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Abstract
The hypoxic environment is prominently witnessed in most solid tumors and is associated with the promotion of cell proliferation, 
epithelial-mesenchymal transition (EMT), angiogenesis, metabolic reprogramming, therapeutic resistance, and metastasis of tumor 
cells. All the effects are mediated by the expression of a transcription factor hypoxia-inducible factor-1α (HIF-1α). HIF-1α tran-
scriptionally modulates the expression of genes responsible for all the aforementioned functions. The stability of HIF-1α is regulated 
by many proteins and non-coding RNAs (ncRNAs). In this article, we have critically discussed the crucial role of ncRNAs [such 
as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), Piwi-interacting RNAs (piRNAs), and 
transfer RNA (tRNA)-derived small RNAs (tsRNAs)] in the regulation of stability and expression of HIF-1α. We have comprehen-
sively discussed the molecular mechanisms and relationship of HIF-1α with each type of ncRNA in either promotion or repression 
of human cancers and therapeutic resistance. We have also elaborated on ncRNAs that are in clinical examination for the treatment of 
cancers. Overall, the majority of aspects concerning the relationship between HIF-1α and ncRNAs have been discussed in this article.

Keywords MicroRNA · Long non-coding RNA · Circular RNA · Piwi-interacting RNA · tRNA-derived small RNA · 
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1 Introduction

A condition in which a supply of oxygen is limited to any 
particular tissue is termed a hypoxic condition. Hypoxia 
is a commonly observed feature in tumors. The severity of 

hypoxia varies among tumors and depends on a wide range 
of factors [1]. In the uncontrollably dividing cells of the 
tumor, the oxygen demand is elevated more than the sup-
ply which leads to the hypoxic condition. Also, an insuf-
ficient amount of blood is supplied to tumor tissues due 
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to critical structural and functional abnormalities includ-
ing non-uniform vasculature, an incomplete endothelial 
lining, an absence of flow regulation, and intermittent 
stasis [2]. Additionally, the increased distance between 
tumor cells and existing blood vessels (> 70 μm) further 
interferes with the diffusion of oxygen and pushes the tis-
sue towards a hypoxic condition referred to as diffusion-
limited hypoxia [3–5]. Hypoxia can either induce death 
in cancer cells or promote their survival depending on 
the length of exposure to reduced oxygen levels. It has 
been well-established that tumor hypoxia greatly promotes 
angiogenesis, antiapoptosis, epithelial-mesenchymal tran-
sition (EMT), cancer cell invasion, metastasis, and resist-
ance against radiation therapy and chemotherapy. Hypoxic 
condition diminishes therapeutic efficacy and accelerates 
tumor progression [6, 7].

Hypoxia imparts its effect on tumor cells through a 
transcription factor named hypoxia-inducible factor (HIF). 
HIF transcription factors are present in the form of heter-
odimers consisting of HIF-α and HIF-β subunits. HIF-α 
is a cytoplasmic resident whereas HIF-β is constitutively 
expressed and housed in the nucleus. In humans, HIF-α 
has three paralogs, namely, HIF-1α, HIF-2α/EPAS, and 
HIF-3α whereas HIF-β has two paralogs, namely, ARNT 

and ARNT2 [8]. In normoxic conditions, oxygen-sensitive 
prolyl hydroxylases (PHDs) hydroxylate proline in a C-ter-
minal and an N-terminal oxygen-dependent degradation 
domain of HIF-α [9]. The proline hydroxylation is rec-
ognized by Von Hippel-Landau (VHL) E3 ligase protein 
and subsequently delivers the HIF-α to proteasome and 
promotes its degradation thereby making it unavailable 
to interact with its binding partner, HIF-β (Fig. 1) [10]. 
An additional layer to the regulation is provided by FIH 
(factor-inhibiting HIF), an oxygen-sensitive asparaginyl 
hydroxylase. FIH also  catalyzes the hydroxylation of 
HIF-α and prevents its association with transcriptional 
coactivators (such as p300/CBP) [11–13]. In hypoxic con-
ditions, the reduced oxygen levels decrease the catalytic 
activity of PHDs as they need oxygen as a cofactor for 
hydroxylation reactions. In the absence of hydroxylation, 
HIF-α translocates into the nucleus and complexes with 
HIF-β and p300/CBP. The complex interacts with hypoxia-
responsive elements (HREs) to drive the transcription of 
target genes [14]. The HIF transcription factors are known 
to drive the transcription of over 150 genes. Some of the 
target genes of HIFs are erythropoietin, heme oxyge-
nase-1, transferrin, transferrin receptors, adrenomedul-
lin, epidermal growth factor, vascular endothelial growth 

Fig. 1  Mechanism of HIF-1α signaling in normoxia and hypoxia. In 
normoxia, oxygen-sensitive PHDs hydroxylate proline residues on 
HIF-1α which leads to the subsequent VHL-mediated degradation 
of HIF-1α. In hypoxia, HIF-1α couples with HIF-1β to transcribe the 

target genes that are responsible for angiogenesis, cell proliferation, 
survival, metabolic adaptations, metastasis, stemness, and therapeutic 
resistance
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factor, transforming growth factor-β, platelet-derived 
growth factor-B, glucose transporter-1, and insulin-like 
growth factor-2 [15]. In tumor hypoxia, increased expres-
sion of these proteins is witnessed indicating the overac-
tivation of HIF signaling which contributes to the disease 
progression and aggressive of tumors.

The function of HIF-1α in cancer has been of great inter-
est in recent years as the inhibition of HIF-1α has demon-
strated good suppression of cancer cell proliferation [16, 
17]. Overexpression of HIF-1α promoted bladder cancer 
progression, while SRT1720 (a pharmacological activator 
of SIRT1) suppressed hypoxia signaling by activating SIRT1 
(a deacetylase) and deacetylating HIF-1α to impart antitu-
mor effect [18]. USP25 (ubiquitin-specific protease 25) is 
a deubiquitinating enzyme which was found to prevent the 
ubiquitination of HIF-1α and accelerate pathological HIF-1-
driven metabolic reprogramming of pancreatic cancer [19]. 
Curcumol induced the degradation of HIF-1α to suppress 
EMT and metastasis of colorectal cancer [20]. Similarly, 
many reports have emphasized the significance of targeting 
the HIF-1α pathway in cancers.

About 2% of genes present in the human genome code 
for functional polypeptides and the other 98% were con-
sidered to be junk. Of lately, the discovery of an abundant 
amount of non-coding RNAs (ncRNAs) in cells of human 
origin has spread light on the importance of the 98% non-
coding region of the genome. The advancement in high-
throughput technologies and research in the last two decades 
have revealed that a major portion of the non-protein-coding 
region of DNA (98%) codes for ncRNAs that are crucially 
involved in the maintenance of all cellular functions. micro-
RNA (miRNA), long non-coding RNA (lncRNA), circular 
RNA (circRNA), Piwi-interacting RNA (piRNA), and trans-
fer RNA (tRNA)-derived small RNAs (tsRNAs) are some 
of the ncRNAs that have been discovered so far. The mode 
of action of all the types of ncRNAs is different, and they 
can behave as either tumor promoters or tumor suppressors. 
Some ncRNAs can also modulate the expression and activ-
ity of HIF-1α to promote or retard tumor progression. The 
biogenesis and functions of miRNA, lncRNA, and circRNA 
are provided in Fig. 2. In the following section, we have 
emphasized the role of individual types of ncRNAs and their 
role in the regulation of HIF-1α in human cancers.

