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Abstract 
Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths world-
wide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several 
resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance 
(MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of 
chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologi-
cally safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard 
drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition 
to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in 
various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive 
agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective 
chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple path-
ways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, 
cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell 
plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we 
focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing 
treatments.
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Abbreviations
5-LOX	� 5-lipoxygenase
5-FU	� 5-fluorouracil
AP-1	� activator protein 1
Bcl-2	� B-cell lymphoma 2
Bcl-xL	� B-cell lymphoma extra-large
CIMP	� CpG island methylator
CIN	� chromosomal instability
COX	� cyclooxygenase
CRC​	� colorectal cancer
CSC	� cancer stem cell
CTC​	� circulating tumor cell
CTM	� circulating tumor microemboli
DNA	� deoxyribonucleic acid
EGF	� epidermal growth factor
EGFR	� epidermal growth factor receptor
EMT	� epithelial-to-mesenchymal transition
EpCAM	� epithelial cell adhesion molecule
ER	� endoplasmic reticulum
HDAC	� histone deacetylase
HGF	� hepatocyte growth factor
HIF	� hypoxia-inducible factor
IkBα	� NF-κB inhibitor alpha
IBD	� inflammatory bowel disease
IFN	� interferon
IL	� interleukin
iNOS	� isoenzymes of NO synthase
Ki-67	� Kiel-antigen 67
MAPK	� mitogen-activated protein kinase
MDR	� multidrug resistance
MMP	� matrix metalloproteinase
mRNA	� messenger ribonucleic acid
MRP	� MDR-associated protein
MSI	� microsatellite instability
NF-κB	� nuclear factor kappa-light-chain-enhancer of 

activated B-cells
NO	� nitric oxide
Nrf2	� nuclear factor erythroid 2–related factor 2
p53	� cellular tumor antigen p53
PGE2	� prostaglandin
P-gp	� p-glycoproteins
PRP4	� pre-mRNA processing factor
QR2	� quine reductase 2
ROS	� reactive oxygen species
SIP1	� smad interacting protein 1
SIRT	� sirtuins
STAT​	� signal transducer and activator of transcription
TGF-β	� transforming growth factor beta
Th17	� T helper 17 cells
TME	� tumor microenvironment
TNF	� tumor necrosis factor
TPA	� 12-o-tetradecanoylphorbol-13-acetate

TRAIL	� tumor necrosis factor-related apoptosis-induc-
ing ligand

Tregs	� regulatory T-cells
VEGF	� vascular endothelial growth factor.

1  Introduction

Across populations, physicians are faced with treating colo-
rectal cancer (CRC), ranked third worldwide for cancer 
incidence and cancer-associated deaths [1], according to a 
summation of case numbers from 185 countries. Worldwide, 
more than 1.18 million people were affected by CRC in 2020 
[1], and in 2022, there were over 151,000 new diagnoses 
and approximately 53,000 CRC-related deaths in the USA 
alone [2]. These collected data include neoplasms of both 
the colon and rectum. In the search for causes, the age-asso-
ciated adenoma-carcinoma theory [3], in which malignant 
degenerations arise from benign precursors during life, is 
very relevant. Moreover, as a multifactorial process, CRC is 
often only detected at an advanced stage of the disease, as 
there are no clear and conspicuous signs. If the cells have 
already metastasized, the treatment process is highly time-
consuming and rarely leads to the expected therapeutic suc-
cess [2]. Therefore, early detection of a possible CRC in its 
benign or early-stage CRC should be encouraged, paving the 
way for appropriate and effective intervention.

At the molecular level, CRC development and spread are 
initiated and accelerated primarily by pro-inflammatory pro-
cesses [4]. After developing a primary tumor, cancer cells 
can also detach from it and spread via lymphogenic or hema-
togenic routes to other organs. In the case of CRC, this leads 
primarily to portal vein-type metastases, 30–60% of which 
often [5] manifest themselves first in the liver. Unimpeded 
metastatic growth leads to organ failure and is one of the 
frequent causes of death in cancer patients. To prevent or 
treat metastasis, CRC patients receive chemotherapy in most 
cases after colorectal surgery. Due to the aggressiveness of 
the disease, this usually consists of several components, 
such as folinic acid and 5-fluorouracil (5-FU) combined 
with oxaliplatin (FOLFOX) or irinotecan (FOLFIRI). Tumor 
cells are becoming increasingly chemoresistant to common 
chemotherapeutic agents used against various cancers, with 
a high frequency of recurrence due to the modification of 
multiple metabolic pathways [6]. In this regard, increasing 
B-cell lymphoma 2 (Bcl-2) expression and thus inhibition of 
apoptosis, enhancing expression of hypoxia-inducible factor 
(HIF)-1 and thus tumor cell survival, raising the expression 
of multidrug resistance (MDR) protein 1, epithelial-mesen-
chymal-plasticity, sensitizes the cell to trans-differentiation, 
and hence, the promotion of drug efflux and initiation of 
medication inhibition are of central importance. Increasing 
the expression of the pro-inflammatory transcription factor 
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‘nuclear factor kappa-light-chain-enhancer of activated 
B-cells’ (NF-κB), which regulates the expression of inflam-
matory and cytoprotective genes, inhibiting the cellular 
tumor antigen p53 (p53) and thus inducing cell survival, 
which is a significant obstacle to the treatment of cancer 
patients [7–10] are further key examples. Moreover, unde-
sirable side effects, such as the development of acquired 
resistance of CRC cells to chemotherapeutic agents, lead to a 
significant decrease in the efficacy of cytostatic drugs; thus, 
cancer continues to epithelial-mesenchymal-plasticity and 
spread despite treatment [6, 11]. Indeed, classical drugs with 
limited efficacy have not been able to solve this dramatic and 
widespread problem, so scientists are constantly searching 
for agents without side effects and for innovative solutions 
to improve cancer treatment.

In addition, the ever-increasing importance of people’s 
lifestyle habits, especially among modern populations, is 
now recognized as the most critical cause of CRC, par-
ticularly their diet. In this context, regular consumption 
of fermented foods, cigarette smoking, processed meats, 
alcohol, increased body mass index, and lack of exercise 
are considered unhealthy and have a favorable effect on the 
development of CRC [12]. Indeed, it was shown that a bio-
logically balanced diet, exceptionally high in plant foods 
and fruits, can significantly reduce the risk of cancer [13, 
14]. Therefore, interest is increasingly directed toward natu-
ral substances, which have been used for many decades in 
medical therapy to prevent various diseases, including can-
cer [15–17].

Whether secondary plant compounds can be used in the 
management of human diseases has been investigated for 
many years. These natural substances possess a poly-target 
action capability and thus have more versatile attack options 
in parallel than synthetically developed one’s mono-target 
drugs [18–20]. Against this backdrop, resveratrol is a well-
researched plant-derived polyphenol, preventing the onset 
and advancement of CRC. This phytopharmaceutical occurs 
naturally in berries, grapes, and nuts [21–23], protecting the 
fruit from fungal infestation, oxidative processes, aging, and 
spoilage. It has already shown numerous relevant medical 
effects in mammalian and human cells. For example, in the 
field of cardiovascular diseases, a vasodilatory effect on a 
blood vessel by resveratrol-induced nitric oxide (NO)-medi-
ated mechanisms is known [24, 25] and has the effect as 
a phytoestrogen [26–30]. In addition, resveratrol has pro-
tective and regeneration-promoting effects on nerves after 
injuries [31] and suppresses inflammatory cytokine storms 
related to chronic obstructive pulmonary disease [32]. Due 
to its high overall prevalence, resveratrol is a topic of cur-
rent cancer research. Its effects on cancer cells and patients 
are being studied in vitro, in vivo, and clinically [33–35]. 
Specifically, this phytopharmaceutical has shown signifi-
cant immunomodulatory potential [36–39] and immune 

system-balancing effects concerning tumor necrosis fac-
tors (TNFs) and interleukins (ILs) in both healthy and lym-
phoma patients [40]. Moreover, Resveratrol is a poly-target 
agent capable of modifying several cell signaling cascades, 
selectively exerting cytotoxicity on cancer cells and able to 
attenuate cell metastasis by suppressing the epithelial-to-
mesenchymal transition (EMT) plasticity signaling [41] and, 
simultaneously, no toxicity on normal cells [42].

In this review, we address the anti-CRC and chemosensi-
tization mechanisms of resveratrol, focusing on tumor cell 
plasticity (phenotypic trans-differentiation of cancer cells), 
which plays an essential role in transformation, progression, 
malignancy, metastasis, and also therapy resistance of can-
cer cells to conventional drugs. Consequently, the prevention 
of this dynamic developmental process is a key prerequisite 
for the prevention and improvement of clinical treatment 
success in cancer patients.

