes FOXP3 expression and has been 
demonstrated to be crucial for FOXP3 induction. Remark-
ably, it has been shown that protein called Bcl11b associates 
with both CNS1 and CNS2 at the FOXP3 locus [54]. This 
association plays a critical role in FOXP3 expression, not 
only in nTreg cells but also in induced Tregs (iTregs) [54]. 
The expression of FOXP3 in response to TCR activation and 
TGF-β signalling is significantly reduced when Bcl11b is 
absent, highlighting the importance of Bcl11b in the genera-
tion of iTreg cells [54].

Apart from the genetic and epigenetic regulation of 
FOXP3, Treg cells exhibit hypomethylation of DNA of 
specific signature gene loci, such as Ikzf4, Ctla4, and Ikzf2 
[53]. These signature genes are crucial for Treg cell activity 
because, even in the absence of FOXP3, their hypometh-
ylation results in the expression of a gene profile exclusive 
to Treg cells [53]. Additionally, antigen-presenting cell 
(APC) maturation and the activation of STAT5 and NFAT 
in response to interleukin-2 (IL-2) and CD25 TCR stimula-
tion during inflammation are essential for determining the 
identification of Treg cells [55]. Activated STAT5 and NFAT 
interact with the hypomethylated enhancer region of FOXP3 
in the CNS2, counteracting the effects of pro-inflammatory 
cytokines and maintaining the Treg cell phenotype [56, 57]. 
These intricate regulatory mechanisms are instrumental in 
the formation of Treg cell precursors in the thymus [58]. 
However, they are absent in other  CD4+CD8− (CD4SP) thy-
mocytes, underscoring the unique developmental pathway 
of Treg cells [58]. Studies examining FOXP3 expression 
and its role in Treg cell development have revealed that, 

when compared to steady-state Treg cells, the FOXP3 gene 
of activated Tregs acts as a gene repressor, downregulat-
ing the expression of genes like Il2 while simultaneously 
upregulating the expression of CD25 and other Treg cell 
markers [59, 60].

In summary, the development and function of Treg cells 
involve a complex interplay of genetic, epigenetic, and 
molecular factors. Differentiation-inducing signals, chroma-
tin landscape remodeling, FOXP3 induction, DNA demeth-
ylation, and the stable expression of FOXP3-dependent and 
-independent genes are all critical steps in Treg cell lineage 
commitment. Understanding these processes at a molecular 
level can provide valuable insights into immune regulation 
and potentially promote the creation of innovative treatment 
methods for autoimmune and inflammatory diseases.

2.4  CD8+ cytotoxic T cell

CTLs, sometimes referred to as  CD8+ T cells, are a subset 
of T cells that may cytolyze target cells with either Fas or 
perforin/granzymes (GZM) and produce a large amount of 
interferon (IFN-γ). Numerous transcription factors (TFs), 
chemokines, and inflammatory cytokines affect the destiny 
of CTLs. In addition to their ability to expand IFN-γ, various 
inflammatory cytokines, including IL-12, IFN-α, and IFN-β, 
have also been shown to support the maturation, develop-
ment, and endurance of cytotoxicity [61, 62]. Tbx21 encodes 
T-bet, a T-box TF that aids in the expression of IFN-γ, PRF, 
and GZMB by cytotoxic  CD8+ T cells [63]. High expres-
sion of eomesodermin (Eomes) which is an another T-box 
transcription factor seen in memory cells may work together 
with Tbx21 to control the genes that  CD8+ T cells transcribe 
for GZM, PRF, and IFN-γ [64]. Along with it, reduced cyto-
lytic activity in  CD8+ T cells and impaired IFN-γ production 
are also seen in  Eomes+/−Tbx21−/− mice [63].

When T cells are stimulated to become effector cells, they 
may develop into Tc1 or Tc2 cells. When Tc1 cells are trig-
gered by cytokines such as IL-2 and IL-12, they may destroy 
certain cells either directly or indirectly [65]. Cytotoxic Tc1 
cells have the ability to alter the host immune response by 
secreting IFN-γ or TNF-α. Helper and effector immune 
responses are influenced by the cytokines (IL-4, IL-5, IL-10, 
and IL-13) released by Tc2 T cells [65].

The generation of these T cells is influenced by a number 
of epigenetic factors related to epigenetic regulation. One 
technique that may be used is DNA demethylation, which 
can be actively done by a number of molecules, such as glu-
cocorticoids, MBD2, demethylase, and DNA glycosylases 
[66, 67]. That being said, the molecular pathways remain 
unknown. IFN-γ suppresses the production of the gene in 
naive  CD8+ T lymphocytes due to methylation at numerous 
CpG sites in the promoter [68]. Furthermore, it has been 
shown that the demethylation of the interferon promoter is 
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associated with the production of interferon in human and 
mouse [67]. The hypomethylation in effector  CD8+ T cell 
promoter regions causes additional effector genes, such as 
PRF and GZMB, to be significantly overexpressed [69]. 
Activation-induced deaminase is in charge of the methyl-
ated deamination of a neighboring base, while ten-eleven 
translocations (TETs) are engaged in the oxidation of the 
methylated base during active DNA demethylation [70]. In 
this aspect of DNA demethylation, EZH2 found playing a 
key role through its interaction with TET2 to form a DNA 
demethylation complex [71]. Importantly, some cellular 
epigenetic states may be preserved by interactions between 
methylation and demethylation [72].