2  Non‑coding RNAs in cancer

2.1  miRNA

Basic research on microRNAs (miRNAs) has garnered 
much attention because miRNAs have proven to be car-
dinal factors in regulatory gene circuits [21]. miRNAs are 
single-stranded small ncRNA molecules with an average 

length of 22 nucleotides, and they often modulate the 
gene expression by interacting with the complementary 
sequences present at the 3′-UTR of target mRNA [22]. 
The interaction between miRNA and mRNA leads to the 
decapping, deadenylation, and translation suppression 
of the target mRNA. miRNAs can also repress transla-
tion by binding to the 5′-UTR or other regions of mRNA 
[23]. Additionally, few studies have demonstrated that 
some miRNAs possess the function of interacting with 
gene promoters to elevate the expression of target genes 
[24, 25]. miRNA is transcribed by RNA polymerase II. 
miRNA is produced as primary-miRNA (pri-miRNA) 
which is subsequently acted upon by a ribonuclease 
named DROSHA in the presence of DGCR8 to gener-
ate a precursor miRNA (pre-miRNA). The pre-miRNA is 
transported with the aid of exportin-5 from the nucleus 
to the cytoplasm where Dicer, an RNase III-like enzyme, 
cleaves the pre-miRNA to produce a mature miRNA, 
which is subsequently loaded to argonaute proteins and 
some auxiliary proteins to form RNA-induced silencing 
complex (RISC) (Fig. 2A) [26–29]. The RISC machinery 
is involved in the modulation of target mRNA expression 
[30]. miRNAs have been demonstrated to be involved in 
the regulation of metabolism, metastasis, proliferation, 
drug resistance, and remodeling of tumor microenviron-
ment in cancers [31–36]. For example, ATAD2 (ATPase 
family AAA domain containing 2) is an oncoprotein 
which is overexpressed in various types of malignan-
cies and positively correlated with tumor progression. 
miR-217 was found to target 3′-UTR of ATAD2 to down-
regulate the proliferation of prostate cancer cells [37]. 
In another study, miR-423-3p was reported to activate 
Beclin-1-dependent autophagy and encourage gastric 
cancer progression by decreasing the expression of Bim 
[38]. miRNAs also modulate the HIF-1α signaling, and 
the specific role of miRNAs in regulation of the HIF-1α 
is provided in the subsequent sections.

2.2  LncRNA

LncRNAs are transcribed similarly to mRNAs, but 
they lack protein-coding ability. The length of lncRNA 
is more than 200 nucleotides [39, 40]. LncRNAs can 
be found in the nucleus as well as in cytoplasm but 
predominantly in the nucleus. Depending on the ori-
gin of lncRNA, they are categorized into intergenic, 
intronic, bidirectional, sense, and antisense lncRNAs. 
Unlike miRNAs, lncRNAs can modulate gene expres-
sion by various mechanisms. LncRNAs can function 
as a signal, decoy, guide, scaffold, and RNA sponge to 
regulate the biological behavior of cells (Fig. 2B) [41]. 
LncRNAs are implicated in the regulation of cellular 
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mechanisms and are also involved in disease pathogen-
esis [42, 43]. Altered expression of lncRNAs is com-
monly observed in many types of human malignancies. 
LncRNAs can have paradoxical functions. Some lncR-
NAs can serve as oncogenic, and some can be onco-
suppressors. Variation in the expression of oncogenic 
and onco-suppressor lncRNAs is commonly observed 
in the majority of human malignancies. For instance, 
lncRNA miR155HG promoted the expression of TYRP1 
(tyrosinase-related protein 1) by sponging miR-155-5p 
and thereby increased the progression of ovarian cancer 
[44]. Besides, overexpression of LINC01793 mediated 
an unfavorable clinical outcome in hepatocellular carci-
noma [45]. LncRNAs are also involved in drug resist-
ance. Silencing lncRNA DDX11-AS1 increased miR-497 
expression to elevate paclitaxel sensitivity in breast can-
cer [46]. Overexpression of lncRNA LHFPL3-AS1 pro-
moted HOXA6 expression by suppressing miR-143-5p to 
mediate radio-resistance in nasopharyngeal cancer [47].

2.3  CircRNA

CircRNAs are endogenous ncRNA molecules with a 
closed continuous loop structure which confers higher 
stability to them compared to linear counterparts [48, 
49]. The first circRNA was identified in an RNA virus in 
1976 and subsequently identified using electron micros-
copy in the cytoplasm of monkey renal CV-1 cells [50, 
51]. In the initial days, it was believed that circRNAs are 
the product of erroneous RNA splicing. Advancements 
in RNA sequencing technologies revealed the presence 
of an abundant amount of circRNAs demonstrating that 
circRNAs are one of the major players in the maintenance 
of cellular homeostasis. CirRNAs are formed as a result 
of specialized splicing named “back splicing” in which the 
5′ terminus of an upstream exon is non-collinearly joined 
with the 3′ terminus of a downstream exon (Fig. 2C). Cir-
cularization of exons results in the absence of 5′ capping 
and 3′ polyadenylation. Recent studies have demonstrated 

Fig. 2  Biogenesis and functions of miRNA, lncRNA, and circRNA. 
A miRNA-coding gene is transcribed by RNA polymerase-II to 
form pri-miRNA which is processed by DROSHA and DGCR8 to 
form pre-miRNA, and subsequently, pre-miRNA is transported to 
cytoplasm. Further, pre-miRNA undergoes DICER-TRBP-mediated 
endonucleolytic cleavage and is loaded with AGO2 proteins to form 
mature miRNA. Functionally, miRNA interacts with and degrades 
the target mRNA. B LncRNA-coding genes are transcribed by RNA 
polymerase-II/III to produce primary transcripts which are eventu-

ally modified (capping/polyadenylation) and functionally controls the 
gene expression by chromatin modifications and transcription acti-
vation/repression. Also, lncRNAs are transported to the cytoplasm 
where they can interact with target proteins, miRNA, and mRNA to 
modulate their activity. C CircRNA-coding genes are transcribed by 
RNA polymerase-II in which the primary transcript undergoes back 
splicing to produce a circRNA. CircRNA is transported to the cyto-
plasm where it can sponge miRNAs, sequester RNA binding proteins, 
and can undergo translation
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that circRNAs can be formed either between two exons, 
two introns, or one intron and one intron which are termed 
exonic, intronic, and exon-intronic circRNAs, respectively. 
Like lncRNAs, circRNAs also participate in the spong-
ing of miRNAs and RNA-binding proteins, scaffolding, 
and mediating the assembly of protein machinery. Of 
lately, the role of circRNAs in oncogenesis and disease 
progression is well demonstrated. Elevated levels of cir-
cRNA-100876 were witnessed in tumor tissues derived 
from colorectal cancer patients, and its expression was 
directly linked to lymph node metastasis [52]. CircRNAs 
can sponge miRNAs to modulate the expression/activity 
of various proteins. CircRNA C190 was found to sponge 
miR-142-5p to facilitate the EGFR-MAPK-ERK axis and 
thereby increase lung cancer progression [53].

2.4  piRNA

piRNAs are one of the least explored ncRNAs. The length 
of piRNAs varies between 26 and 31 nucleotides, and 
they interact with PIWI (P-element induced wimpy tes-
tis) proteins [54]. The expression of piRNAs was initially 
discovered in germline cells, and later, their expression 
was also found in somatic cells. piRNAs are transcribed 
by RNA polymerase-II, and they take part in epigenetic 
and retrotransposon post-transcriptional gene silencing by 
interacting with PIWI proteins [55, 56]. Deregulation of 
the expression of piRNAs can either promote or suppress 
oncogenesis and tumor progression via DNA methylation, 
mRNA turnover, and translational regulation. For instance, 
piR-36712 is an onco-suppressor piRNA that was found to 
be downregulated in tumor tissues of breast cancer patients 
[57]. Mechanistically, piR-36712 competed with miR-7 
and miR-324 to interact with SEPW1P mRNA and inhibit 
SEPW1 protein expression. In the case of low expres-
sion of piR-36712, increased expression of SEPW1 was 
observed which led to the suppression of p53 and eleva-
tion of Slug and subsequent malignant progression [57]. In 
contrast, piR-651 was overexpressed in gastric cancer tis-
sues in comparison with non-cancerous tissues, and inhibi-
tion of piR-651 resulted in growth suppression of gastric 
cancer cells [58]. These reports indicated that piRNAs can 
serve either as tumor promoters or tumor suppressors.