2 � Goal of the review

This review aims to provide an overview of the high preva-
lence of CRC, focusing on the importance and fundamental 
role of cellular plasticity in frequent metastasis and the con-
sequences of the development of resistance in CRC cells to 
classical chemotherapeutic agents. In this context, the anti-
CRC potential of resveratrol, based on the suppression of 
EMT-plasticity, is reviewed, providing a pathway for over-
coming chemoresistance that may represent a groundbreak-
ing new advance in the treatment of CRC.

3 � Resveratrol, a plant‑derived polyphenol

Resveratrol is a plant stilbene with two phenolic rings linked 
by a double styrene chain, and it exists in two isoforms, cis 
and trans (Fig. 1). The trans-isoform is the most abundant 
and best studied and is catalyzed by the enzyme stilbene syn-
thase [43]. Resveratrol was initially detected in the roots of 
white hellebore (Veratrum grandiflorum) and is now found 
in over 70 widely distributed plant species, including red 
wine grapes, cranberries, peanuts, and root extracts of the 
weed Polygonum cuspidatum [44, 45].

3.1 � Resveratrol‘s natural sources and chemical 
properties

The phytoalexin resveratrol was extracted for the first time 
from the herbaceous plant Veratrum grandiflorum by the 
Japanese scientist Takaoka in 1939 [46]. It is a solid, alco-
hol-soluble ingredient alternatively known as 3,5,4′-trihy-
droxystilbene [47], with the sum formula being C14H12O3 
[48]. Structurally, both cis- and trans-isomer exist, with the 
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trans-form (Fig. 1) being more abundant and convertible 
to the cis-form [49, 50]. Numerous different targets of res-
veratrol have been identified, including integrin-receptors, 
estrogen-receptors, and sirtuins (SIRT) [51–53].

The best-known source of naturally occurring resvera-
trol is grapes of any color (Fig. 1), and the ingredient 
has been detected in bilberries, cranberries, and straw-
berries [54]. Consequently, this secondary phytochemi-
cal is also found in juices produced from these fruits 
and grape-based alcoholic beverages such as wine and 
champagne [54]. Furthermore, nuts such as peanuts and 
pistachios contain resveratrol, as does dark chocolate 
(Fig. 1) [55], which the presence of this plant component 
in cocoa beans could explain. In addition, some plants 
like Polygonum cuspidatum are particularly resveratrol-
containing, leading to the occurrence of the Itadori tea 
brewed from it in Asia [56].

The legitimate inferential question is: Why has res-
veratrol been detected in many natural products? The 
answer is astonishing: The production of resveratrol is 
stimulated in plants whenever they are exposed to the 
stress of different genesis, for example, UV-radiation 
[22], ozone-exposition, or pathogenic confrontation [57]. 
Overall, this plant-native polyphenol balances the conse-
quences of harmful environmental influences, protects the 
vegetables from fungal attack, parasite infestation, over-
ripening, and rot [56], and thus represents a natural sur-
vival strategy. As humans are also permanently exposed 
to environmental influences of various kinds and often 
live a lifestyle that is detrimental to their health, research 
is constantly being conducted to determine whether and 
how to use resveratrol’s protective properties for the ben-
efit of humankind.

3.2 � Bioavailability, absorption, and metabolism 
of resveratrol

According to previous publications, the absorption of res-
veratrol by the oral route in man is around 75-80% and pre-
sumed to be predominantly by transepithelial diffusion in 
vitro and in vivo [58, 59]. It has already been reported that 
resveratrol is distributed in high concentrations in tissues. 
Indeed, resveratrol accumulated nearly 40-fold in the human 
CRC cell line Caco-2 in vitro versus medium [60], conclud-
ing that intestinal cells are a primary target for this poly-
phenol. Because of the strong metabolism in the digestive 
tract and hepatobiliary system, with a short half-life of about 
1.5 hours [60], bioavailability by oral ingestion is relatively 
limited, less than 1%, which does not change with increasing 
intakes. Biochemical studies have shown that resveratrol’s 
major degradation products in blood plasma and urine are 
glucuronides, di-hydro-resveratrol conjugates, as well as 
sulfates [61, 62] and about 50–60% of the ingested phytop-
harmaceutical is eliminated from the body in urine [58]. 
Encouragingly, the ingestion of 500mg resveratrol in tablet 
form, resulting in plasma concentrations of about 70ng/ml, 
was reported to be well-tolerated and safe [63]. However, 
some adverse effects, such as diarrhea, nausea, anemia, vom-
iting, and flatulence, were reported when resveratrol was 
administered in high doses [64, 65].

Optimizing this topic, a higher bioavailability of this 
compound has been achieved by creating more sophisticated 
preparations, including nanoparticles and nano-constructed 
lipid vehicles incorporating resveratrol, including verifica-
tion of the efficacy of the association in recovering chemo-
sensitivity. In addition, the oral bioavailability of resveratrol 
incorporated in casein nanoparticles is tenfold increased 
compared to the administration of the polyphenol in the form 
of an oral suspension [66, 67]. Furthermore, enhancement of 
resveratrol’s bioavailability in rats has already been targeted 
by treatment with 3,5,4’-tri-O-acetyl-resveratrol, an acety-
lated resveratrol precursor that can be hydrolyzed in cells to 
free trans-resveratrol [68, 69]. Research in this area is still 
in the preliminary stages, but it is anticipated and promising 
that these novel and innovative nano-transporters will yield 
significant benefits.

Moreover, in addition to organs such as the intestine and 
the hepatic system, the vital colon microflora is suspected of 
playing a central role in resveratrol metabolism [61]. Con-
sidering the significant and indispensable importance of the 
intestinal microbiota for many essential body functions, and 
here for the metabolism of resveratrol, it could be of funda-
mental and crucial relevance, as it has already been dem-
onstrated for other natural products such as soy isoflavone 
and lignans [70, 71]. Altogether, the high accumulation and 
concentration of resveratrol in the enterocytes of the colon 
epithelium suggest that this area of the colon [72], because 

Fig. 1   Description of resveratrol. A Exemplary photo of resveratrol-
containing food products. B Chemical structure of cis-resveratrol 
and trans-resveratrol, composed with a creator from Fisher Scientific 
(Schwerte, Germany)
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of the intestinal microflora, probably plays an essential role 
in the bioactivity of resveratrol metabolism.

4 � Resveratrol’s versatile anti‑carcinogenic 
effects

4.1 � Resveratrol’s effect on different cancer types

Research into resveratrol’s effects and detailed mechanisms 
of action on different cancer cell types and lines has been 
of high scientific interest for decades. To illustrate this with 
some examples, a treatment with this natural polyphenol 
disrupts the cell cycle flow of cervical cancer cells [73], 
reduces the inflammation-related invasiveness of gastric 
cancer cells [41, 74], and initiates apoptosis in prostate can-
cer cells [75–77]. Moreover, as a multitargeting agent in 
CRC cells, this active plant compound prevents invasion, 
proliferation, and metastasis [52]. It averts EMT-associated 
plasticity, necessary for metastasis, with a parallel promo-
tion of apoptosis and being a chemosensitizer for treating 
cancers [78–81]. Resveratrol modulates epigenetic changes 
in tumor cells, as it can stimulate the ATP2A3 gene, leading 
to down-regulation of histone deacetylase (HDAC) and thus 
HDAC2 expression in the nucleus, or through deoxyribonu-
cleic acid (DNA) methylation, histone modification, non-
coding messenger ribonucleic acid (mRNA), and telomerase 
levels, leading to suppression of cancer spread [81, 82]. In 
line with this, a clinical study showed that a daily oral intake 
of 0.5–1g resveratrol could have anti-carcinogenic effects 
in the human gastrointestinal tract and, at the same time, be 
well-tolerated by cancer patients [35].

Resveratrol has also been shown to inhibit cellular pro-
cesses associated with the development of tumors through 
mutation. Indeed, it has been reported that resveratrol pos-
sesses several active anti-oxidant capacities [83], acts as an 
active scavenger of hydroxylenes/superoxides [84] and sig-
nificantly blocks the formation of free radicals caused, for 
example, by 12-O-tetradecanoylphorbol-13-acetate (TPA) in 
cancer cells [85]. Furthermore, resveratrol also contributes 
to protection against lipid peroxidation in cell membranes 
and DNA damage caused by the release of reactive oxygen 
species (ROS) [86, 87]. In addition, the phytopharmaceu-
tical has been found to have mutation-inhibiting and anti-
carcinogenic effects, such as preventing the mutagenicity 
of N-methyl-N’-nitro-N-nitrosoguanidine in Salmonella 
typhimurium [88].