Histone hyperacetylation has also been found in  CD8+ 
memory T cells near the promoters of GZMB, PRF1, and 
IFN-γ, as well as their regulators [73]. Studies indicate that 
 CD8+ T lymphocytes produce these genes more or less in 
response to induced hyperacetylation or hypoacetylation 
of these genes [73]. Histone modification is essential for 
Eomes, PRF1, and GZMB expression in  CD8+ T cells. In the 
research published by Araki et al., they have shown the rela-
tionship between the enhanced expression of Eomes, PRF, 
and GZMB with positively regulating memory  CD8+ T cells, 
which was associated with their enrichment at the proximal 
promoter and exon 1 on histone 3 of memory  CD8+ T cells 
[74]. Histone H3 (H3K9Ac) acetylated lysine 9 is commonly 
exposed to dynamic changes associated with gene expres-
sion. It is concentrated in areas that are actively regulated, 
including enhancer or promoter regions in subsets of  CD8+ 
T cells [75]. Treatment with HDAC inhibitors (HDACi) like 
trichostatin A was found to increase the expression of naive 
 CD8+ T cells via upregulating the H3K9Ac levels at the T 
cell genes [76].

Tc9, Tc17, and Tc22 subtypes have been recently identi-
fied, adding them to the subtypes that have previously been 
discovered. A subpopulation of  CD8+ T cells known as 
Tc9 cells is responsible for producing IL-9. These resilient 
immune cells may become effectors and settle inside tumor 
tissues after being adopted [77]. Recent research has shown 
how the transcription factor IRF1 enhances the effector func-
tion of TH9 cells and affects their anticancer characteristics. 
Under TH9-skewing circumstances, the transcription factor 
STAT1 was phosphorylated by interleukin 1β (IL-1β). As a 
result, IRF1 was expressed, and it bound to the promoters 
of Il9 and Il21 to enhance the production of cytokines from 
TH9 cells. Furthermore, Tc9-mediated superior antitumor 
response showed potent anticancer effects from TH9 cells 
induced by IL-1β. A range of conditions have been reported 
for IL-17-producing  CD8+ T (Tc17) cells. Since, Tc17 cells 
secrete the pro-inflammatory marker cytokine IL-17, it has 
a high degree of plasticity towards CTL in the mouse model, 
and exhibit the Tc2 phenotype in the mouse model related to 
human disease [78, 79]. This shows their contribution into 

both protective and pathologic immune responses in various 
types of both mouse and human tissues [78, 79]. Interleu-
kin-21 (IL-21) plays important functions in the development 
of Th17 cells. However, in the absence of IL17 production, 
the development of human naive  CD8+ T cells develops into 
Tc22 cells through IL21 [80].

3  T cell as a player in cancer

Cancer is a multifaceted and heterogeneous disease charac-
terized by uncontrolled and abnormal cell growth. It encom-
passes a range of conditions that can lead to the formation of 
malignant tumors, which can invade surrounding tissues and 
metastasize to distant sites in the body. The tumor micro-
environment (TME) plays a crucial role in tumor devel-
opment and progression, providing a supportive niche for 
cancer cells to thrive [81]. Recent scientific research has 
shed light on the intricate interactions between the immune 
system and cancer cells within TME. Immuno-oncology, a 
rapidly evolving field, focuses on unravelling the functions 
of immune cells, particularly T cells, in the context of malig-
nancy [81]. Efforts are being made to harness the immune 
system’s potential to attack cancer by boosting T cell activa-
tion, recruiting and maintaining T cell responses inside the 
tumor, and establishing an immune-responsive TME [81].

T cells have unique metabolic requirements, which can 
compete with cancer cells for energy resources [82]. Unlike 
cancer cells, T cells do not upregulate their metabolism but 
rather utilize increased metabolic activity to support their 
growth, proliferation, and survival [83]. The process of T 
cell activation involves a regulated transition from a state 
of quiescence to an active state, initiated by immunologi-
cal cues [84]. Resting T cells rely on catabolism to meet 
their low-energy demands, deriving ATP from the oxida-
tive breakdown of glucose [85]. However, upon activation 
through TCR signalling and co-stimulation mediated by 
CD3/CD28, T cells rapidly increase glucose uptake and 
undergo glycolysis, suppressing oxidative phosphoryla-
tion [86]. This metabolic shift known as the Warburg effect 
results in the production of lactate as a byproduct. Although 
glycolysis is an inefficient process for ATP production, it 
allows T cells to generate substrates necessary for amino 
acid, nucleotide, and lipid synthesis [87, 88].

In addition to metabolic regulation, Tregs within 
the TME play a crucial role in tumor development and 
immune evasion. Tregs, characterized by the expression of 
CD4, CD25, and FoxP3, contribute to immunosuppression 
by promoting tumor immune escape and angiogenic repro-
gramming [89, 90]. Epigenetic factors, such as the histone 
methyltransferase EZH2 of the polycomb repressive com-
plex 2 (PRC2), control Treg persistence and function [91]. 
EZH2 regulates the development of B cells and T cells 
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through the suppressive post-translational modification 
H3K27Me3 [92, 93]. Recent studies have shown that the 
transcription factor c-Rel activates EZH2 transcription in 
lymphoid cells, including B cells and T cells, highlighting 
its role in regulating Treg function [94].