2.5  tsRNA

RNA polymerase-III transcribes the gene coding for tRNA 
to produce pre-tRNA which further undergoes nucleolytic 
cleavage at 5′ and 3′ ends by RNase P and RNase Z, respec-
tively, followed by the addition of CCA nucleotides at the 
3′ terminus to form a mature tRNA. Some tRNAs are also 
processed for the removal of a stretch of nucleotides present 

between the anticodon and variable arm [59]. tRNAs are 
the parent molecules of tsRNAs. tRNAs undergo cleavage 
to produce tsRNAs with the length varying between 13 and 
48 nucleotides. tsRNAs can be classified into tRNA halves 
(30–40 nucleotides) and tRNA-related small RNA fragments 
(tRFs) (18–30 nucleotides) [60]. tRNA halves are gener-
ally called tRNA-derived stress-induced RNAs (tiRNAs) 
as they are largely produced under stress conditions such 
as oxidative stress, hypoxia, and inadequate nutrition [61]. 
Angiogenin is a stress-dependent RNase that breaks tRNA 
at anticodon loops to give tiRNAs.

tsRNAs can induce their biological effect in multiple 
ways including the regulation of translation, functioning 
like miRNAs, serving like piRNAs, and inhibition of apop-
tosis. 5′-tiRNA mitigated translation by disengaging eIF4G/
eIF4A and eIF4F (eukaryotic translation initiation factors) 
from mRNA [62]. It is important to note that tsRNAs can 
be associated with AGO proteins (like miRNA) and make 
complementation with target mRNA to promote their deg-
radation [63]. Some tsRNAs were found to interact with an 
oncogenic RNA-binding protein (Y-box binding protein 1) 
and thereby destabilizing the oncogenic transcripts [64]. 
tiRNAs were found to interact with cytochrome c to form 
ribonucleoprotein complexes and thereby suppressed the oli-
gomerization of Apaf-1 to protect mouse embryonic fibro-
blasts from undergoing apoptosis [65]. tsRNAs can form a 
complex with PIWI protein and can act as piRNA [61]. The 
deregulated expression of tsRNAs has been found in various 
types of human cancers. tRF-Leu-CAG was reported to be 
highly elevated in tumor tissues and serum of NSCLC and 
positively associated with tumor stage [66]. In another report, 
tRF-20-M0NK5Y93 was identified to suppress the EMT pro-
cess by targeting Claudin-1 in colorectal cancer cells [67]. 
In the following section, we have elaborated on the role of 
ncRNAs that are involved in the modulation of the HIF-1α 
pathway to impart their oncogenic or onco-suppressor func-
tions in different cancers.

3  miRNAs and HIF‑1α

3.1  Oncogenic miRNAs

Some miRNAs can modulate the HIF-1α signaling path-
way or themselves can be under the transcriptional control 
of HIF-1α to promote tumorigenesis (Fig. 3). For instance, 
the expression of miR-224 was reported to be upregulated 
during hypoxia and it was found to be transcriptionally 
controlled by HIF-1α [68]. 3′-UTR of RASSF8 mRNA 
was found to be the direct target of miR-224. Depletion 
of RASSF8 elevated the activity of NF-κB while the over-
expression of RASSF8 displayed reverse effects [68]. In 
another study, the expression of miR-224 was shown to 
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be upregulated in pancreatic cancer tissues, and the over-
expression was positively correlated with proliferation, 
migration, and metastasis in pancreatic cancer cells [69]. 
miR-224 targeted 3′-UTR of TXNIP (thioredoxin-inter-
acting protein) which led to the activation of HIF-1α [69]. 
This suggests that the HIF-1α pathway is activated when 
the expression of its negative regulator is suppressed by 
miRNAs. miR-224 targets different mRNAs in different 
cancers. It was reported to target PAK4 to accelerate gas-
tric cancer [70]. The downregulation of miR-224 led to a 
reduction in the expression of mTOR to induce apoptosis 
in gastric tumors [71]. As mentioned earlier, VEGF is a 
transcriptional target of HIF-1α. miR-214 was found to 
target ING4 (inhibitor of growth 4) in lung cancer cells 
and reduction of ING4 increased HIF-1α, thereby subse-
quent upregulation of VEGF [72].

Networking between miRNAs and HIF-1α through differ-
ent mediators can significantly contribute to tumor progres-
sion by driving the EMT process. Ji and colleagues demon-
strated that expression of miR-574-3p is elevated in gastric 
cancer tissues. The forced expression of miR-574-3p resulted 
in the acceleration of cell proliferation, motility, and EMT of 

gastric cancer cells [73]. The observed inhibitory effect of 
miR-574-3p was found to be mediated through targeting cullin 
2 (CUL2), a scaffold protein that has been known to suppress 
HIF-1α expression. miR-574-3p promoted the expression of 
HIF-1α by decreasing CUL2 to stimulate EMT and metas-
tasis [73]. HIF-1α and miRNA can form a positive feedback 
loop to modulate the expression of each other. In an inter-
esting study, Xia and colleagues demonstrated that HIF-1α 
facilitated the release of miR-301a-3p-containing exosomes 
in gastric cancer cells and tissues under hypoxic conditions. 
In turn, miR-301a-3p suppressed the HIF-1α degradation 
by targeting PHD3 [74]. As learnt in the previous section, 
PHD3 can promote the degradation of HIF-1α by hydroxy-
lating and marking it for ubiquitin-proteasome-mediated 
degradation. In another report, hypoxia-induced expression 
of miR-210 was found to downregulate the levels of GPD1L 
(glycerol-3-phosphate dehydrogenase 1-like) by directly tar-
geting the mRNA of GPD1L and thereby stabilized HIF-1α 
to increase the expression of HIF-1α-driven genes to form 
a positive feedback loop [75]. miRNAs generally target and 
degrade the mRNAs of tumor-suppressor proteins to promote 
tumor growth. For example, miR-210-3p modulated aerobic 

Fig. 3  HIF-1α is regulated by oncogenic as well as onco-suppressor 
miRNAs. miRNAs are well-known to impart their biological action 
by interacting with their target mRNAs and promoting their degrada-
tion. The mRNAs that code for tumor-suppressor proteins are targeted 
by oncogenic miRNAs, and mRNAs that code for oncogenic proteins 

are targeted by tumor-suppressor miRNAs. In tumors, the expression 
of oncogenic miRNAs is frequently upregulated whereas the onco-
suppressor miRNAs are often downregulated leading to the deregu-
lated expression of oncogenic proteins such as HIF-1α
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glycolysis and contributed to the Warburg effect in triple-
negative breast cancer (TNBC) by directly targeting tumor 
suppressors such as GPD1L and CYGB (cytoglobin) [76]. 
Aerobic glycolysis [Warburg effect (in tumor cells)] metabo-
lizes glucose into lactate. Although the efficacy of glycolysis 
in ATP production is not optimal, it is vital for biosynthesis, 
apoptosis, and production of signaling metabolites for pro-
moting survival in cancer cells [77–83]. Angiogenesis is a 
crucial event in the progression of tumors, and many miRNAs 
are positively correlated with angiogenesis. miR-574-5p and 
HIF-1α were elevated in gastric cancer cells under hypoxic 
conditions, and this was found to be mediated through directly 
targeting PTPN3 (protein tyrosine phosphatase non-receptor 
type 3) [84]. PTPN3 negatively modulates angiogenesis by 
targeting the MAPK pathway. HIF-1α-induced miR-382 
promoted angiogenesis by targeting PTEN (phosphatase and 
tensin homolog) in gastric cancer cells [85]. All these reports 
suggest that the association between miRNAs and the HIF-1α 
pathway can significantly contribute to cancer progression.

3.2  Onco‑suppressor miRNAs

Apart from oncogenic functions, some miRNAs can also 
impart tumor suppressor functions by negatively modulat-
ing the HIF-1α pathway in cancer cells. In general, miRNAs 
impart an onco-suppressor effect by binding and degrading 
the mRNAs that code for oncogenic proteins. Notably, the 
expression of onco-suppressor miRNAs is downregulated 
with a parallel increase in the expression of oncogenic miR-
NAs. The expression of miR-138 and HIF-1α was found to 
be decreased and increased, respectively, in tumor tissues 
derived from melanoma patients. Interestingly, miR-138 
was found to directly target HIF-1α in in vitro setup, and 
overexpression of miR-138 substantially alleviated the tumor 
expansion and metastasis in the xenograft melanoma model 
[86]. The expression of miR-18a was reported to be down-
regulated in gastric cancer cells under hypoxia whereas the 
forced expression of miR-18a induced apoptosis. The results 
of bioinformatic analysis and luciferase assay demonstrated 
that miR-18a targets HIF-1α to impart anticancer function 
in gastric cancer cells [87]. HIF-1α targeting miRNAs often 
alters glucose metabolism as HIF-1α plays a crucial role in 
the Warburg effect and expression of glucose-metabolizing 
enzymes. miR-18a-5p and miR-130a were found to target 
HIF-1α to regulate the Warburg effect in chronic myeloge-
nous leukemia and non-small cell lung carcinoma (NSCLC), 
respectively, in hypoxic conditions [88].