Cancer cells can become chemoresistant to various 
chemotherapeutic agents due to modifications in diverse 
biological processes in the subcellular signaling pathways 
[7, 8]. Resveratrol has great promise for targeting several 
molecular and cell signaling pathways. It has already been 
explored in various preclinical and clinical approaches as a 

chemosensitizer drug for combined therapy with standard 
drugs for diverse types of cancer [89, 90]. Figure 2 provides 
an overview of the beneficial properties of the combination 
treatment of standard chemotherapeutic substances with 
resveratrol and its various potential biological pathways 
involved in the chemosensitization of tumor cells. Table 1 
lists recent research findings on the different subcellular 
signaling pathways and their mechanisms of resveratrol 
having anti-inflammatory, anti-proliferative, anti-metastatic, 
anti-oxidative, immunomodulatory, and pro- or anti-apop-
totic effects in various in vitro or in vivo studies in cancer 
and healthy cells.

4.2 � Resveratrol modulates inflammation and acts 
anti‑carcinogenic in CRC cells

Acute inflammation is activated by immune-specific cells, 
especially in infections and allergies. Thus, it is part of the 
healthy immune system in the body, and it lasts only for 
a short time. However, if the inflammation lasts longer, it 
becomes chronic [185]. Key mechanisms such as chronic 
inflammation and the associated induction of angiogen-
esis, metabolizing enzymes, oxidation, cell cycling, cell 
plasticity, and anti-apoptotic proteins are among the most 
important prerequisites for the development of chronic dis-
eases, including colitis and CRC, making agents to prevent 
and inhibit inflammation in the tissues, like colon and thus 
prevent colitis and CRC of particular interest. Well-docu-
mented inflammatory signaling pathways associated with the 
pathogenesis of colitis-related CRC include NF-κB, IL-6/
STAT3, cyclooxygenase (COX)-2/prostaglandin E2 (PGE2), 
and IL-23/T helper 17 cells (Th17) [186]. More specifically, 
pro-inflammatory chemokines and cytokines, such as IL-1, 
-6, -8, TNF-α, and TNF-β, are produced very rapidly by 
injured body tissues and can trigger a variety of inflam-
matory responses and the expression of pro-inflammatory 
transcription factors, such as NF-κB, mitogen-activated 
protein kinase (MAPK), signal transducer and activator of 
transcription (STAT) 3, HIF-1α, activator protein-1 (AP-1), 
and nuclear factor erythroid 2–related factor 2 (Nrf2), and 
their secondary inflammatory substances such as inflamma-
tory mediators, such as matrix metalloproteinases (MMPs), 
5-lipoxygenase (5-LOX), COX-2, and also the production 
of ROS [187–191]. Inflammatory bowel disease (IBD) and 
Lynche’s syndrome have been shown to contribute to sig-
nificantly increased development and pathogenesis of CRC, 
suggesting an intense interaction between inflammation and 
cancer development. In addition, experimental animal mod-
els of IBD have clearly demonstrated that resveratrol is a 
beneficial agent for the management of IBD [192].

Furthermore, one of the most critical pro-inflammatory 
transcription factors in inflammatory tissues is NF-κB, 
expressed by multiple cancers such as CRC [193]. This 
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transcription factor induces genes involved in cell survival, 
cell adhesion, inflammation, differentiation, and growth. 
NF-κB is activated by various influences such as carcino-
gens, phorbol ester, pro-inflammatory agents, cigarette 
smoke, and cytokines such as IL-1β and TNF-α or TNF-β 
[194]. These factors promote the dissociation of NF-κB 
inhibitor alpha (IκBα) through phosphorylation, and the 
activated NF-κB migrates from the cytoplasm to the nucleus, 
leading to the binding and activation of transcription of tar-
get genes essential for the development of aggressive can-
cers. The expression of proliferation proteins (cyclin D1, 
Kiel-antigen 67 (Ki-67)), apoptosis suppressor proteins 
(Bcl-2 and B-cell lymphoma extra-large (Bcl-xL)), and pro-
teins responsible for metastasis (MMPs, COX-2, CXCR4) 
as well as angiogenesis (vascular endothelial growth factor 
(VEGF)) are promoted by NF-κB [194]. Similarly, IL-6/
JAK/STAT3 signaling pathway potently activates inflam-
matory response via tumor-infiltrating immune cells in the 

tumor immune microenvironment in CRC. Moreover, IL-6/
JAK/STAT3 signaling up-regulates downstream target genes 
with anti-apoptotic and proliferative effects, promotes plas-
ticity, invasion, and metastasis of cancer cells and angiogen-
esis, and induces cancer resistance [195, 196]. The COX-2/
PGE2 signaling has been closely associated with all stages of 
colorectal carcinogenesis. The role of COX-2 and its product 
PGE2 in the pathogenesis of CRC is based on the function of 
fibroblasts from the mesenchymal (stromal) layer, which are 
the main target of cytokines e.g. TNF-α and IL-1β. Fibro-
blasts from non-neoplastic colorectal tissue are an important 
source of COX-2 expression that is well-validated as one 
of the most important risk factors of CRC [197]. Finally, 
IL-23 receptors play a crucial role in chronic inflammatory 
diseases due to their function in the processes of differentia-
tion of Th17. IL-23 up-regulates PGE2 levels and Th17 cell 
function that include expression increase of inflammatory 
cytokines, such as IL-17A, IL-17F, IL-21, and IL-22. For 

Fig. 2   Generation of resistance in cancer cells and its recovery by 
co-treatment with resveratrol. Cancer cells become resistant to sev-
eral chemotherapeutic medications because of modifications in dif-
ferent regulatory pathways. Co-treatment with resveratrol and ongo-
ing chemotherapeutic agents transforms these biological changes by 
simultaneously affecting multiple signaling pathways, resulting in the 
chemosensitization of tumor cells to chemotherapy agents. Abbre-
viations: 5-LOX, 5-lipoxygenase; ALDH, aldehyde dehydrogenase; 
AP-1, activator protein 1; Bcl-2, B-cell lymphoma 2; Bcl-xL, B-cell 
lymphoma extra-large; bFGF, basic fibroblast growth factor; CSC, 
cancer stem cell; CD, cluster of differentiation; CDK, cyclin-depend-
ent kinase; cFLIP, cellular FLICE-inhibitory protein; cMyc, Cellular 
myelocytomatosis oncogene; COX, cyclooxygenase; CXCR, C-X-C 
chemokine receptor; ELAM, Endothelial Leukocyte Adhesion Mol-

ecule; EMT, epithelial-to-mesenchymal transition; ER, endoplasmic 
reticulum; FAK, focal adhesion kinase; HIF, hypoxia-inducible fac-
tor; IAP, inhibitor of apoptosis protein; ICAM, intercellular adhesion 
molecule; IFN, interferone; IL, interleukin; IPA, indolephenoxyaceta-
mide; Ki-67, Kiel-antigen 67; MDR, multidrug resistance; MMP, 
matrix metalloproteinase; NF-κB, nuclear factor kappa-light-chain-
enhancer of activated B-cells; PI-3K, phosphoinositide 3-kinase; 
PPAR-γ, Peroxisome proliferator-activated receptor gamma; Slug, 
SNAI2; snail homolog 2; STAT, signal transducer and activator of 
transcription; TME, tumor microenvironment; TNF, tumor necrosis 
factor; TRAF, TNF receptor-associated factor; uPA, urokinase-type 
plasminogen activator; VCAM, vascular cell adhesion molecule; 
VEGF, vascular endothelial growth factor
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these reasons, the IL-23/Th17 signaling is strongly included 
in the pathogenesis of colitis-associated CRC [198].

Chemopreventive phytochemicals such as resveratrol 
inhibit several pro-inflammatory-related activations of 
transcription factors, cytokines, chemokines, proteins, and 
enzymes [199–205]. Much evidence suggests that resvera-
trol is a multi-factorial bioactive phytochemical with numer-
ous beneficial preventive effects on subcellular biological 
pathways, especially anti-inflammatory effects by inhibit-
ing pro-inflammatory cytokines (IL-1β, TNF-α, and TNF-β), 
the pro-inflammatory transcription factor NF-κB and thus 
NF-κB-promoted end-proteins. A recent molecular docking 
study documented that resveratrol could be effective against 
CRC by targeting NF-κB signaling [206], and in this regard, 
our group described resveratrol’s NF-κB suppression by 
resveratrol associated with an anti-inflammatory mode of 

action in CRC [207]. Furthermore, a seven-day treatment 
with resveratrol (10mg/kg body weight) suppressed the dex-
tran sulfate sodium-induced inflammatory colon injury via 
down-regulation of NF-κB, STAT3, ERK, and iNOS expres-
sions in IRC mice [208]. Combinational application of res-
veratrol with 5-FU inhibited Akt/STAT3 signaling, which 
was associated with pro-apoptotic effects and increased anti-
telomerase activity in human CRC cells [209]. Using DLD1 
and HCT15 CRC cells, resveratrol inhibited cancer growth 
by targeting the Akt/STAT3 signaling pathway. These anti-
cancer effects of resveratrol correlated with pro-apoptotic 
effects and blockage of the G1 phase cell cycle in cancer 
cells [123]. In addition, the resveratrol treatment sensitized 
HT-29 and SW620 CRC cell lines to 5-FU (via increased 
oxidative stress) through the down-regulation of Akt and 
STAT3 signal proteins [210]. Another study showed the 