Furthermore, TME remodeling and STING gene expres-
sion have been shown to influence intratumoral Treg levels, 
influencing tumor growth, metastasis, and chemoresistance 
through controlling various chemokines and cytokines in the 
TME, which is driven by Tregs [95–97]. Tregs contribute to 
tumor metabolic reprogramming via the STING/ILC2 axis, 
resulting in immunosuppression and a reduction in  CD4+ 
T cell infiltration [98]. Tregs are responsible for GATA3/
NOS2-related immunosuppression by blocking STING, 
which results in a reduction in  CD4+ T cell infiltration and 
an increase in metastatic lung burden [98]. Increased Treg 
expression was associated to a low T/MDSC ratio, result-
ing in a tumor-promoting situation, via the limiting of 
 CD8+CD44+CD62L− T effector cells [98]. Tregs, in par-
ticular  TIM3+/LAG3+ Tregs, produce Kras-related immu-
nosuppressive chemoresistance and have been associated to 
T cell dysfunction [98]. Additionally, the presence of  CD8+ 
T cells within the TME has been associated with positive 
therapeutic effects in cancer treatment.  CD8+ T cells can 
enhance the efficacy of chemotherapy by overcoming can-
cer cell resistance through non-immune functions [99]. For 
example,  CD8+ T cells can modify the metabolism of cancer 
associated fibroblasts (CAFs) to decrease the production of 
glutathione (GSH), which contributes to chemoresistance 
[99].

Recent studies have also highlighted the significance of 
 CD8+ T cells in cancer treatment.  CD8+ T cells play a criti-
cal role in direct cytotoxic attack against cancer cells, but 
their functions extend beyond this role [100]. For example, 
they can enhance the efficacy of chemotherapy by modu-
lating the TME [100]. MiR-424, a micro-RNA, has been 
identified as a negative regulator of immune regulatory 
proteins, including programmed death-1 ligand 1 (PD-1L), 
which is involved in immune checkpoint regulation [100]. 
Manipulating miR-424 levels can sensitize cancer cells to 
chemotherapy by promoting the infiltration and function of 
 CD8+ T cells [100].

Non-immune activities of  CD8+ T cells are also being 
investigated. As previously noted, these T cells can influ-
ence cancer cell resistance to chemotherapy by altering 
the metabolism of CAFs to reduce GSH synthesis [99]. In 
addition,  CD4+ Th cells are critical in directing immune 
responses against cancer. Th cells regulate the activity of 
 CD8+ T and B cells, making them crucial components of 
adaptive immunity.

Thus, ongoing research efforts focusing on the roles of 
immune cell populations, including Tregs,  CD8+ T cells, 
and Th cells, in various cancer types contribute to our 

understanding of the complex dynamics within the TME 
[101]. These studies provide valuable insights into the intri-
cate interplay between immune cells and the TME, offering 
potential targets for therapeutic interventions. Enhancing 
our comprehension of the dynamic interactions within the 
TME is vital for developing effective immunotherapies and 
improving outcomes for cancer patients.

4  T cell‑mediated immunotherapy

Immunotherapy is a type of biological therapy in which the 
immune system is regulated using substances produced by 
living organisms, allowing our body to fight infections and 
other diseases such as cancer more effectively. T cell acti-
vation controls and guides this therapy, acting as a check-
point molecule to regulate hyperactivation and fine-tune the 
immune response. In this context, the two most potent exam-
ples are cytotoxic T lymphocyte antigen 4 (CTLA4) and 
programmed cell death 1 (PD1), which complement each 
other’s function while ensuring self-tolerance of the T cell 
response regardless of their temporal and spatial expression 
patterns [102].

CTLA4 inhibits T cell activation by directly antagoniz-
ing CD28 through competition for costimulatory ligands 
and thus recruiting inhibitory effectors [103]. CTLA4 also 
expresses on Treg cells, where it directly regulates the 
immunosuppressive activity of these cells [104]. In vitro 
studies have also validated CTLA4’s critical role in the 
release of anti-inflammatory cytokines, which leads to the 
regulation of T cell proliferation in the vicinity [105, 106]. 
As a result of which, CTLA4 expressing Treg cells tries to 
compensate, for the absence of conventional T cells express-
ing CTLA4 in  Rag−/− mice mediated by CTLA4 antibody-
mediated neutralization [107]. It has been suggested that by 
inhibiting CTLA4, which has been shown to be a negative 
regulator of T cell activation, T cells may mount a therapeu-
tic response against cancer [108]. Later it was validated that 
CTLA4-mediated tumor regressive mechanisms are pleio-
tropic, but are linked by the action of regulating a single cell 
type, the T lymphocyte.