Bcl-w is an antiapoptotic protein that is overexpressed 
in various types of tumors including NSCLC. miR-519d-3p 
targeted Bcl-w and HIF-1α to decrease tumorigenicity and 
metastasis of NSCLC. The existence of a positive feedback 
loop between Bcl-w and HIF-1α was observed [89]. Some 

miRNAs target HIF-1α to impart antiangiogenic activity and 
counteract tumor growth. For instance, miR-576-3p inhib-
its angiogenesis in glioma and impairs the progression of 
cancer cells by downregulating HIF-1α expression under 
hypoxic conditions [90]. Abrogation of HIF-1α is also one 
of the good strategies to suppress the EMT process. It was 
reported that miR-622 directly targets 3′-UTR of HIF-1α to 
downmodulate EMT in lung cancer cells [91]. Mechanisti-
cally, miR-622 was found to be under the transcriptional 
control of FOXO3a. FOXO3a is a transcription factor whose 
activity is regulated by EGF/ERK signaling axis. Phospho-
rylation of ERK results in ubiquitin-proteasome-mediated 
degradation of FOXO proteins, and inhibition of ERK 
allows the operation of FOXO proteins. Inhibition of ERK 
by U0126 resulted in upregulation of FOXO3a and miR-
622. miR-622-driven suppression of HIF-1α correlated with 
reduced expression of mesenchymal markers such as Snail, 
β-catenin, and vimentin [91]. Snail, Zeb, and Twist are the 
transcription factors which are involved in the regulation of 
the expression of EMT-related genes [92].

miR-186 imparted tumor-suppressor functions by target-
ing mRNA of KRT6 (keratin 8), which is a positive modu-
lator of expression of HIF-1α. miR-186 was found to be 
transcriptionally suppressed by CREBP1 (cAMP response 
element-binding protein 1), and elevated expression of 
CREBP1 was observed in gastric cancer cells indicating 
that CREBP1 suppresses the expression of miR-186 to pro-
mote proliferation, invasion, and EMT by enabling the oper-
ation of KRT6/HIF-1α axis [93]. Some miRNAs modulate 
epigenetic modifiers to serve the functions of onco-suppres-
sors. miR-671-5p was found to be downregulated in ovar-
ian cancer tissues. An inverse relationship was observed 
between miR-671-5p and HDAC5/HIF-1α in ovarian cancer 
cells [94]. Similarly, lung cancer tissues and cells exhibited 
elevated expression of KDM3A (lysine demethylase 3A) 
and HIF-1α and lowered expression of miR-449a. KDM3A 
was reported to interact with HIF-1α and miR-449a. miR-
449a refrained lung cancer development by suppressing 
KDM3/HIF-1α axis [95]. The antitumor effects of miR-
449a have also been documented in gastric cancer, cervi-
cal cancer, breast cancer, and endometrial cancer [96–99]. 
All these reports have comprehensively demonstrated the 
onco-suppressor functions of HIF-1α-targeting miRNAs in 
human cancers.

3.3  Association of miRNAs with therapy response

Exosomes are extracellular vesicles with a particle size 
ranging from 20 to 100 nm and are primarily enriched 
in the tumor microenvironment [100, 101]. The secre-
tion and release of exosomes are increased under hypoxia 
[102] which enhances the shedding of pro-angiogenic 
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micro-vesicles [103]. Exosomes serve as vehicles for the 
transportation of ncRNAs and proteins. Exosomes can 
modulate the drug sensitivity of cancer cells [104]. For 
instance, epithelial ovarian cancer cells transformed mac-
rophages into tumor-associated macrophage (TAM)-like 
phenotype under hypoxia [105]. The exosomes released by 
these macrophages carried miR-223, and exosomal miR-
223 contributed to the acceleration of drug resistance in 
epithelial ovarian cancer cells [105]. HIF-1α can repress 
certain miRNAs to elicit drug resistance. Xu and col-
leagues demonstrated that HIF-1α repressed miR-338-5p 
to impart drug resistance in colorectal cancer cells [106]. 
miR-338-5p was found to target IL-6 which is essential for 
the activation of oncogenic proteins namely STAT3 and 
Bcl-2 [106]. The role of STAT3 and Bcl-2 in oncogenesis 
and chemotherapeutic resistance has been well documented 
[107–110]. Elevated expression of miR-338-5p or use of 
PX-478 (inhibitor of HIF-1α) increased the sensitivity 
of colorectal cancer cells to oxaliplatin by impeding the 
HIF-1α/miR-338-5p/IL-6 axis [106]. In another study, 
HIF-1α was found to upregulate TGF-β through the eleva-
tion of miR-210-3p. Subsequently, miR-210-3p promoted 
EMT and induced resistance to temozolomide in glioma 
cells [111]. Cobalt chloride and dimethyloxalylglycine are 
the agents used to induce hypoxia in in vitro cancer cell 
cultures. The expression levels of HIF-1α increase in the 
cancer cells upon treatment with these agents indepen-
dently. HIF-1α expression was found to be stabilized by 

cobalt chloride and dimethyloxalylglycine, and increased 
levels of HIF-1α triggered resistance to cisplatin in gastric 
cancer cells [112]. It was found that HIF-1α transcription-
ally induces the expression of miR-421 and subsequently 
miR-421 targets E-cadherin and caspase-3 to promote 
metastasis and cisplatin resistance in gastric cancer [112]. 
In addition to chemotherapy, miRNAs can also determine 
the response of cancer cells to radiation therapy. miR-
200c decreased the expression of phospho-EGFR, phos-
pho-AKT, VEGF, HIF-1α, and MMP2 and escalated the 
radiosensitivity of cancer cells [113]. Figure 3 and Table 1 
provide a summary of miRNAs modulating HIF-1α signal-
ing in various cancers. 

4  LncRNAs and HIF‑1α

4.1  Oncogenic lncRNAs

LncRNAs regulate HIF-1α by various mechanisms to elicit 
oncogenic effects. Some lncRNAs serve as scaffolds and 
thereby mediate the interaction between two different pro-
teins. For example, the levels of lncRNA HABON (hypoxia-
activated BNIP3 overlapping non-coding RNA) were signifi-
cantly increased under hypoxia in hepatocellular carcinoma 
cells to promote their proliferation. Mechanistic investiga-
tion revealed that HABON is under the transcriptional con-
trol of HIF-1α. Unconventionally, HABON was found to 

Table 1  The regulation of HIF-1α by miRNAs in cancer

Cancer type Molecular axis Mechanism and observed effects Ref.

Lung cancer miR-200c/HIF-1α HIF-1α downregulation by miR-200c to impair the migration of tumor cells [114]
Colorectal cancer HIF-1α/miR-338-5p/IL-6 HIF-1α represses the expression of miR-338-5p to elicit chemoresistance. IL-6 

is the downstream target of miR-338-5p
[106]

Colorectal cancer CCL19/miR-206/HIF-1α/VEGF-A CCL19 promotes the expression level of miR-206 and suppresses HIF-1α/
VEGF-A axis to impair angiogenesis

[115]

Breast cancer HIF-1α/MALAT1/miR-141 HIF-1α promotes MALAT1 expression to downregulate miR-141 and 
autophagy induction to increase the growth and metastasis of tumor cells

[116]

Breast cancer HIF-1α/miR-210 HIF-1α accelerates the growth of breast cancer cells by regulating miR-210 [117]
Gallbladder cancer miR-143-5p/HIF-1α/EMT Loss of miR-143-5p leads to induction of HIF-1α/EMT axis to increase inva-

sion of tumor cells
[118]

Gastric cancer PRL-3/NF-κB/HIF-1α/miR-210 PRL-3 induces the NF-κB/HIF-1α axis to increase miR-210 expression in 
facilitating the tumorigenesis

[119]

Renal cell cancer HIF-1α/miR-320a/HECTD2 HIF-1α reduces miR-320a expression to upregulate HECTD2 to promote tumor 
progression

[120]

Pancreatic cancer miR-421/SIRT3/HIF-1α Cancer-associated fibroblasts secrete miR-421 which increases HIF-1α expres-
sion via SIRT3 downregulation to accelerate tumorigenesis

[121]

Pancreatic cancer miR-142/HIF-1α Loss of miR-142 during hypoxia results in HIF-1α upregulation and carcino-
genesis

[122]

Breast cancer miR-182/FBXW7/HIF-1α/VEGFA miR-182 reduces FBXW7 expression to induce HIF-1α/VEGF-A axis in pro-
moting tumor progression

[123]

Colorectal cancer HIF-1α/miR-23a∼27a∼24 Upregulation of miR-23a∼27a∼24 cluster by HIF-1α results in an increase in 
cancer progression and mediating metabolic reprogramming

[124]
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promote the degradation of HIF-1α protein by facilitating 
the interaction of VHL and PHD2 with HIF-1α [125]. In an 
interesting study, lncRNA-packed in an extracellular vesi-
cle was found to function as a messenger between immune 
cells and tumor cells in the tumor microenvironment. Chen 
and colleagues demonstrated that a lncRNA named HISLA 
(HIF-1α-stabilizing long non-coding RNA) is transmitted 
through extracellular vesicles to breast cancer cells from 
tumor-associated macrophages [126]. In breast cancer cells, 
HISLA interacted with PHD2 and prevented the interaction 
between PHD2 and HIF-1α which led to suppression of 
hydroxylation and degradation of HIF-1α and acceleration 
of aerobic glycolysis to produce lactate (Warburg effect). 
In turn, lactate produced by breast cancer cells elevated the 
levels of HISLA in tumor-associated macrophages forming 
a feed-forward loop between tumor-associated macrophages 
and breast cancer cells [126]. Clinical findings suggested 
that the expression of HISLA was correlated with reduced 
chemotherapeutic response and poor survival of patients 
with breast cancer [126]. Some lncRNAs regulate the 
activity of proteins associated with glucose metabolism to 
encourage the growth of cancer cells. LncRNA AC020978 
was elevated in clinical samples of NSCLC and positively 
correlated with disease progression and poor clinical out-
comes. Mechanistically, AC020978 physically interacted 
with pyruvate kinase isozyme M2 (PKM2) and increased 
the stability of PKM2. Additionally, AC020978 promoted 
the nuclear translocation of PKM2 and modulated PKM2-
driven HIF-1α transcription activity [127].