Table 1   Various subcellular 
signal-modulating networks 
in cancer and healthy cells as 
resveratrol targets

Abbreviations: Akt protein kinase B, AP-1 activator protein 1, HIF hypoxia-inducible factor, mTOR mam-
malian target of Rapamycin, NF-κB nuclear factor kappa-light-chain-enhancer of activated B-cells, PI-3K 
phosphoinositide 3-kinase, PPAR-γ Peroxisome proliferator-activated receptor gamma, RANKL receptor 
activator of NF-kappaB ligand, RUNX2 Runt-related transcription factor 2, SOX9 SRY-Box Transcription 
Factor 9, STAT3 signal transducer and activator of transcription 3, MAPK mitogen-activated protein kinase

Subcellular signaling / Mechanism References

Down-regulation of Transcription factor signaling pathway
 - NF-κB signaling pathway [91–102]
 - HIF-1α signaling pathway [93, 103–113]
 - MAPK signaling pathway [114–119]
 - AP-1 signaling pathway [120, 121]
 - STAT3 signaling pathway [122–124]
 - β-Catenin signaling pathway [125–127]
 - Cell cycle signaling pathway [128, 129]
 - Growth factor signaling pathway [92, 130, 131]
 - Mitochondrial signaling pathway [132, 133]
 - Inflammation signaling pathway [134, 135]
 - Oxidative signaling pathway [136, 137]
 - Mutagenesis signaling pathway [138, 139]
 - Angiogenesis signaling pathway [140]
 - Plasticity/Migration signaling pathway [141–145]
 - Estrogen signaling pathway [146, 147]
 - RANKL signaling pathway [148–152]
 - Apoptosis signaling pathway [153–159]

Up-regulation of Transcription factors signaling pathway
 - Sox9 signaling pathway [154, 155, 160–162]
 - Scleraxis signaling pathway [163]
 - PPAR-γ/RUNX2 signaling pathway [164–170]
 - PI3K/Akt/mTOR signaling pathway [171–173]
 - p53 signaling pathway [174, 175]
 - Autophagy signaling pathway [176, 177]
 - Apoptosis signaling pathway [178, 179]
 - Estrogen signaling pathway [26–30]
 - Maintenance of the cellular signaling pathway [180–184]
 - Immunomodulatory signaling pathway [36–39]
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inhibitory effect of resveratrol on the COX-2/PGE2 signal-
ing pathway (decreased both miRNA and protein levels) and 
consequent anti-cancer efficacy in HCT-116 human CRC 
cell lines [211]. A similar result was found in a Serra et al. 
study describing the inhibition of COX-2/PGE2 signaling by 
resveratrol (also isoenzymes of NO synthase (iNOS) expres-
sion) in HT-29 colon epithelial cells [212]. The combination 
of resveratrol and ginkgetin synergistically attenuated the 
5-FU-induced inflammation in HT-29 colon cancer xeno-
graft nude mice through decreased expressions of COX-2 
and inflammatory cytokines [213]. A micro-immunotherapy 
sequential medicine including resveratrol showed significant 
immunomodulatory effects on human macrophages via sev-
eral cytokine-induced signaling pathways (including IL-23) 
and consequent tumor-suppressive efficacy using in vitro 2D 
and 3D spheroid models and animal xenograft colon carci-
noma experimental approach [214]. Furthermore, the phy-
topharmaceutical possesses potential anti-cancer functions, 
such as CRC cell survival reduction, activation of apoptosis 
(caspase-3), inhibition of invasion, and preventing of EMT-
plasticity in the CRC tumor microenvironment (TME) in 
vitro and in vivo (Table 2) [215–234].

An intense functional collaboration between tumor cells 
and immune cells is known to exist in the TME, which is 
essential for the further growth and progressive spread of 
tumors. Therefore, it is also important that the interaction 
between both systems is altered in favor of anti-tumor immu-
nity [235]. T-lymphocytes (CD4+), which are among the 
most important immune cells of the entire defense system, 
have the ability to differentiate into other T-lymphocytes 
such as CD8+ and regulatory T-cells (Tregs) in TME in a 
variable and cytokine-dependent manner, making this inter-
action a critical factor in slowing tumor growth and provid-
ing a good prognosis for patients [236, 237]. Interestingly, 
resveratrol has been shown to modulate T-cells (CD4+) by 
excreting interferon (IFN)-γ and thereby up-regulating its 
biotarget Sirt-1 in CD4+ T-cells [238]. Moreover, these 
tumor-specific cytotoxic cells (CD8+ T-cells) can attack 
cancer cells through apoptosis-specific factors (IFN-γ, IL-4, 
and TNF-α) and mechanisms (perforation of the membrane) 
and initiate active suicide of tumor cells [239], promoted 
by resveratrol by participating in anti-tumor immunity, as 
reported by Choi and colleagues [240].

As previously reported, resveratrol suppresses HDACs, 
which correlates with the formation of various anti-inflam-
matory lymphocytes and Treg cells in the gut. In addition, 
a study in The Cancer Genome Atlas (TCGA) reported that 
an increase in the activity of the Treg-specific transcription 
factor FoxP3 or the anti-inflammatory IL-10 contributes to 
improved survival in patients with CRC. This suggests that 
changes in the gut microbiome may lead to an anti-inflam-
matory T-cell response that attenuates inflammation-related 
CRC [12, 216].

In addition, several investigations showed a significantly 
enhanced expression and stimulation of NO by iNOS in CRC 
cells, indicating an essential role of NO in tumorigenesis 
in the colon cells [241]. Interestingly, resveratrol decreases 
specific iNOS expression in CRC cells [242]. One of the 
most essential and primary mechanisms of action of resvera-
trol is its anti-inflammatory potential, the suppression of the 
p38-MAPK signaling pathway, which is involved in the pro-
duction of inflammatory mediators such as cytokines, COX-
2, p53, and iNOS [243] and thus is an important require-
ment for the prevention and inhibition of colitis and CRC 
(Table 2). For this reason, specific targeting and modulation 
of pro-inflammatory metabolic pathways, such as NF-κB 
have significant implications for preventing and eliminating 
serious diseases [193].

5 � Resveratrol acts as a chemosensitizer 
in CRC cells

5.1 � Difficulty of chemoresistance in CRC cells

Surgical intervention and chemotherapeutic drug admin-
istration remain the main treatment options for CRC 
patients. However, the decision to use one or more of these 
approaches in treating CRC subjects depends on the tumor’s 
location, the cancer stage at diagnosis, and the case-by-case 
characteristics of the patient [244]. The challenge often 
arises when a patient (a) shows inherent resistance to the 
drug due to intrinsic drug resistance capabilities of the can-
cer cell or (b) develops resistance to a chemotherapeutic 
drug through exposure to the drug, called acquired resistance 
[245]. Chemotherapeutic drug resistance leads to lower sen-
sitivity to the drug, compromised drug inefficacy, cancer cell 
plasticity, tumor relapse, poor prognosis, and higher mortal-
ity rates among CRC patients [246–248].

One or more non-cellular (such as limited vascular acces-
sibility and TME) and cellular (such as drug targets, levels 
and activity of detoxifying enzymes, levels, and activity 
drug uptake and extrusion transporters) factors play vital 
roles in CRC drug resistance [244]. Detailed discussions on 
the various mechanisms of chemotherapeutic drug resistance 
are beyond the scope of this current review article. Several 
articles have reported the multiple aspects and mechanisms 
of chemoresistance in CRC (illustrated in Fig. 3) and novel 
strategies to reverse resistance extensively and thoroughly 
[249–251].

The most widely used chemotherapeutic drugs for treat-
ing CRC include 5-FU, oxaliplatin, doxorubicin, cetuximab, 
irinotecan, and various combinations of the same. Drug resist-
ance has been reported against one or more of these drugs and 
is summarized in Table 3 [252–276]. In some instances, how-
ever, CRC resistance to drugs such as oxaliplatin enhanced the 
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sensitivity to tumor necrosis factor-related apoptosis-inducing 
ligand (TRAIL) via the up-regulation of death receptor 4 
and localization of lipid rafts [277]. Interestingly, a signifi-
cant reduction in viable circulating tumor cells (CTCs) was 
observed in metastatic CRC patients treated with TRAIL 
liposomes [277].