The other mode of immunotherapeutic regulation is by 
PD1 that was identified as a potential mediator of apoptosis 
[109]. However, further studies and additional data indi-
cated that it also functions similar to CTLA4 in control-
ling immune system hyperactivity [109]. PD1 suppresses 
immune responses primarily by inhibiting intracellular sig-
nalling in effector T and Treg cells [110]. This research led 
to the discovery of PD1 axis as a negative regulator for T 
cell activation, which was later used by several researchers 
for the preclinical target of cancer treatment. Using mAbs 
or secreted PD1 extracellular domains to block the PD1 axis 
could reverse the effect of  CD8+ T cell cytotoxic antitumor 
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response and increased T cell cytotoxicity against tumor 
cells [111–113]. The similar results were validated in vivo, 
where the PD1 inhibition was found to not only enhance 
the antitumor immunity but also limit the metastasis in B16 
melanoma and CT26 colon carcinoma [114]. Thus, blocking 
PD1/PDL1 can improve tumor cytolysis while also limiting 
metastasis.

The separate modulation of CTLA4- and PD1-mediated 
immunotherapeutics has resulted in their acceptance as a 
treatment strategies for a wide spectrum of malignancies 
including cancer.

5  T cell‑mediated drug resistance

Drug resistance has emerged as a formidable obstacle in 
the battle against cancer. The phenomenon of therapeutic 
resistance encompasses a complex web of independent or 
interconnected mechanisms, including both intrinsic and 
acquired chemoresistance. However, there is a pressing need 
to comprehend the poorly defined transient or conditional 
resistance mechanism, which often underlies chemotherapy 
failure. Notably, malignant ascites spheroids and detach-
able cancer cells exhibiting stem cell-like characteristics 
[115] stand out as prime suspects in conferring resistance. 
Understanding these mechanisms is crucial for developing 
effective strategies to overcome drug resistance and enhance 
cancer treatment efficacy.

The tumor immune microenvironment and the emergence 
of treatment resistance are intrinsically intertwined, forming 
a critical junction for intervention. Within the TME, cancer 
cells undergo constant adaptations to evade recognition by 
immune effector cells [116, 117]. These adaptations involve 
diminishing the expression of neoantigens (non-self-anti-
gens), antigen presentation molecules such as MHC-I [118, 
119], and the mutational burden. As a result, the ability 
of the tumor to respond to adaptive immune responses is 
hampered, resulting in the development of intrinsic tumor 
characteristics such as altered expression of immune regula-
tory molecules. Furthermore, tumor-extrinsic factors such 
as immunosuppressive cells, soluble suppressive chemicals, 
and inhibitory receptors on immune cells help to reshape 
the tumor-infiltrating lymphocyte (TIL) landscape. This 
remodeling is characterized by an imbalance in the ratio of 
T regulatory cells to T effector cells, impairing the function 
of T effector cells and fostering tumor growth and metastasis 
[120].

The immunosuppressive milieu orchestrated by cancer 
cells extends beyond cellular interactions, encompass-
ing the secretion of various cytokines (e.g., interleukin-10 
(IL-10)) [121] and growth factors (such as transform-
ing growth factor-β [TGF-β] and vascular endothelial 
growth factor [VEGF]) [122]. Moreover, the secretion of 

immunosuppressive cytokine IL-10 by cancer stem cells 
(CSCs) expedites the differentiation of  CD4+CD25+FOXP3+ 
Treg cells [123]. Additionally, cancer cells bolster immuno-
suppression and tumor progression by enhancing the recruit-
ment and activation of immunosuppressive cells like Tregs, 
B regulatory cells (Bregs), tumor-associated macrophages, 
and myeloid-derived suppressor cells (MDSCs). They 
also upregulate immune checkpoint molecules, including 
CTLA-4 and PD-1, on immune cells [120]. These orches-
trated factors collectively obstruct clinical outcomes and 
response rates to cancer therapy. Thus, unravelling the 
intricate dynamics of drug resistance and immune escape in 
cancer is essential for devising effective therapeutic strate-
gies. Understanding the mechanisms behind tumor evolu-
tion, immune evasion, and the TME’s immunosuppressive 
nature will pave the way for improved treatment outcomes 
and strategies to overcome resistance.

6  Epigenetic regulation of T cell‑mediated 
drug resistance

Epigenetic processes play a critical role in the normal devel-
opment and maintenance of tissue-specific gene expression 
programs. These intricate mechanisms can be disrupted, 
leading to significant alterations in gene function and the ini-
tiation of malignant cellular transformations. One hallmark 
of cancer is the widespread changes observed in the epige-
netic environment. It is now recognized that both genetic 
changes and epigenetic aberrations contribute to cancer 
development and progression, challenging the earlier notion 
of cancer solely as a hereditary disease. Recent advance-
ments in the rapidly evolving field of cancer epigenetics have 
unveiled extensive reprogramming across all components 
of the epigenetic machinery in cancer, encompassing DNA 
methylation, histone modifications, and non-coding RNAs.