Epigenetic modifications in the regulatory region 
of the lncRNA gene can modulate its expression. The 
hypomethylation of the promoter of lncRNA SNHG11 
(small nucleolar RNA host gene 11) activated the 
expression of SNHG11 and contributed to dismal prognosis 
in colorectal cancer patients [128]. SNHG11 physically 
interacts with VHL recognition sites on HIF-1α and thereby 
impedes the interaction of VHL with HIF-1α. As discussed 
earlier, recognition of HIF-1α by VHL is essential for the 
proteasome-mediated degradation of HIF-1α. Altogether, 
SNHG11 prevented the degradation of HIF-1α and 
facilitated tumor metastasis of colorectal cancer cells [128]. 
Similarly, lncRNA MIR210HG was upregulated in ovarian 
cancer cells under hypoxic conditions and MIR210HG 
promoted EMT and angiogenesis by preventing the VHL-
dependent degradation of HIF-1α [129]. LncRNAs can also 
be involved in facilitating the maintenance of mesenchymal 
stem-like cells in hypoxia. Mineo and colleagues showed 
that lncRNA HIF1A-AS2 is elevated in mesenchymal 
glioblastoma stem-like cells under hypoxic conditions. 
IGF2BP2 and DHX9 were identified as the binding partners 
of HIF1A-AS2. Depletion of HIF1A-AS2 resulted in 
reduced growth of mesenchymal glioblastoma stem-like cell 
tumors [130]. HIF-1α can directly promote the transcription 

of some lncRNA genes which are known to trigger 
tumorigenesis. HIF-1α elevated the levels of lncRNA 
DARS-AS1 which was reported to accelerate growth and 
antiapoptosis of myeloma cells. DARS-AS1 interacted 
with and prevented the ubiquitin-mediated degradation of 
RBM39 (RNA-binding motif protein 39) whose expression 
is positively correlated with dismal prognosis [131].

LncRNAs can modulate the activity of HIF-1α to regu-
late EMT, invasion, and metastasis of cancer cells. Inhibi-
tion of EMT-related transcription factors (such as Snail, 
Twist, and Zeb) has been widely demonstrated as an ideal 
strategy to combat EMT and subsequent metastasis of 
tumor cells [132]. Upregulation of Zeb1 expression was 
reported in the clinical samples of patients with invasive 
ductal breast cancer [133]. Deng and colleagues have shown 
that lncRNA-BX111887 (also termed BX111) was induced 
by HIF-1α under hypoxia, and overexpression of BX111 
substantially elevated the proliferation and invasion of pan-
creatic cancer cells. The mechanistic approach revealed that 
BX111 directs the Y-box protein (YB1, a protein involved in 
a broad range of DNA/RNA-dependent events), to the pro-
moter of the Zeb1 gene to activate its transcription [134]. 
Similarly, lncRNA PCGEM1 was induced by hypoxia which 
resulted in the expression of Snail to stimulate the invasion 
and metastasis of gastric tumor cells [135]. LncRNA HIF-
1A-AS2 was demonstrated to competitively interact with 
miR-153-3p to allow the translation of HIF-1α to promote 
angiogenesis in HUVECs in hypoxia [136]. Taken together, 
these reports suggest that there is a complicated relation-
ship that exists between oncogenic lncRNAs and hypoxia 
to promote tumor progression [137].

4.2  Onco‑suppressor lncRNAs

Some lncRNAs can act as onco-suppressors. Tumor 
cells generally adapt different mechanisms to reduce the 
expression of onco-suppressor lncRNAs. Several studies 
have shown that forced expression of onco-suppressor 
lncRNAs results in the suppression of tumor progression. 
Pancreatic cancer is a lethal malignancy with no druggable 
targets and accounts for a 5-year survival rate of about 9% 
[138]. Due to the unavailability of effective drugs, many 
efforts are being made to discover new therapeutic agents 
for the treatment of pancreatic cancer. Hypoxia can trigger 
the formation of a feedback loop between the expression of 
HIF-1α and lncRNAs in pancreatic cancer. For example, 
lncRNA-CF129 is markedly reduced in pancreatic cancer 
tissues compared to the normal counterpart, and reduced 
expression of CF129 contributed to the poor overall survival 
of pancreatic cancer patients [139]. In normoxia, CF129 
interacts with p53 and MKRN1 (an E3 ubiquitin ligase) and 
promotes the degradation of p53. Under hypoxic conditions, 
HIF-1α in association with HDAC1 represses the expression 
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of CF129 which enables p53 to transcribe the FOXC2 gene. 
FOXC2 is a transcription factor that drives the expression 
of HIF-1α and further ensures the suppression of CF129 
expression to promote tumor progression [139].

LncRNAs can serve as decoys to regulate the expression of 
mRNA at the translation level. For example, lncRNA HITT 
(HIF-1α inhibitor at translation level) is reduced in many 
types of cancer cells. It was found that increased expression 
of HITT led to the inhibition of angiogenesis and tumor 
growth. Mechanistically, HITT was found to act as a decoy 
for YB-1, preventing the interaction of YB-1 with 5′-UTR of 
HIF-1α mRNA, and subsequently, the translation of HIF-1α 
mRNA is hampered [140]. YB-1 protein is involved in the 
regulation of many cellular processes such as DNA repair, 
transcription, post-transcriptional processing of transcripts, 
and translation. During the unavailability of YB-1, HIF-1α 
mRNA is not translated leading to tumor suppression. 
Unfortunately, HIF-1α induces the expression of miR-205 
in tumor cells, and subsequently miR-205 directly targets 
and promotes the degradation of HITT for an autoregulatory 
loop [140]. In a follow-up study by the same group, the role 
of HITT and epigenetic machinery in silencing HIF-1α was 
studied. HITT was found to form an RNA–DNA triplex with 
the promoter of HIF-1α and thereby guided EZH2 (enhancer 
of zeste homolog 2) to the promoter leading to the suppression 
of HIF-1α transcription. EZH2 is a functional subunit of 
Polycomb repressive complex 2 (PRC2), a complex that is 
involved in the methylation of lysine 27 of histone H3 to 
repress the transcription of target genes [141].

Reducing the expression of HIF-1α by lncRNAs can 
greatly suppress the disease progression. The lncRNA 
ENST00000480739 is lowly expressed in pancreatic cancer 
cells, and its ectopic expression resulted in overexpression 
of OS-9 (osteosarcoma amplified-9) to downregulate 
HIF-1α thereby preventing the metastasis of tumor cells 
[142]. Some lncRNAs can modulate EMT and autophagy 
in a HIF-1α-dependent manner. LncRNA CPS1-IT1 (CPS1 
intronic transcript 1) was found to inhibit metastasis and 
EMT by suppressing hypoxia-induced autophagy through 
the inactivation of HIF-1α in colorectal cancer [143]. 
LncRNA MT1JP (metallothionein 1 J, pseudogene) was 
reported to be reduced in tumor tissues of TNBC patients, 
and its overexpression resulted in the elevation of miR-
138 and reduction of HIF-1α in TNBC cells [144]. The 
crucial role of hypoxia on the expression of lncRNAs and 
tumor angiogenesis was demonstrated in the study by Li 
and colleagues. In normoxic conditions, the expression 
of lncRNA ZNFTR was high which sequestered the 
transcription factor ATF3 (activating transcription factor 
3) and thereby blocked transcriptional activity of ATF3. 
Also, this enabled the expression of the ZNF24 protein 
which further served the role of transcription repressor of 

the VEGFA gene [145]. In hypoxic conditions, HIF-1α/
HDAC1-driven deacetylation repressed the expression of 
ZNFTR which allowed ATF3 to repress the expression of 
ZNF24. The reduction in the expression of ZNF24 resulted 
in the elevated expression of VEGFA and subsequent tumor 
angiogenesis in pancreatic cancer [145]. These studies have 
demonstrated the different mechanisms by which lncRNAs 
behave as onco-suppressors in various cancers.