5.2 � Chemoresistance through tumor cell plasticity 
in CRC cells

Although chemotherapy is the mainstay of cancer treatment, 
the lack of efficacy of this treatment is a major concern. For 
many years, researchers believed that the failure of cancer 
treatments might be due to intrinsic genomic mechanisms, 
such as the development of mutations in the drug target that 
prevent its binding [144, 278]. Nevertheless, the primary 
cause of the ineffectiveness of chemotherapeutic agents is 
the acquisition of drug resistance by tumor cells through-
out treatment [279]. Therefore, it is vital to understand the 
mechanisms of drug resistance to develop more efficacious 
treatments that can reduce the risk of relapse. An important 
factor that is implicated in drug resistance is the plasticity of 
tumor cells [143]. Cellular plasticity, concerning tumorigen-
esis, refers to the capacity of terminally differentiated can-
cer cells to undergo drastic changes in their cell phenotypes 
in response to oncogenic drivers or external stimuli [145]. 
The different types of plastic behaviors that help tumor cells 
acquire drug resistance are EMT, otherwise called epithelial-
mesenchymal-plasticity, attaining properties of cancer stem 
cells (CSCs), and transdifferentiation into other cell types 
[143, 144]. A deeper insight into the molecular mechanisms 
underlying CRC drug resistance has revealed a convincing 
link between these tumor cell plasticity hallmarks and CRC 
progression [280, 281].

EMT is a developmental process during embryogenesis, 
tissue remodeling, and wound healing that allows epithelial 
cells to attain mesenchymal phenotype to enable its motility 
and invasiveness [282–284]. However, molecular pathways 
comparable to development have been observed in cancer 
cells leading to EMT-plasticity [284]. This transition occurs 
through transcriptional repression of E-cadherin (cell adhe-
sion molecule) by Snail, Slug, zeb 1/2, smad interacting pro-
tein 1 (SIP1) or Twist1, and elevated expression of vimentin 
and N-cadherin, through a complex network of signaling cas-
cade which facilitates collective cell migration and invasion. 
Cellular growth factors, including epidermal growth factor 
(EGF), hepatocyte growth factor (HGF), and transforming 
growth factor beta (TGF-β), are potent stimulators of EMT, 
which upon binding to their corresponding receptors, initi-
ate signaling pathways including Notch, β-catenin/Wnt and 
PI3K/Erk signaling [284]. Further research has demonstrated 
the link between several EMT markers, apoptosis evasion, 
and enhanced cancer cell survival [285, 286]. This correlation Ta
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Fig. 3   The different mechanisms of chemoresistance in CRC (Figure 
and Figure legend adapted from Samuel SM, et al., 2020) [245]. The 
mechanisms of cancer cell plasticity in therapeutic resistance mainly 
include; (1) the presence and influence of cancer stem cells (CSCs) 
that can initiate and re-populate tumors, (2) epithelial–to-mesenchy-
mal transition (EMT), (3) tumor microenvironment (characterized by 
hypoxia, inflammation, autophagy, and presence of cancer-associated 
fibroblasts, immune cells such as tumor-associated macrophages, and 
tumor endothelial cells), (4) active DNA damage repair mechanisms, 
(5) altered/adaptive/aberrant metabolism (characterized by the War-
burg effect, altered amino acid/protein/lipid and nucleotide metabo-
lism, utilization of glutamine, and isoforms of metabolic enzymes 

that support cancer initiation, progression, and resistance to therapy), 
(6) variations in drug uptake and active drug extrusion systems (ATP 
binding cassette; ABC/multidrug transporters), (7) activation of onco-
genic, pro-survival and anti-apoptotic signaling pathways (PI3K, 
phosphatidylinositol-3-kinase; Akt, protein kinase B; mTOR, mam-
malian target of rapamycin; MAPK, mitogen activated protein kinase; 
NF-κB, nuclear factor kappa-light-chain-enhancer of activated 
B-cells; Wnt/β-catenin; JAK, janus kinase; STAT3, signal transducer 
and activator of transcription 3; HIF-1, hypoxia inducible factor 1 
pathways), and (8) active drug detoxification and target alteration sys-
tems. Created with BioRender.com

has stimulated interest among researchers to investigate the 
connection of these EMT markers with resistance to anti-
neoplastic treatment modalities. Apart from initiating tumor 
and inducing metastasis, EMT also confers resistance to 
cancer treatment interventions, including radiotherapy 
[285, 287, 288]. For instance, Liu and co-workers demon-
strated that vincristine-resistant colon adenocarcinoma cells 
showed increased expression of Twist1 and thus exhibited 
elevated migratory and invasive ability. More importantly, 
this study showed that up-regulation of Twist1 markedly 
increased chemoresistance to vincristine by up-regulating 
the ATP-binding cassette transporters, ABCB1 and ABCC1 
[288]. Nonetheless, the mechanism of how EMT-plasticity 
contributes to drug resistance is not yet fully understood. 
However, it is believed that the cells become more resistant to 
pro-apoptotic signals and excessive drug efflux by membrane 
transporters, leading to cell survival despite treatment [289].

An interesting study identified circulating tumor micro-
emboli (CTMs) and three subpopulations of CTCs, namely, 
E-CTCs, M-CTCs, and E/M-CTCs based on the expres-
sion of epithelial cell adhesion molecule (EpCAM), the 
mesenchymal cell marker vimentin, or both EpCAM and 
vimentin respectively from blood samples of 126 CRC 

patients. However, the results showed that M-CTCs and 
CTMs were highly detected in patients with lymph node 
metastasis of CRC [290]. Another investigation explored 
the active involvement of reactive stroma in the modulation 
of EMT-plasticity in CRC and TNF-α produced by mac-
rophages accelerated the process of TGF-β-induced EMT. 
This study also demonstrated an interplay between TNF-α 
and TGF-β signaling in the morphological conversion of 
organized colon epithelial cells to scattered mesenchymal 
cells. Besides, TNF-α stimulated Erk activation, which 
causes increased production of this cytokine by tumor cells. 
Hence, the role of stroma in the EMT-plasticity of CRC was 
further elucidated [291].

Moreover, Bates and colleagues revealed a significant role 
of the integrin αvβ6 (a receptor for fibronectin and tenascin) 
in CRC progression and metastasis. Their results showed 
that αvβ6 activated autocrine TGF-β, which causes EMT-
plasticity. Clinical analysis of 488 CRC patient samples 
exhibited a reduction in survival of patients with increased 
expression of αvβ6, compared to the patients with low or 
no β6 expression and suggested that β6 expression could 
be a potential prognostic variable for CRC [292]. Another 
study reported that caspase-3 gene knockout caused reduced 
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expression of EMT markers such as N-cadherin, Snail, Slug, 
and zeb1 and elevated E-cadherin expression and chemosen-
sitivity compared to parental CRC cells. Furthermore, the 
critical role of caspase-3 in cancer cell invasion and metas-
tasis was indicated [293]. Additionally, another examination 
demonstrated pre-mRNA processing factor (PRP4) as an 
essential factor in inducing EMT-plasticity and drug resist-
ance in CRC cells by directly binding to p53 and causing 
its phosphorylation and up-regulating HIF-1α and miR-210, 
which activates p53 [294].

Focusing chronic oxaliplatin treatment of CRC cells, this 
therapy resulted in phenotypic changes associated with cel-
lular plasticity, such as loss of polarity, spindle shape, and 
increase in mobility of these cells along with a decrease in 
E-cadherin expression and an increase in the expression of 
Snail and vimentin. This study showed that chronic oxali-
platin resistance in CRC cells leads them to switch to an 
invasive phenotype and initiates EMT [295]. Long-term 
exposure of CRC cells to 5-FU enabled these cells to over-
come S-phase arrest, evade apoptosis and activate autophagy 
which is evident by the up-regulation of LC3B, vimentin, 
Twist1, Slug, and zeb2 mRNA levels and down-regulation 
of E-cadherin and Claudin-3 [296]. These results suggested 
that CRC cells respond to chemotherapy-induced cell stress 
by undergoing EMT-plasticity as an adaptive mechanism, 
leading to cell survival, plasticity, and evasion of apoptosis.

Another critical determinant of plasticity in CRC cells 
is CSC. CSCs are a subset of cells found in tumors that can 
self-renew, differentiate, and produce all cancer cell types. 
They are responsible for tumor initiation, maintenance, and 
recurrence [297]. CSCs are isolated and enriched from dif-
ferent tumors by identifying the CRC-specific expression 
of cell surface markers, including CD44, CD133, CD166, 
Lgr5, ALDH1, and EpCAM [298]. Further, they initiate 
aberrant expression of several cellular signaling pathways 
to maintain their stemness and self-replenishing properties. 
For instance, Wnt/β-catenin, Notch, TGF-β, and Hedgehog 
pathways are well implicated in colon cancer CSC develop-
ment [299–303].