Emerging research suggests that epigenetic regula-
tion plays a crucial role in the immune evasion strategies 
employed by tumors, known as immunoediting. This phe-
nomenon often involves the downregulation of major his-
tocompatibility complex class I (MHC-I) molecules or 
loss of antigen expression, resulting in a reduced ability 
to present antigens to the immune system [124]. In human 
breast cancer, for example, DNA methylation marks at the 
promoter regions silence MHC-I genes [124]. Inhibition of 
DNA methylation through interferon treatment alters the 
methylation state of MHC-I gene promoters and enhances 
gene expression [124]. Similarly, studies have demonstrated 
a correlation between the downregulation of immunogenic 
antigens and the evasion of adoptive cell therapy [125]. 
Treatment with DNA demethylating agents can restore the 
expression of these immunogenic antigens [125].
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Immunotherapy resistance can stem from the epigenetic 
control exerted by the PRC on MHC-I antigen presentation 
[126]. One of the essential functions of PRC2 is its ability 
to silence the MHC-I antigen processing pathway, thereby 
facilitating the evasion of T cell-mediated immune responses 
[126]. Furthermore, studies have indicated that reduced 
expression of the CD8 T lymphocytes has impaired antigen 
processing and presentation system in colon and ovarian 
cancer cells. Notably, treatment with DNMT inhibitors has 
been shown to enhance the expression of antigen process-
ing and presentation genes, as well as cancer-testis antigens, 
potentially rendering patients more susceptible to immuno-
therapy [127].

Further investigations have demonstrated the upregula-
tion of antigen processing and presentation machinery in 
prostate and breast cancer cells following treatment with 
HDACi [128]. This upregulation enhances the sensitivity 
of tumor cells to T cell-mediated lysis, indicating a loss of 
their ability to resist immunological attack [128]. Recent 
studies have highlighted the role of macroH2A1-depend-
ent CSC-like secretome in the absence of certain immune 
mediators in the growth of  CD4+CD25+/FoxP3+ Treg cells 
while suppressing  CD4+CD25−/FoxP3+ T cells in human T 
lymphocyte populations. The formation of Tregs is tradition-
ally dependent on IL-2 [129].

7  Epi‑immunotherapy in cancer

Epi-immunotherapy has emerged as a key targeted therapeu-
tic technique in cancer treatment in recent years. As immune 
evasion becomes a key barrier in restoring tumor immune 
recognition, many types of HDACi have proven great effi-
cacy in suppressing tumor development [130]. Their use 
in conjunction with various chemotherapeutic agents and 
immunotherapy techniques has resulted in considerable 
clinical improvements for the patient [130]. However, the 
specific targets and mechanisms of these HDACi are not 
well elucidated.

The immune checkpoint factors CTLA-4 and PD-1/
PD-L1 have been identified as critical targets for monoclo-
nal antibody development in cancer immunotherapy. These 
MAbs have shown promising results by modulating immune 
inhibitory pathways. However, to overcome its limitations 
and ensure patient safety, there is growing evidence that 
combining epigenetic modulators with immunotherapy 
can be beneficial. In this context, EZH2, a key epigenetic 
regulator, has been implicated in controlling both modes of 
immune therapeutic regulation [131]. A detailed molecular 
mechanism of this regulation is discussed below.

Recent findings have demonstrated that c-Rel, a transcrip-
tion factor targeted for immunotherapy, plays a crucial role 
in melanoma growth. Chemical inhibition of c-Rel delays 

melanoma growth by mitigating Treg-mediated immune 
suppression and enhancing the response to anti-PD-1 immu-
notherapy [131]. In hepatoma cells, high levels of EZH2 
inhibited the expression of CD274, a transcription factor 
responsible for PD-L1 [132]. This inhibition results in low 
PD-L1 expression that confers resistance against anti-PD-
L1 therapy. In addition, it is shown that suppressing EZH2 
expression can induce pro-inflammatory functions in tumor-
infiltrating Tregs (TI-Tregs) [133]. By remodeling the TME, 
EZH2 suppression promotes the recruitment and activity 
of  CD8+ and  CD4+ effector T cells [133]. This leads to 
enhanced anticancer immunity through increased secretion of 
Th1-type chemokines CXCL9 and CXCL10 [133] (Fig. 3A).

Beyond its role in combination with anti-PD-1 ther-
apy, the implications of EZH2 modulation have also been 
explored in conjunction with anti-CTLA-4 therapy [134]. 
Treatment with anti-CTLA-4 (Ipilimumab) upregulates 
EZH2 expression as a compensatory mechanism [134]. 
However, suppressing EZH2 using the drug CPI-1205 along-
side Ipilimumab improves the response to anti-CTLA-4 
therapy [134] (Fig. 3B). This combination alters the TME, 
modulates effector cytotoxic T cells, and transforms Tregs 
into effector T cells. EZH2 activation is associated with the 
maintenance of Treg cells by suppressing genes involved 
in Treg development and stabilizing their identity [135]. 
The increased expression of Tregs due to EZH2 activation 
in cancer patient was previously reported [136]. Given its 
role in Treg-mediated suppression, EZH2 is a prime target 
for epi-immunotherapy [136]. This therapeutic approach is 
being investigated and validated in various clinical trials uti-
lizing different drugs to suppress EZH2 expression for the 
treatment of diverse cancer types. Detailed information on 
these trials can be found in Table 1, emphasizing the critical 
regulatory function of EZH2 as a target for cancer therapy.