4.3  Association of lncRNAs with therapy response

Therapeutic resistance is a major concern in many disease 
conditions including cancer. In this section, we have discussed 
how the relationship between HIF-1α and lncRNAs impacts 
the therapeutic response of cancer cells. LncRNA PVT1 (plas-
macytoma variant translocation 1) is overexpressed in tumor 
tissues of pancreatic cancer patients, and it was found to be 
associated with poor clinical outcomes. HIF-1α was reported 
to interact with the promoter of the PVT1 gene to express it as 
well as to stabilize PVT1 transcripts. Interestingly, PVT1 was 
also found to transcriptionally regulate the expression of the 
HIF-1α gene as well as stabilize the HIF-1α protein forming 
a feedback regulatory loop in pancreatic cancer cells [146]. In 
another report, PVT1 was found to sponge miR-143 to modu-
late the expression of HIF-1α. Depletion of PVT1 and overex-
pression of miR-143 potentiated the sensitivity of pancreatic 
cancer cells to gemcitabine indicating that HIF-1α modulating 
lncRNAs can regulate therapeutic response [147]. LncRNA 
NORAD (non-coding RNA activated by DNA damage) was 
demonstrated to be elevated in colorectal cancer tissues, and it 
promoted the expression of HIF-1α by sponging miR-495-3p 
[148]. Under hypoxia, colorectal cancer cells presented resist-
ance to 5-fluorouracil and a stronger ability to form vasculo-
genic mimicry, whereas depletion of NORAD resulted in the 
sensitization of colorectal cancer cells to 5-fluorouracil [148].

Cisplatin is the first-line anticancer drug administered to 
treat advanced gastric cancer patients, and unfortunately, cis-
platin resistance is not uncommon in gastric cancer patients 
[149]. LncRNA HMGA1P4 promoted cisplatin-resistance in 
gastric cancer cells by modulating the expression of genes 
that are associated with multidrug-resistance such as MDR1, 
MRP1, mTOR, and HIF-1α [150]. Another lncRNA that par-
ticipates in cisplatin resistance in gastric cancer is DANCR. 
Overexpression of DANCR prevented apoptosis and pro-
moted the proliferation of tumor cells. DANCR increased the 
expression of MDR1 and MRP1 in gastric cancer cells while 
having no effect on the levels of HIF-1α and mTOR [151]. 
Similarly, the expression of PVT1 was elevated in tumor tis-
sues derived from cisplatin-resistant gastric cancer patients. 
Increased expression of PVT1 elevated the expression of 
MDR1, MRP, mTOR, and HIF-1α [152]. These reports sug-
gest that targeting lncRNAs could be a good strategy for 
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counteracting therapeutic resistance in cancers. Figure 4 and 
Table 2 provide a summary of lncRNAs modulating HIF-1α 
signaling during cancer progression.

5  CircRNAs and HIF‑1α

The majority of the circRNAs studied in connection with 
HIF-1α so far were found to impart their activity through 
the sponging of miRNAs. For instance, the levels of circ-
MAT2B were reported to be significantly high in tumor tis-
sues of gastric cancer patients in comparison with adjacent 
normal counterparts [186]. Circ-MAT2B served as a com-
petitive endogenous RNA to sponge miR-515-5p whereas 
the direct molecular target of miR-515-5p was found to be 
HIF-1α [186]. Interestingly, the promoter of circ-MAT2B 
was found to have two HIF-1α binding sites, and results of 
the ChIP-PCR assay demonstrated that HIF-1α transcrip-
tionally regulates the expression of circ-MAT2B forming a 
regulatory loop. The knockdown of circ-MAT2B abrogated 
tumor growth in xenograft model and suppressed glucose 

uptake and lactate production in cell-based studies [186]. 
Similarly, circ-MAT2B was demonstrated to sponge tumor 
suppressor miRNAs such as miR-610 and miR-431 in colo-
rectal cancer and NSCLC, respectively, to promote tumor 
progression (Fig. 5) [187, 188].

Liu and colleagues reported the elevation of circ-03955 in 
pancreatic cancer tissues as well as in cells, and it was found 
to sponge miR-3662 to allow the stabilization and translation 
of HIF-1α transcripts [189]. miR-200c-3p was sponged by 
circ-001783 to increase breast tumor proliferation and inva-
sion [190]. Circ-0007331 was predicted to act as a molecular 
sponge to sequester miR-200c-3p whose downstream target 
is HIF-1α in endometriosis [191]. Exosomal miR-200c-3p 
suppressed the migration and invasion of lipopolysaccha-
ride-treated colorectal cancer cells by targeting Zeb1 mRNA 
[192]. High expression of miR-200c-3p decreased the lev-
els of PD-L1, c-Myc, and β-catenin and sensitized ovarian 
cancer cells to olaparib and irradiation [193]. As discussed 
earlier, HIF-1α plays a crucial role in aerobic glycolysis 
and the regulation of glycolytic pathways. A recent study 
demonstrated that HIF-1α transcriptionally upregulates the 

Fig. 4  The activity and expression of HIF-1α is regulated by lncR-
NAs. LncRNAs (HISLA) can be transmitted between different cells 
in the tumor microenvironment through exosomes. HISLA can 
interact with PHDs to prevent the prolyl hydroxylation of HIF-1α. 
LncRNA  SNHG11 can interact with HIF-1α and prevent the rec-
ognition of HIF-1α by VHL. LncRNA AC020978 can interact with 

and stabilize PKM2 to increase HIF-1α-mediated transcription of 
AC020978 and also other target genes. The stabilized PKM2 can also 
promote the Warburg effect. HIF-1α transcriptionally activates the 
expression of DARS-AS1 which eventually interacts with and pre-
vents RBM39 from degradation. LncRNA HIF1A-AS2 sponges miR-
224 and prevents the degradation of HIF-1α transcripts
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Table 2  Role of lncRNAs regulating HIF-1α signaling in tumorigenesis

LncRNA Molecular axis Cancer type Mechanism and observed effects Ref

COL4A2-AS1 miR-20b-5p/HIF-1α Colorectal cancer Induction of glycolysis, antiapoptosis, and accel-
eration of proliferation. COL4A2-AS1 increases 
HIF-1α expression via sponging miR-20b-5p

[153]

LINK-A HIF-1α Ovarian cancer Enhanced metastasis of tumor cells via HIF-1α 
overexpression

[154]

GHET1 HIF-1α Ovarian cancer GEHT1 interacts with the VHL and blocks the 
degradation of HIF1α

[155]

AWPPH HIF-1α Glioma Promoted cell motility by upregulating HIF-1α [156]
PMAN HIF-1α/PMAN Gastric cancer HIF-1α increases PMAN expression to promote 

peritoneal metastasis of gastric cancer
[157]

PVT1 KAT2A/HIF-1α Nasopharyngeal cancer PVT1 functions as a scaffold for KAT2A to recruit 
TIF1β for increasing HIF-1α stability and pro-
moting tumor progression

[158]

ZEB1-AS1 HIF-1α Pancreatic cancer A positive feedback loop between ZEB1-AS1 and 
HIF-1α increases carcinogenesis and invasion

[159]

ZEB2-AS1 miR-143-5p/HIF-1α Gastric cancer ZEB2-AS1 promotes HIF-1α expression via 
sponging miR-143-5p thereby enhancing growth 
and invasion

[160]

OIP5-AS1 miR-124-5p/IDH2/HIF-1α Cervical cancer OIP5-AS1 suppresses miR-124-5p expression to 
increase IDH2 expression thereby triggering 
HIF-1α signaling

[161]

LINC00649 NF90/NF45/HIF-1α Breast cancer LINC00649 enhances stability and expression of 
HIF-1α via interacting with NF90/NF45

[162]

DLX6-AS1 miR-199a-5p/HIF-1α Nasopharyngeal cancer DLX6-AS1 sponges miR-199a-5p to increase 
HIF-1α expression thereby enhancing the malig-
nant phenotype of tumor cells

[163]

TMPO-AS1 miR-199a-5p/HIF-1α Retinoblastoma TMP-AS1 sponges miR-199a-5p to increase 
HIF-1α expression thereby promoting cancer 
malignancy

[164]

MTA2TR MTA2TR/ATF3/MTA2/HIF-1α Pancreatic cancer MTA2TR increases HIF-1α expression in a dea-
cetylation manner

[165]

LINC00511 HIF-1α/LINC00511/miR-153-5p Colorectal cancer HIF-1α promotes LINC00511 expression which 
sponges miR-153-5p. HIF-1α is a direct target of 
miR-153-5p

[166]

DSCR8 miR-98-5p/STAT3/HIF-1α Ovarian cancer DSCR8 sponges miR-98-5p and promotes STAT3 
expression to induce HIF-1α signaling for cancer 
progression

[167]

GHET1 HIF-1α/Notch Prostate cancer Silencing GHET1 impairs HIF-1α/Notch axis 
thereby suppressing cancer growth

[168]

NUTF2P3-001 miR-3923/KRAS Pancreatic cancer Hypoxia increases KRAS expression via sponging 
miR-3923

[169]

FAM83A-AS1 HIF-1α/glycolysis Lung cancer FAM83A-AS1 prevents the degradation of HIF-1α 
by interacting with the VHL recognition site on 
HIF-1α.