Colon CSCs are the initiators of tumor cell prolifera-
tion, invasion, and metastasis to distinct locations. They are 
attributed to showing high resistance to chemotherapy and 
are a fundamental reason for tumor relapse or recurrence 
[304]. For example, many studies have reported that colon 
CSCs exhibit increased expression of anti-apoptotic pro-
teins and apoptotic inhibitors, as well as ABC transporter 
proteins that expel drugs out of cancer cells [305, 306]. 
Moreover, an interesting study revealed that most circu-
lating or migratory CRC cells are Lgr5- and this plastic 
behavior has an immense capacity for distant metastasis 
[307]. Additionally known is that the CD133+ CRC cell 
population resists anti-angiogenesis therapy, and this resist-
ance occurs through an anti-apoptotic pathway including 

PP2A, p38MAPK, MAPKAPK2, and Hsp27 [308]. In sum, 
understanding the biology of CSCs is vital to develop novel 
therapies that can effectively target this hallmark of tumor 
plasticity.

Transdifferentiation (lineage plasticity), which refers to 
the ability of tumor cells and CSCs to switch their pheno-
typic characteristics into a different cell type, represents 
a different type of cell plasticity. Accumulating evidence 
has demonstrated that tumor cells vulnerable to therapeutic 
drugs transdifferentiate into other specialized cell lineages 
that are not drug targets [144, 309, 310]. Overall, transdif-
ferentiation is a complex, poorly understood process but is 
believed to be an essential factor in developing drug resist-
ance to cancer. Therefore, research is needed to understand 
the differentiation mechanism and its impact on drug resist-
ance in cancer.

5.3 � Resveratrol’s chemosensitizing effect 
by modulation of tumor cell plasticity in CRC 
cells

Data from different studies have shown that resveratrol sen-
sitizes CRC cells toward chemotherapeutic drugs by modu-
lating their plasticity via many signaling pathways and tran-
scription factors. For example, a fascinating study revealed 
resveratrol’s suppression of CRC cell invasion and migra-
tion by inhibiting the TGF-β1/Smads signaling pathway 
and EMT. Resveratrol elevated the levels of E-cadherin but 
down-regulated EMT-inducing transcription factors, Snail 
and vimentin [196].

Even more interesting, a co-treatment with 5-FU and res-
veratrol in HCT-116 cells significantly lowered the levels 
of EMT regulatory factors such as Slug and vimentin and 
the stemness of the treated cells compared to untreated cells 
[209]. In accordance therewith, Buhrmann et al. reported that 
resveratrol treatment chemosensitized HCT-116 CRC cells to 
5-FU and induced apoptosis while suppressing NF-κB activa-
tion, EMT-plasticity (decreased slug and vimentin, increased 
E-cadherin) and CSC formation (decreased CD133, CD44, 
and ALDH1) via the modulation of the TNF-β signaling 
pathway [80]. Resveratrol (5μM) treatment in 5-FU-resistant 
CRC cell lines HCT-116R and SW480R and their parental 
forms (HCT-116 and SW480) blocked cell proliferation and 
synergistically inhibited 5-FU (0.01-1nM) mediated effects 
on cell invasion [79]. Resveratrol increased cell-cell contact 
via increased desmosomes, gap- and tight junctions, and 
increased the expression of E-cadherin cell adhesion protein 
in both the parental and 5-FU-resistant forms of the HCT-
116 CRC cell line [79]. Interestingly, a significant decrease 
in the vimentin and Slug (plasticity-associated factors) and 
the down-regulation of the activation and nuclear transloca-
tion of NF-κB (abolishing NF-κB driven gene expression of 
MMP9 and caspase-3) correlated to the ability of resveratrol 
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to attenuate drug resistance in the 5-FU-resistant CRC cells 
[79]. Beyond that, the role of oxyresveratrol, a natural deriva-
tive of resveratrol, in inhibiting EMT-plasticity and metasta-
sis of CRC cells has also been proven [311].

Similarly, many studies focus on targeting aberrant sign-
aling pathways leading to the proliferation and enrichment 
of colorectal CSCs. It is well established that mutations in 
the Wnt/β-catenin signaling pathway, which take place in the 
stem cells of the intestinal crypt, are crucial for the contin-
ued proliferation of cancerous cells and stemness activity in 
colorectal stem cells [312]. For instance, an intriguing study 
demonstrated that resveratrol potentiated the anti-cancer 
effects of grape seed extract against colorectal CSCs in a 
rodent model by suppressing the Wnt/β-catenin pathway. 
Besides, the compound also induced mitochondrial apopto-
sis of colon CSCs by up-regulating the Bax/Bcl-2 ratio, p53, 
and cleaved PARP [313].

Transdifferentiation of CSCs to endothelial cells is an 
essential event in vascular bed formation for angiogenesis 
and metastasis of tumor cells [314]. Pouyafar and colleagues 
reported that resveratrol, in combination with sulindac (a 
Wnt-3a inhibitor), reduced the clonogenicity potential of 
colon CSCs and prevented the differentiation of CSCs to 
endothelial cells. Moreover, resveratrol treatment reduced 
angiogenesis factor YKL-40 and autophagy-related genes 
in CRC cells [315].

The pathogenesis of CRC is a complex process that can 
be distinguished on the basis of three different phenotypes: 
Chromosomal instability (CIN), Microsatellite instability 
(MSI), and CpG island methylator (CIMP). Indeed, intra-
cellular biotargets of resveratrol, including a protein with 
high binding affinity, quinone reductase 2 (QR2), were found 
to be significantly overexpressed in CRC defined by CIN, 
particularly in cells harboring a positive KRAS (Kirsten 
rat sarcoma viral oncogene homolog) mutation, and by the 
MSI but not the CIMP phenotype. Analysis of data from 
Oncomine showed very good agreement between mRNA 
expression of QR2 and specific CRC causes [316]. In addi-
tion, several genes involved in the regulation of apoptosis, 
such as PMAIP1, BID, ZMAT3, CASP3, CASP7, and FAS, 
have been shown to be novel targets for gene regulatory 
treatment with resveratrol [317].

Conclusively, it is evident that resveratrol can target 
different tumor cell plasticity markers, provides a novel 
approach for treating CRC, and can potentially be a potent 
therapeutic agent.

5.4 � Resveratrol’s further chemosensitizing effects 
on CRC cells

Several articles have extensively documented the synergistic 
effects of resveratrol and its ability to sensitize drug-resistant 

cancers, including CRC, to therapeutic intervention [318]. 
The chemosensitizing effects of this phytopharmaceutical in 
CRC are summarized in Table 4 [319–324].

5-FU is one of the most frequently chemotherapeutic 
drugs in the treatment of CRC, either as a monotherapy or 
in the drug combinations such as FOLFIRI (Folinic acid 
+ Fluorouracil l + Irinotecan hydrochloride) and FOLFOX 
(Folinic acid + Fluorouracil + Oxaliplatin) [325]. Due 
to several mechanisms, drug resistance to 5-FU has been 
observed in many CRC patients [325]. Resveratrol seems 
to be able to re-sensitize the 5-FU-resistant CRC cells, ren-
dering them susceptible to 5-FU intervention. Inhibition of 
the Akt signaling pathway, induction of S-phase cell-cycle 
arrest, inhibition of cellular proliferation and migration, 
and activation of programmed cell death occurred when 
the HCT-116 CRC cells were treated with a combination of 
5-FU (10μM) and resveratrol (25μM) [209]. Furthermore, 
the combination of 5-FU and resveratrol inactivated STAT3 
and blocked STAT3 binding to its hTERT promoter site, 
thereby blocking telomerase activity in HCT-116 cells [209]. 
Another study, using HT-29 and SW620 CRC cell lines, 
reported that resveratrol (100μM) exposure synergistically 
potentiated the 5-FU (10μM) treatment-mediated inhibition 
of cellular growth via the induction of mitochondrial oxida-
tive stress and created an imbalance in the intracellular anti-
oxidant enzymes [210]. The combination (resveratrol and 
5-FU) treatment-induced increase in cellular oxidative stress 
was attributed to the significant inhibition of oncogenic Akt 
and STAT3 in the treated cells [210].

The epidermal growth factor receptor (EGFR), frequently 
overexpressed in malignant cells, is a crucial contributor to 
cancer proliferation, angiogenesis, inhibition of apoptosis, 
and metastasis [320]. Hence, the EGFR pathway can be tar-
geted to curb tumor growth. Cetuximab, a monoclonal anti-
body, targets EGFR, hinders endogenous ligand binding to 
EGFR, and thus suppresses the phosphorylation and activa-
tion of EGFR. Subsequently, disruption in the EGFR-related 
downstream pathways, such as the Ras-Raf-MAPK and 
PI3K-Akt pathways, have also been reported [320]. How-
ever, mutations caused by NRAS, KRAS, BRAF, PI3KCA, 
and Akt activation in cancers may confer the cancer cells’ 
therapeutic resistance to cetuximab and render it a less 
effective anti-cancer agent [320, 326]. Cancer cells develop 
resistance to cetuximab via the activation of Akt [320]. 
Wang et al. showed that resveratrol (5μg/ml) treatment in 
HCT-116 and CT-26 (murine colon adenocarcinoma) cells 
abolished the resistance to cetuximab and sensitized the cells 
to cetuximab (10μg/ml) exposure [320]. Resveratrol treat-
ment in cetuximab-exposed cells up-regulated the expression 
and phosphorylation of connexin 43 with a resultant increase 
in cell-cell contact via gap junction function. It inhibited the 
activation of Akt and NF-κB which is related to the increase 
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in cetuximab treatment associated with the suppression of 
the growth of the cancer cells [320].