8  Accessory mechanism of EZH2 
in chemoresistance

EZH2 is involved in various mechanisms of chemoresist-
ance in different cancer types. For instance, in glioblas-
toma (GBM), EZH2 contributes to temozolomide resist-
ance by stabilizing H3K27Me3 in the promoter region of 
the FADD gene (FAS-associated death domain), resulting 
in the stabilization of PARP1 and enhanced DNA repair 
capacity. This resistance mechanism is mediated by ATRX 
(alterations of alpha thalassemia/mental retardation syn-
drome X-linked). In contrast, EZH2 downregulation by 
the lncRNA taurine-upregulated gene 1 (TUG1) sensitizes 
glioma cells to temozolomide (TMZ). TUG1 downregu-
lates EZH2 expression, inhibiting cell proliferation, stem 
cell-like properties, and promoting apoptosis, thereby 
enhancing TMZ sensitivity [137].
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Fig. 3  Mechanistic insights into epi-immunotherapy in cancer. A 
Activation of chromatin repressor EZH2 by NFκB/CREL complex 
which leads to transcriptional repression of chemokines by chroma-

tin repressor EZH2. B Repression of EZH2 in tumor cells using anti-
PDL1 antibody leads to release of chemokines which promotes anti-
CTLA4 antibody efficacy
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Table 1  Ongoing clinical investigations of Epi-therapeutic agents that decrease EZH2 expression (source: https:// clini caltr ials. gov)

Serial no Drug name Target ClinicalTrials.gov identifier Cancer type

1 Tazemetostat EZH2 1. NCT02875548 Diffuse large B cell lymphoma (DLBCL)
Follicular lymphoma (FL)
Synovial sarcoma
Epithelioid sarcoma (ES)
Mesothelioma
Advanced solid tumors
Renal medullary carcinoma
Non-Hodgkin lymphoma (NHL)

2. NCT03009344 Relapsed or refractory B cell non-Hodgkin’s lymphoma
3. NCT05023655 Solid tumor

ARID1A gene mutation
4. NCT04590820 Follicular lymphoma

Non-Hodgkin lymphoma
Lymphoma

5. NCT04537715 All malignancies
Advanced malignancies
Hematologic malignancy
Solid tumor
Follicular lymphoma (FL)
Non-Hodgkin lymphoma (NHL)
Diffuse large B cell lymphoma (DLBCL)
Epithelioid sarcoma (ES)
Synovial sarcoma
Renal medullary carcinoma
Mesothelioma
Rhabdoid tumor

6. NCT02860286 Mesothelioma BAP1 loss of function
7. NCT03010982 Diffuse large B cell lymphoma

Primary mediastinal lymphoma
Mantle-cell lymphoma
Follicular lymphoma
Marginal zone lymphoma
Advanced solid tumors

8. NCT04917042 Peripheral nerve sheath tumor
9. NCT04241835 Hepatic impairment

Advanced malignant solid tumor
10. NCT02601950 Malignant rhabdoid tumors (MRT)

Rhabdoid tumors of the kidney (RTK)
Atypical teratoid rhabdoid tumors (ATRT)
Selected tumors with rhabdoid features
Synovial sarcomaI
NI1-negative tumors
Malignant rhabdoid tumor of ovary
Renal medullary carcinoma
Epithelioid sarcoma
Poorly differentiated chordoma (or other chordoma with 

sponsor approval)
Any solid tumor with an EZH2 GOF mutation

11. NCT04624113 Head and neck squamous cell carcinoma
12. NCT01897571 B cell lymphomas (phase 1)

Advanced solid tumors (phase 1)
Diffuse large B cell lymphoma (phase 2)
Follicular lymphoma (phase 2)
Transformed follicular lymphoma
Primary mediastinal large B cell lymphoma

13. NCT02601937 Rhabdoid tumors
INI1-negative tumors
Synovial sarcoma
Malignant rhabdoid tumor of ovary

https://clinicaltrials.gov
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Table 1  (continued)

Serial no Drug name Target ClinicalTrials.gov identifier Cancer type

14. NCT04762160 Follicular lymphoma
15. NCT03456726 Relapsed or refractory B cell non-Hodgkin’s lymphoma
16. NCT03217253 Ann Arbor stage III B cell non-Hodgkin lymphoma

Ann Arbor stage IV B cell non-Hodgkin lymphoma
Metastatic malignant solid neoplasm
Stage III hepatocellular carcinoma AJCC v7
Stage IIIA hepatocellular carcinoma AJCC v7
Stage IIIB hepatocellular carcinoma AJCC v7
Stage IIIC hepatocellular carcinoma AJCC v7
Stage IV hepatocellular carcinoma AJCC v7
Stage IVA hepatocellular carcinoma AJCC v7
Stage IVB hepatocellular carcinoma AJCC v7
Unresectable solid neoplasm