[170]

MEG3 DNMT3b/MEG3/HIF-1α - MEG3 inhibition by DNMT3B leads to HIF-1α 
overexpression to mediate the malignant trans-
formation of epithelial cells

[171]

NEAT1 HIF-1α - NEAT1 sponges 582-5p. HIF-1α is the speculated 
target of miR-582-5p

[172]

PVT1 miR-199a-5p/HIF-1α Lung cancer PVT1 sponges miR-199a-5p to increase HIF-1α 
expression

[173]

LINC00525 miR-338-3p/UBE2Q1/β-catenin/HIF-1α Colorectal cancer LINC00525 increases UBE2Q1 expression by 
interacting with miR-338-3p to induce the activa-
tion of HIF-1α

[174]

CRPAT4 AVL9 Renal cancer Hypoxia increases CRPAT4 expression to regulate 
AVL9 thereby increasing cancer progression

[175]
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expression of hexokinase-2 (HK2) to stimulate aerobic gly-
colysis and enhance breast cancer progression. However, 
miR-487a was found to target HIF-1α and thereby suppress 
HIF-1α/HK2 axis. CircRNF20 (circ_0087784) was found 
to sponge miR-487a to enable the stabilization and transla-
tion of HIF-1α and its downstream target HK2 to boost the 
progression of breast tumors [194]. Similarly, circ-0046600, 
circ-0004543, circPIP5K1A, and circ-HIPK3 allowed the 
expression of HIF-1α by sequestering miR-640, miR-217, 
miR-600, and miR-338-3p in the liver, cervical, lung, and 
cervical cancer cells, respectively, to promote the advance-
ment of disease [195–198]. CircRNAs can also promote the 
growth of cancer cells by modulating the cap-independent 
translation of HIF-1α translation. Circ-ERBIN was shown 
to be overexpressed in colorectal cancer cells which encour-
aged the growth of colorectal cancer. The interactome 
analysis revealed miR-125a-5p and miR-138-5p as binding 
partners of circ-ERBIN [199]. Further mechanistic analysis 
demonstrated that both miR-125a-5p and miR-138-5p target 
4EBP-1 [199]. 4EBP-1 is involved in the cap-independent 
translation of HIF-1α under hypoxia. Therefore, seques-
tration of miR-125a-5p and miR-138-5p by circ-ERBIN 
resulted in efficient cap-independent translation of HIF-1α 
and subsequent acceleration of tumor angiogenesis [199].

5.1  Association of circRNAs with therapy response

A very limited number of studies have demonstrated the 
role of the circRNA/HIF-1α axis in offering chemoresistance 
in cancer cells. Elevated expression of circNRIP1, MDR-
1, P-glycoprotein, and HIF-1α and low responsiveness 
to 5-fluorouracil were noted in gastric cancer cells under 
hypoxic conditions whereas the depletion of circNRIP1 
sensitized gastric cancer cells to 5-fluorouracil. Mechanis-
tically, circNRIP1 was reported to target miR-138-5p, which 
is an upstream modulator of HIF-1α [200]. High expression 
of circZNF91 was noted in tumor specimens derived from 
pancreatic cancer patients, and its expression was positively 
correlated with elevated expression of glucose-metabolizing 
enzymes and reduced overall survival time [201]. It was also 
noted that the exosomes released from pancreatic cancer 
cells acted as carriers of circZNF91 which were transferred 
into normoxic pancreatic cancer cells to transmit gemcit-
abine resistance [201]. In normoxic pancreatic cancer cells, 
hypoxia-induced exosomal circZNF91 was found to com-
petitively interact with miR-23b-3p and thereby enable the 
expression of Sirtuin1 (a protein deacetylase). Elevated 
Sirtuin1 subsequently deacetylated and stabilized HIF-1α 
to promote gemcitabine resistance in normoxic pancreatic 

Table 2  (continued)

LncRNA Molecular axis Cancer type Mechanism and observed effects Ref

HYPAL HIF-1α/HYPAL/miR-431-5p/CDK14 Gastric cancer Hypoxia can increase HYPAL expression and 
HYPAL promotes CDK14 expression via miR-
431-5p sponging

[176]

STEAP3-AS1 Wnt/β-catenin Colorectal cancer HIF-1α promotes STEAP3-AS1 expression to 
induce Wnt signaling for cancer progression

[177]

DAC3-AS1 HDAC2/FOXA3 Hepatocellular carcinoma HIF-1α promotes DAC3-AS1 expression to 
increase the interaction of HDAC2 and FOXA3 
thereby increasing PKM2 expression and pro-
moting cancer metastasis

[178]

CASC9 HIF-1α/CASC9 Lung cancer CASC9 and HIF-1α form a positive feedback loop 
thereby increasing cancer progression

[179]

DLEU1 HIF-1α/CKAP2 Breast cancer DLEU1 acts as a coactivator for HIF-1α and 
activated the transcription of CKAP2 to facilitate 
malignancy.

[180]

SOS1-IT1 HIF-1α/SOS1-IT1 Endometrial cancer HIF-1α promotes SOS1-IT1 expression thereby 
accelerating tumor progression

[181]

PCED1B-AS1 PCED1B-AS1/miR-411-3p/HIF-1α Pancreatic cancer PCED1B-AS1 promotes HIF-1α expression via 
targeting miR-411-3p thereby facilitating tumor 
progression

[182]

HOXA-AS2 HOXA-AS2/miR-519/HIF-1α Nasopharyngeal cancer HOXA-AS2 sponges miR-519 to increase HIF-1α 
expression for cancer progression acceleration

[183]

FALEC HIF-1α/FALEC Prostate cancer HIF-1α-mediated FALEC expression accelerates 
the malignant progression

[184]

GAPLINC HIF-1α/GAPLINC Gastric cancer Hypoxia increases HIF-1α expression to mediate 
GAPLINC expression thereby increasing cancer 
progression

[185]
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cancer cells indicating that circZNF91 plays a key role in 
imparting therapeutic resistance in the tumor microenviron-
ment. Joo and coworkers have previously demonstrated that 
Sirtuin1 is involved in the stabilization of HIF-1α through its 
deacetylation [202]. Additionally, the transcription of circ-
ZNF91 was found to be controlled by HIF-1α under hypoxic 
conditions [201]. In sum, it can be concluded that the inter-
action between miRNAs and HIF-1α is generally disrupted 
by circRNAs to promote tumorigenesis and drug resistance. 
Therefore, targeting the circRNA/HIF-1α axis can help to 
regulate glycolysis, proliferation, and metastasis of cancer 
cells. Figure 5 and Table 3 depict the relationship between 
circRNAs and HIF-1α in human cancers [200].

6  Other types of ncRNAs and HIF‑1α

We used the keywords “piRNA and HIF-1α” and “tsRNA 
and HIF-1α” to search publications related to the “HIF-
1α-regulating piRNAs” and “HIF-1α-regulating tsRNAs,” 
respectively, in PubMed. In both cases, only one study was 
listed in the search (accessed on 19 June 2023). piRNA-823 
was reported to be upregulated in colorectal cancer tumor 

samples [205]. Mechanistic dissection revealed that piRNA-
823 mitigates the ubiquitination and subsequent degradation 
of HIF-1α by elevating the levels of expression of glucose-
6-phosphate dehydrogenase, increasing glucose utilization, 
and reducing intracellular reactive oxygen species [205]. 
This study also proposed the use of piRNA-823 as a prog-
nostic biomarker in CRC patients.