Resveratrol (50–100μM) potentiated the oxaliplatin 
(1μM) mediated inhibition of Caco-2 CRC cell growth 
[323]. This growth inhibitory effect of the combination of 
resveratrol and oxaliplatin also increased the apoptotic death 
of Caco-2 cells [323]. Furthermore, the conditioned media 
from resveratrol and oxaliplatin-treated Caco-2 cells, when 
used to grow human-monocyte-derived macrophages, acti-
vated the tumoricidal potential of the macrophages while 
preventing their immunosuppressive characteristics [323].

The efficacy of a chemotherapeutic intervention and/
or resistance to the drug quite often depends on levels of 
expression of drug extrusion membrane transporters (such 

as P-gp, MDR1, and BCRP) and the levels and activity of 
intracellular drug-metabolizing enzymes (such as CYP3A4 
and GST) [321]. In a doxorubicin-resistant CRC cell line, 
Caco-2, increasing concentrations of resveratrol (1–500μM) 
inhibited the drug extrusion capabilities of P-gp and MDR1 
proteins in a concentration-dependent manner [321]. The 
resveratrol (20μM) exposed Caco-2 cells were susceptible to 
doxorubicin treatment compared to non-resveratrol exposed 
doxorubicin treated cells [321]. Resveratrol also inhibited 
the activity of drug-metabolizing enzymes CYP3A4 and 
GST in these cells and increased the caspases-3, caspases-8, 
and caspases-9, indicating activation of apoptotic cell death 
in the treated cells [321]. The mRNA levels of P-gp, MDR1, 
BCRP, CYP3A4, and GST were significantly reduced upon 

Table 4   Effect of resveratrol in a combinatory therapeutic approach

The upward arrow (↑) indicates an activation/increase/up-regulation and the downward arrow (↓) indicates a decrease/down-regulation/sup-
pression. R* indicates resistant cell line. Abbreviations: Akt protein kinase B, ALDH1 aldehyde dehydrogenase 1, CSC cancer stem cell, Cx43 
connexin 43, CXCR4 C-X-C motif chemokine receptor 4, EMT epithelial-to-mesenchymal transition, hTERT telomerase reverse transcriptase 
(human), MMP9 matrix metalloproteinase 9, NF-κB nuclear factor kappa-light-chain-enhancer of activated B-cells, STAT3 signal transducer and 
activator of transcription 3, TME tumor microenvironment, TNFβ tumor necrosis factor β

Drug CRC cell line/cancer model Chemosensitizing/resensitizing effect of resvera-
trol in a combinatory therapeutic approach

References

5-Fluorouracil (5-FU) DLD1 and HCT-116 cells ↓Akt signaling pathway; ↓Cellular prolifera-
tion and migration; ↑S-phase cell-cycle arrest; 
↑Apoptosis; ↓Slug and vimentin (EMT signaling 
factors); ↓Stemness; ↓STAT3 binding to hTERT 
promoter site, ↓Plasticity

[209]

HT-29 and SW620 cells ↑Mitochondrial oxidative stress; ↓Akt; ↓STAT3 [210]
HCT-116 and HCT-116R* cells ↑Apoptosis (caspase-3); ↓Vimentin and slug, 

while ↑E-cadherin (EMT factors); ↓CSC pheno-
type (CD133, CD44, ALDH1); ↓TNFβ induced 
activation of NF-κB, MMP9, CXCR4

[80]

HCT-116, HCT-116R*; SW480 and SW480R* 
cells

↓Cell proliferation; ↓Cell invasion; ↑Cell-cell con-
tact (↑ desmosomes, gap- and tight-junctions); 
↑E-cadherin; ↓Vimentin and slug; ↓NF-κB acti-
vation and nuclear translocation; ↓NF-κB driven 
genes (MMP9, caspase-3)

[79]

HCT-116 and HCT-116R* cells ↓β1-integrin/HIF1α axis B activation; ↓TME 
promoted viability; ↓Proliferation; ↓Colony 
formation; ↓Invasion tendency; ↓EMT; ↓NF-κB; 
↓VEGF; ↓HIF1α; ↓Stem cell markers (CD44, 
CD133, ALDH1); ↑Caspase-3; ↑Apoptosis

[319]

Cetuximab HCT-116 and CT-26 (mouse cell line) cells ↓Growth; ↑Cx43 expression and phosphoryla-
tion; ↑Gap junction function; ↓Akt; ↓NF-κB, 
↓Plasticity

[320]

Doxorubicin (Adriamycin) Caco-2 cells ↓P-gp and MDR1; ↓Drug-efflux/extrusion from 
cells; ↓ CYP3A4 and GST (drug metabolizing 
enzymes); ↑Caspases-3, -8 and -9; ↑Apoptosis

[321]

HT-29 and HCT-116 cells ↓IC50 of doxorubicin; ↑Bax; ↑Apoptosis; ↑S-phase 
cell-cycle arrest; ↓P-gp, ↓Plasticity

[322]

Oxaliplatin Caco-2 cells ↓Cell proliferation; ↓Growth; ↓Survivin; ↑PARP 
cleavage; ↑Caspase-3 activity; ↑Apoptosis, 
↓Plasticity

[323]

Drug CRC cell line/cancer model Anti-chemosensitizing effect of resveratrol in a 
combinatory therapeutic approach

References

Oxaliplatin HCT-116 cells ↑Survivin; ↓Apoptosis, ↓Plasticity [324]
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resveratrol treatment in the drug-resistant Caco-2 cells [321]. 
In HCT-116 and HT-29 CRC cells, a combination of doxo-
rubicin and resveratrol significantly reduced the IC50 value 
of the doxorubicin in the cells [322]. The expression of the 
pro-apoptotic Bax gene and apoptosis significantly increased 
when the doxorubicin-exposed HCT-116 cells were treated 
with resveratrol while inducing S-phase arrest in these cells 
[322]. Resveratrol seems to sensitize the HCT-116 cells to 
the anti-cancer effects of doxorubicin by blocking the P-gp 
drug efflux mechanism in these cells [322].

It is, however, noteworthy that certain studies reported 
contradicting data; that resveratrol (30 or 50μM) reverses 
the inhibitory effect of oxaliplatin (2 or 5μM) on the mRNA 
expression and protein levels of anti-apoptotic survivin in 
HCT-116 CRC cells and thereby abolishes the cytotoxic 
effects of oxaliplatin [324].

6 � Insights of clinical resveratrol application 
in CRC patients

Based on the promising preclinical results, resveratrol’s 
modulatory impact on CRC was clinically tested. Despite 
the advanced stage of the tumor and the associated vulner-
ability of CRC patients, resveratrol supplementation was 
well tolerated in all studies to date (Table 5). Regardless of 
the dosage form, there was no toxicity or gastrointestinal 
problems [35, 327, 328].

Interestingly, a relatively low dose of the phytophar-
maceutical (tablets containing 20mg or 80mg resveratrol) 
significantly reduced the expression of the Wnt gene in 
the mucosa of the colon cells [328]. Moreover, as the Wnt 
pathway represents a key signaling for CRC initiation [328], 
this finding could be highly relevant to break the cancer-
ous cycle. This approach is supported by another clinical 
trial where CRC patients received 0.5g or 1g resveratrol as 
caplets for 8 days [35]. Here, treatment with the natural poly-
phenol inhibited the detection of cell proliferation parameter 
Ki-67 [35]. Furthermore, the detection of resveratrol uptake 
in blood and liver affected by metastases succeeded [327]. In 
malignant hepatic tissue, the phytopharmaceutical induced 
apoptosis in metastasized CRC cells [327].

Apart from metastasis, chemoresistance is also a com-
mon issue in the advanced stage of the disease, so it is cur-
rently being investigated with great interest whether resvera-
trol increases the susceptibility of CRC patients to classic 
chemotherapeutic agents.