17. NCT03213665 Advanced malignant solid neoplasm
Ann Arbor stage III Hodgkin lymphoma
Ann Arbor stage III non-Hodgkin lymphoma
Ann Arbor stage IV Hodgkin lymphoma
Ann Arbor stage IV non-Hodgkin lymphoma
Ewing sarcoma/peripheral primitive neuroectodermal tumor
Low-grade glioma
Recurrent ependymoma
Recurrent Ewing sarcoma
Recurrent glioma
Recurrent hepatoblastoma
Recurrent Hodgkin lymphoma
Recurrent Langerhans cell histiocytosis
Recurrent malignant germ cell tumor
Recurrent malignant glioma
Recurrent malignant solid neoplasm
Recurrent medulloblastoma
Recurrent neuroblastoma
Recurrent non-Hodgkin lymphoma
Recurrent osteosarcoma
Recurrent peripheral primitive neuroectodermal tumor
Recurrent primary central nervous system neoplasm
Recurrent rhabdoid tumor
Recurrent rhabdomyosarcoma
Recurrent soft tissue sarcoma
Refractory Hodgkin lymphoma
Refractory Langerhans cell histiocytosis
Refractory malignant germ cell tumor
Refractory malignant glioma
Refractory malignant solid neoplasm
Refractory medulloblastoma
Refractory neuroblastoma
Refractory non-Hodgkin lymphoma
Refractory osteosarcoma
Refractory peripheral primitive neuroectodermal tumor
Refractory rhabdoid tumor
Refractory soft tissue sarcoma
Rhabdoid tumor
Stage III soft tissue sarcoma AJCC v7
Stage IV soft tissue sarcoma AJCC v7
Wilms tumor

18. NCT04204941 Advanced soft tissue sarcoma
Advanced epithelioid sarcoma

19. NCT04846478 Metastatic prostate cancer
Metastatic castration-resistant prostate cancer
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In breast cancer, EZH2 activation leads to therapy-
induced resistance by upregulating the transcription factor 
STAT3, which in turn increases the expression of micro-
RNAs such as miR-378a-3p and miR-378d. These micro-
RNAs are exosome-secreted and affect several signalling 
pathways, including WNT/-catenin and Notch, by targeting 
WNT antagonist DKK3 and Notch suppressor NUM. This 
process promotes the expansion of breast cancer tumor-ini-
tiating cells. Interestingly, EZH2 has a negative correlation 
with taxol resistance in breast cancer. It induces the deposi-
tion of H3K27Me3 on the promoter of the anti-apoptotic 
gene p21, resulting in its repression. This repression pro-
motes apoptosis and enhances sensitivity to taxol [138].

EZH2 also plays a role in oxaliplatin resistance in colo-
rectal carcinoma (CRC). In this context, the upregulated 

P53-inhibiting lncRNA (PiHL) interacts with EZH2 and 
inhibits its binding to the HMGA2 promoter. This leads 
to the upregulation of HMGA2 transcription, subsequent 
activation of the PI3K/Akt pathway, increased cell viabil-
ity, and resistance to oxaliplatin treatment. Remarkably, 
in CRC, EZH2 promotes chemoresistance to cisplatin by 
upregulating the type II Na/Pi co-transporter encoded by 
SLC34A2. This upregulation occurs through the direct bind-
ing of HIF1A, which is dependent on reactive oxygen spe-
cies production. Increased EZH2 expression downregulates 
apoptosis, leading to resistance against cisplatin [137].

Furthermore, EZH2 has implications in small-cell lung 
carcinoma (SCLC) where it is involved in gene silencing 
of SLFN11 by depositing H3K27Me3 at the gene body of 
SLFN11. This results in a decrease in SLFN11 expression, 

Table 1  (continued)

Serial no Drug name Target ClinicalTrials.gov identifier Cancer type

20. NCT03348631 Recurrent endometrial endometrioid adenocarcinoma
Recurrent ovarian carcinoma
Recurrent ovarian clear cell adenocarcinoma
Recurrent ovarian endometrioid adenocarcinoma
Recurrent uterine corpus cancer

21. NCT03854474 Locally advanced urothelial carcinoma
Metastatic urothelial carcinoma
Stage III bladder cancer AJCC v8
Stage IIIA bladder cancer AJCC v8
Stage IIIB bladder cancer AJCC v8
Stage IV bladder cancer AJCC v8
Stage IVA bladder cancer AJCC v8
Stage IVB bladder cancer AJCC v8

22. NCT04557956 Clinical stage IV cutaneous melanoma AJCC v8
Metastatic malignant neoplasm in the central nervous system
Metastatic melanoma
Pathologic stage IV cutaneous melanoma AJCC v8

23. NCT04179864 Metastatic prostate cancer
24. NCT05152459 Recurrent follicular lymphoma

Refractory follicular lymphoma
2 GSK-2816126 EZH2 NCT02082977 Cancer

Neoplasms
3 CPI-1205 EZH2 1. NCT02395601 B cell lymphoma

2. NCT03525795 Advanced solid tumors
3. NCT03480646 Metastatic castration-resistant prostate cancer (mCRPC)

4 CPI-0209 EZH2 NCT04104776 Advanced solid tumor
Diffuse large B cell lymphoma
Lymphoma, T cell
Mesothelioma, malignant
Prostatic neoplasms, castration-resistant

5 PF-06821497 EZH2 NCT03460977 Small-cell lung cancer (SCLC)
Follicular lymphoma (FL)
Castration-resistant prostate cancer (CRPC)

6 SHR-2554 EZH2 1. NCT03603951 Relapsed or refractory mature lymphoid neoplasms
2. NCT04407741 Solid tumor lymphoma
3. NCT05049083 Lymphoma
4. NCT04355858 Breast neoplasm
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global increase in H3K27Me3 levels, and decreased 
H3K27Ac. Pharmacological inhibition of EZH2 in SCLC 
cells leads to increased SLFN11 expression and enhanced 
sensitivity to IR irradiation [139]. Notably, EZH2 is also 
implicated in acquired chemoresistance in lung adenocar-
cinoma. The transcription factor HOXB13, upregulated in 
cisplatin-resistant lung adenocarcinoma, targets the ABC 
transporter ABCG1 and induces its expression, conferring 
chemoresistance. Additionally, HOXB13 targets the EZH2 
promoter, leading to EZH2 upregulation, further promoting 
cisplatin resistance [140].