Tao and colleagues demonstrated that 5′tiRNA-His-
GTG is overexpressed in colorectal cancer tissues com-
pared to the normal counterpart. The mechanistic approach 
revealed that angiogenin is transcribed by the HIF-1α 
under hypoxic conditions in colorectal tumor cells. Angi-
ogenin cleaved the tRNA into 5′tiRNA-His-GTG [206]. 
Subsequently, 5′tiRNA-His-GTG was loaded onto AGO1/3 
proteins and targeted 3′-UTR of LATS2 (Large tumor sup-
pressor 2) to promote the degradation of LATS2 transcript 
[206]. If LATS2 is not targeted, LATS phosphorylates 
YAP and TAZ which leads to either sequestration of these 
proteins or ubiquitin-facilitated protein degradation result-
ing in turning off of the Hippo pathway. Therefore, it was 
concluded that 5′tiRNA-His-GTG responded to hypoxic 
stress by activating HIF1α/angiogenin axis and promoting 
the Hippo pathway.

Fig. 5  The activity and expression of HIF-1α is regulated by lncR-
NAs. The majority of known circRNAs promote HIF-1α signaling 
by sponging the onco-suppressor miRNAs. CirRNAs (circRNF20, 

circ-03955, circ-MAT2B) sponge miRNAs (miR-487a, miR-3662, 
miR-515-5p, respectively) to stabilize and prevent the degradation of 
HIF-1α transcripts
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7  Clinical examination of ncRNAs 
as therapeutic agents

Since the discovery of ncRNAs, a significant number of 
efforts have been made to use them as therapeutic agents 
against human cancers. The major hurdles in the devel-
opment of ncRNA-based therapeutics are the route of 
administration, dosage optimization, off-target effects, 
and drug delivery system. Despite successful implemen-
tation in the preclinical studies, ncRNA-based therapeu-
tics have failed to enter clinics to date. Among ncRNAs, 
miRNA-targeting approaches have reached clinical trials 
for the treatment of cancers. Upregulation of the expres-
sion of oncogenic miRNAs and downregulation of the 
expression of onco-suppressor miRNAs are the common 
trends observed in the majority of the studies performed 
using patient-derived tumor tissues. As learnt earlier, 
miRNAs interact with their target mRNA to promote 
mRNA degradation or suppress their translation. Con-
sidering these facts, efforts have been made to admin-
ister synthetic miRNAs (anti-miRNAs) that can make 
complementation with oncogenic miRNAs to allow the 
expression of target mRNAs. Another approach is the 
administration of synthetic miRNAs (miRNA mim-
ics) that mimics the role of onco-suppressor miRNAs. 
miR-34 is one of the potent onco-suppressor miRNAs 

with inhibitory activity against tumorigenic functions 
facilitated by CDK4/6, SIRT1, and SOX2. Delivery of 
either anti-miRNAs or miRNA-mimics to target sites is 
a daunting task. A liposomal nanoparticle loaded with 
a synthetic mimic of the miR-34a (named MRX34) was 
examined in patients with advanced solid tumors [207]. 
Administration of MRX34 with dexamethasone premedi-
cation displayed a manageable toxicity profile in most 
patients and some clinical activity [207]. Although the 
study was terminated early due to serious immune-medi-
ated adverse effects that led to the death of four patients, 
dose-dependent modulation of relevant target genes pro-
vided proof of concept for miRNA-based cancer therapy 
(NCT01829971). In another study, cobomarsen (an oli-
gonucleotide inhibitor of miR-155) displayed a reduction 
in the growth of diffuse large B-cell lymphoma without 
any toxicity concerns in the patient (NCT02580552) 
[208]. A clinical investigation is being carried out to 
determine the effect of TargomiRs (miR-16-mimics 
loaded into engeneic delivery vehicles) as a second-/
third-line treatment for patients with malignant pleural 
mesothelioma and NSCLC (NCT02369198). miR-16 
is a potent onco-suppressor that was demonstrated to 
be downregulated in malignant pleural mesothelioma 
tumors/cells, and its administration provided promising 
anticancer effects [209].

Table 3  The regulation of HIF-1α signaling by circRNAs for cancer therapy

CircRNA Molecular axis Cancer type Mechanism and observed effects Ref.

Circ-0004543 Circ-0004543/miR-217/HIF-1α Cervical cancer Circ-0004543 increases HIF-1α expression via miR-
217 sponging to promote tumorigenesis

[196]

Circ-MAT2B miR-515-5p/HIF-1α Gastric cancer Circ-MAT2B promotes proliferation, glucose 
uptake, and lactate production via miR-515-5p 
sponging and subsequent overexpression of 
HIF-1α

[186]

Circ-03955 Circ-03955/miR-3662/HIF-1α Pancreatic cancer Circ-03955 increases HIF-1α expression via miR-
3662 inhibition for glycolysis induction

[189]

Circ-RNF20 Circ-RNF20/miR-487a/HIF-1α/HK2 Breast cancer Circ-RNF20 promotes HIF-1α expression via miR-
487a inhibition to upregulate HK2

[194]

Circ-0046600 Circ-0046600/miR-640/HIF-1α Liver cancer Circ-0046600 promotes HIF-1α expression via miR-
640 inhibition thereby contributing to increased 
cell proliferation and EMT induction

[195]

CircPIP5K1A CircPIP5K1A/miR-600/HIF-1α Lung cancer CircpIP5K1A sponges miR-600 which enabled the 
upregulation of HIF-1α

[197]

Circ-HIPK3 Circ-HIPK3/miR-338-3p/HIF-1α Cervical cancer HIPK3 sponges miR-338-3p to increase HIF-1α and 
to mediate the EMT mechanism

[198]

Circ-NRIP1 Circ-NRIP1/miR-138-5p/HIF-1α Gastric cancer Circ-NRIP1 sponges miR-138-5p to overexpress 
HIF-1α to mediate drug resistance

[200]

Circ-SLC25A16 Circ-SLC25A16 /miR-488-3p/HIF-1α/LDHA Lung cancer Circ-SLC25A16 promotes HIF-1α expression via 
miR-488-3p sponging and subsequent upregula-
tion of LDHA

[203]

Circ-100859 Circ-100859/miR-217/HIF-1α Colon cancer Circ-100859 elevates HIF-1α expression via miR-
217 sponging thereby accelerating colon cancer 
progression

[204]



20 Cancer and Metastasis Reviews (2024) 43:5–27

1 3

8  Conclusion and remarks

Hypoxia is one of the hallmark features observed in the micro-
environment of most solid malignancies which contributes to 
the oncogenic features such as metabolic reprogramming, metas-
tasis, and drug resistance. HIF-1α regulates the expression of 
genes responsible for the oncogenic behavior of the cell. HIF-1α 
is one of the most widely studied transcription factors in rele-
vance to cancer progression, and numerous preclinical studies 
have proposed that inhibition of HIF-1α could be a good thera-
peutic approach to counteract the proliferation of cancer cells. 
On the other hand, there are a few limitations associated with 
targeting HIF-1α in human cancers. In a phase II clinical trial, 
17-(allylamino)-17-demethoxygeldanamycin failed to achieve 
an objective response in the treatment of renal cell carcinoma 
patients. 17-(Allylamino)-17-demethoxygeldanamycin is a potent 
inhibitor of HSP90 that elevated the degradation of HIF-1α [210]. 
Also, differential expression of HIF-1α may contribute to the 
limited efficacy of therapeutic agent that targets HIF-1α [211]. 
The expression, activity, and stability of HIF-1α are modulated 
by oxygen-sensitive enzymes which make oxygen a key player 
in determining the aggressiveness of the tumor cells. In addition, 
various ncRNAs including miRNA, lncRNA, circRNA, piRNA, 
and tsRNA were also reported to either promote or impede the 
HIF-1α pathway in cancers. Although most of the discoveries 
related to these ncRNAs in relevance to oncogenesis have been 
deciphered in the last two decades, it is important to note that 
these ncRNAs have a wide and critical role in the progression 
of cancer, and it is much more complicated than the present-day 
understanding. Considering the importance of ncRNAs, miR-
NAs are being examined as therapeutic agents in different phases 
of clinical trials. Some of the clinical trials were discontinued 
halfway through due to various problems suggesting that there 
are multiple challenges to be crossed before the successful clini-
cal application of ncRNA-based drugs. For instance, although 
MRX34 showed some clinical activity, the study was halted due 
to immune-related adverse effects which resulted in the death 
of a few patients. Determining the route of administration, use 
of carriers, dosage optimization, and off-target effects are still 
considered a matter of concern in RNAi-based therapies. Over-
all, an enormous amount of research is essential to uncover and 
understand the role of ncRNAs in disease progression and their 
relationship with oncogenic/tumor suppressor proteins.
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