Data from ClincalTrials.gov (https://clinicaltrials.gov/) 
showed a list of nineteen (search performed on 28 March 
2023; using keywords ‘cancer’ and ‘resveratrol’) resvera-
trol administration-based clinical trials in different cancers. 
Out of the nineteen trials, there were only three clinical tri-
als pertaining specifically to colon/colorectal cancer and 

resveratrol intervention’s therapeutic effect/efficacy in these 
patients (Table 5). Interestingly none of the studies aimed at 
studying the ability of resveratrol to overcome chemoresist-
ance. Given the abundance of in vitro/in vivo data pointing 
towards the therapeutic efficacy of resveratrol and its abil-
ity to re-sensitize cancers to a drug intervention in treat-
ing CRC, more clinical trials are warranted to determine 
whether the therapeutic chemosensitizing and anti-plasticity 
effects of resveratrol can be translated to clinical use.

7 � Outlook and future perspectives

In treating CRC, chemotherapy represents one of the most 
important and best therapeutic options by present-day stand-
ards. This kind of therapy is highly specialized, mono-tar-
geted, and expensive. In recent years, conventional drug 
strategy has achieved relatively low efficacy with many 
severe side effects [329], mainly due to the development of 
chemoresistance, which represents a significant obstacle to 
their use [330].

This resistance of cancer cells is based on different 
molecular pathways that give them key advantages in resist-
ing the applied chemotherapeutic drugs, such as impairment 
of mitochondria and associated disruption of the respiratory 
chain. Also, an impairment of the endoplasmic reticulum 
(ER) and associated disruption of ER functions, impair-
ment of glucose metabolism and related activation of War-
burg action, impairment of lysosomal function, and associ-
ated residues of chemotherapeutic drugs [331–334] are of 
significance.

In this regard, it is known that fundamental causes con-
tributing to the emergence of resistance include poorer drug 
accessibility, complete signaling alteration in CRC cells, and 
activation of pathways that promote metastasis formation 
[207, 329, 330]. Relating to that, a sensitization of tumor 
cells to conventional drugs seems to be a possible way to 
overcome the resistance of CRC cells. For this purpose, cer-
tain natural plant-based compounds could be administered 
to optimize the effect of chemotherapeutics by modulating 
different resistance mechanisms [335, 336].

The secondary plant compound resveratrol enhances the 
effect of common chemotherapeutic agents such as 5-FU or 
oxaliplatin in CRC cell treatment by simultaneously influ-
encing numerous cellular signal transduction processes [79, 
337]. Unlike conventional drugs, phytopharmaceuticals use 
a poly-targeting strategy, thus preventing the development 
of acquired resistance and blocking intrinsic drug resist-
ance mechanisms in some instances. This article, there-
fore, discusses the use of resveratrol as an anti-plasticity 
agent based on its ability to target and regulate multiple 
pro-oncogenic and tumor-suppressing mechanisms (EMT, 
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CSC) and circumvent and overcome the chemoresistance 
in CRC. The natural polyphenol is proposed as an alter-
native co-therapeutic agent in combination with standard 
chemotherapeutic interventions, and its application would 
be a novel, innovative way.

Considered as a whole, the use of active plant ingredi-
ents in oncology has many advantages. They represent a 
unique, virtually inexhaustible source in nature with their 
mechanisms of action based on a millennium of experience, 
development, and adaptation. Their function as chemosensi-
tizers is mainly performed by enhancing the effects of con-
ventional drugs in cancer cells, inhibiting tumor-promoting 
inflammation, repressing cancer cell plasticity triggering 
their cell death by activating pro-apoptotic targets and inhib-
iting anti-apoptotic targets, and causing DNA damage. Non-
physiologic inflammation represents a critical initiator and 
promotor of carcinogenesis and thus can substantially affect 
the therapy in cancer patients. Resveratrol demonstrates sig-
nificant anti-inflammatory characteristics, which have the 
potential to enhance the therapeutic outcome and prevent the 
resistance of CRC cells to chemotherapy drugs in oncology 
practice. Indeed, resveratrol is a chemosensitizing agent in 
CRC cells that reduces inflammation response via decreased 
levels of phosphorylated NF-κB, JAK/STAT3, MMPs, and 
COX-2 signaling, and pro-inflammatory cytokine levels [79, 
80, 209, 338]. All these effects can enhance the toxic proper-
ties of conventional anti-cancer drugs and create a kind of 
synergy with the standard chemotherapeutics, thus leading 
to anti-resistance mechanisms [64, 65].

Moreover, good tolerability in patients with the natural-
component material should be emphasized in this context 
[339]. A sometimes-cited criticism of the use of phytophar-
maceuticals, including resveratrol, is the low bioavailability 
in the human body. It is undisputed but known that continu-
ous oral supplementation can achieve the desired health-
promoting quantities [340]. Similarly, the realization of a 
piperine-coupled multiplication of resveratrol’s bioavail-
ability [341] could be enriching.

Overall, a majority of the work that has been done has 
shown the chemosensitization effects of herbal agents such 
as resveratrol. Still, preventive and clinical approaches 
are needed to establish whether the above combinations 
have synergistic effects during direct application on CRC 
patients. Based on the great need for complementary thera-
peutic strategies and the favorable availability of secondary 
plant polyphenols, this area of research will expand rap-
idly in the future to provide effective treatments for CRC 
chemoresistance.

8 � Conclusion

Based on comprehensive preclinical research, resvera-
trol exerts chemoprotective and chemosensitizing effects 
through anti-plasticity, anti-oxidant, anti-inflammatory, 
and pro-apoptotic modes of action. In addition to its anti-
cancer efficacy, resveratrol could work as a mitigating agent 
in chemotherapy-induced toxicities in normal cells/tissues.

Table 5   Proven anti-CRC effects of resveratrol in clinical trials

Abbreviations: CRC​ colorectal cancer, Ki-67 kiel-antigen 67, Wnt wingless-related integration site

# of CRC Patients Study phase Resveratrol application Resveratrol’s effects Signaling target Year of 
publica-
tion

Reference

9 1 5g SRT501 (micropar-
ticular, in sachets)/day, 
for 10–21 day

Resveratrol was well-tol-
erated and was detected 
in blood plasma as 
well as hepatic tissue 
affected by metas-
tases. It induced an 
up-regulation (39%) of 
apoptosis in malignant 
tissue.

Apoptosis, caspase-3 2011 [327]

20 1 0.5g or 1g (caplets)/day, 
for 8 days

Resveratrol was well-
tolerated and reduced 
(p=0.05) CRC cell 
proliferation.

Proliferation, Ki-67 2010 [35]

12 selected, 8 completed 1 20mg or 80mg (tablets)/
day, for 14 days

Resveratrol was well 
tolerated and inhibited 
significantly (p<0.03) 
the CRC initiation in 
normal colonic mucosa.

Initiation, Wnt signaling 
gene

2009 [328]
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In this article, we have shown that the polyphenol resvera-
trol could be used not only in the prevention of CRC but also 
as an anti-cancer agent (targeting multiple mechanisms) in 
conjunction with conventional chemotherapeutic agents to 
enhance their therapeutic effects and reduce chemoresistance 
effects through additive and synergistic effects.

Furthermore, we show here that the molecular targets of 
chemopreventive resveratrol are similar to those currently 
used for treating CRC, highlighting the importance of more 
clinical trials to validate its anti-cancer efficacy and reli-
ability in a clinical setting. Using resveratrol as a cancer 
chemoprotector or chemosensitizing agent combined with 
conventional chemotherapeutics in CRC patients needs 
further in-depth clinical evaluations to elucidate discrep-
ancies between the preclinical cancer research and clinical 
practice. These studies must (a) include precise analysis of 
pharmacokinetic parameters of resveratrol in humans; (b) 
find sufficient and safe dosing of resveratrol when used as 
a monotherapy and/or in combination with existing chemo-
therapeutics; (c) find the effective combinations of res-
veratrol with conventionally used chemotherapeutic drugs 
to re-sensitize the chemo-/radiotherapy-resistant cancers; 
(d) provide a detailed description of the cellular targets of 
resveratrol and its effect on specific problems of oncology 
such as disease relapse and therapy resistance; (e) provide an 
understanding on how specific individual characteristics of a 
cancer patient (which can vary from one patient to another) 
may affect the therapeutic efficacy, chemosensitizing poten-
tial and prognosis of resveratrol formulations among treated 
CRC patients; and (f) asses advanced drug formulations and 
improved drug deliver techniques, such as nanotechnology, 
to specifically target neoplastic cells/tissue and this avoid 
any possible off-target and side-effects of resveratrol when 
used as a monotherapy and/or in combination with existing 
chemotherapeutics.

Overall, this review summarizes, for the first time to our 
knowledge, the chemosensitization of tumor cells to chemo-
therapeutic agents by resveratrol from the perspective of cel-
lular plasticity, which is of enormous importance for cellular 
adaptations to the TME during cancer cell transformation 
and metastasis. It also provides a new impetus for further 
research into cancer epigenetics and resveratrol-mediated 
suppression of plasticity, which is a strong indication that 
resveratrol, an active phytochemical, will play an influential 
role in the prevention and treatment of CRC in the future.
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