Bladder cancer stem cells (BCSCs) also exhibit EZH2-
mediated chemoresistance. EZH2 forms a complex with 
heterogeneous nuclear ribonucleoprotein K (hnRNPK) and 
low expressed in bladder cancer stem cells (lnc-LBCS) to 
repress the transcription factor SOX2. SOX2 is crucial for 
BCSC self-renewal and chemoresistance. By inhibiting 
SOX2 transcription, EZH2 suppresses BCSC maintenance 
and promotes sensitivity to gemcitabine and cisplatin [141].

In gastric cancer, EZH2 is involved in chemoresistance 
against 5-fluorouracil (5FU) and oxaliplatin. EZH2 inhibits 
the expression of FBOXO32, an F-box protein that is part 
of the ubiquitin protein ligase complex. EZH2 is recruited 
to the promoter region of FBOXO32, leading to epigenetic 
silencing by depositing H3K27Me3 and subsequent inhibi-
tion of apoptosis, thereby promoting chemoresistance [142]. 
EZH2 also antagonizes oxaliplatin resistance in gastric can-
cer by binding to the promoter of carbohydrate sulfotrans-
ferase 7 (CHST7), which leads to the silencing of CHST7 
through H3K27Me3 deposition, thereby reversing oxalipl-
atin resistance [143].

EZH2 is implicated in chemoresistance in hepatocellular 
carcinoma. It causes deposition of H3K27Me3 on the pro-
moter of miR-381, resulting in upregulation of SETDB1, 
which promotes cancer progression and confers resistance 
to cisplatin [144].

In multiple myeloma, EZH2 is involved in bortezomib 
resistance. The long non-coding RNA ANRIL, which is over-
expressed in multiple myeloma cells, interacts with EZH2 
and suppresses the tumor suppressor gene PTEN through 
H3K27Me3 deposition on its promoter. This inhibition of 
PTEN promotes chemoresistance against bortezomib [145].

These studies elucidate the diverse mechanisms by which 
EZH2 contributes to chemoresistance in various cancer 
types, highlighting its potential as a therapeutic target for 
overcoming treatment resistance.

9  Concluding remarks

The present review establishes the pivotal role of T cells in 
the regulation of immune responses against cancer. DNA 
methylation and histone modifications play a crucial role 

in the differentiation of T cells and the induction of a cel-
lular adaptive immune response. The intricate process of 
T cell development, guided by DNMTs, Ikaros, and NuRD 
and PRC2 complexes, determines the fate and function of 
T cells within the immune system. Understanding how 
T cells and the immune system impact cancer initiation, 
progression, and therapy resistance has been a challeng-
ing aspect of immunology. For over a century, the debate 
regarding the immune system’s control over cancer has 
persisted. However, recent advancements in our under-
standing of the immune system and the identification of 
tumor antigens have shed light on the crucial role of T 
cells in cancer immunity. Epigenetic factors exert signifi-
cant influence on the immune response to cancer, shap-
ing T cell differentiation and function. Preclinical studies 
have demonstrated the potential of targeting epigenetic 
regulators, such as EZH2, to enhance tumor immuno-
genicity, improve immune cell activities, and modulate 
the immunosuppressive TME. Combinatorial approaches 
involving epi-drugs targeting EZH2 with immunotherapy 
have shown promise in increasing treatment efficacy. 
These findings highlight the importance of T cells as key 
players in cancer immune responses and underscore the 
potential of harnessing epigenetic regulation to enhance 
T cell-mediated anti-cancer immunity.

10  Future perspectives

Despite significant progress in understanding the func-
tional role of epigenetics in cancer, there is still much to 
unravel about the complex interplay between epigenetic 
factors and immune control, particularly within the con-
text of T cell responses. Given the prominent function 
of T cells in coordinating anti-cancer immune responses, 
this gives an ideal opportunity to re-evaluate current 
approaches to combating cancer by using immune-based 
therapeutics. Epigenetic alterations have been shown to 
globally reshape chromatin structure and dysregulate 
critical pathways within the TME, impacting T cell func-
tion. The emerging field of epi-immunotherapy, integrat-
ing epigenetic and immune therapies, holds tremendous 
potential for targeted interventions and the elimination 
of the immunosuppressive TME. This novel therapeutic 
approach not only offers renewed hope but also paves the 
way for innovative treatment modalities. Further explora-
tion of the molecular mechanisms underlying epigenetic 
regulation in cancer cells, particularly within the context 
of T cell responses, will be pivotal in refining and devel-
oping effective therapeutic strategies. By deciphering the 
intricate molecular landscape, we can harness the power of 
T cells and epigenetic modulation to reset the cancer state 
and establish robust control over the disease.
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