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Abstract
Acute myeloid leukaemia (AML), chronic lymphocytic leukaemia (CLL), and multiple myeloma (MM) are age-related 
haematological malignancies with defined precursor states termed myelodysplastic syndrome (MDS), monoclonal B-cell 
lymphocytosis (MBL), and monoclonal gammopathy of undetermined significance (MGUS), respectively. While the progres-
sion from asymptomatic precursor states to malignancy is widely considered to be mediated by the accumulation of genetic 
mutations in neoplastic haematopoietic cell clones, recent studies suggest that intrinsic genetic changes, alone, may be insuf-
ficient to drive the progression to overt malignancy. Notably, studies suggest that extrinsic, microenvironmental changes in 
the bone marrow (BM) may also promote the transition from these precursor states to active disease. There is now enhanced 
focus on extrinsic, age-related changes in the BM microenvironment that accompany the development of AML, CLL, and 
MM. One of the most prominent changes associated with ageing is the accumulation of senescent mesenchymal stromal cells 
within tissues and organs. In comparison with proliferating cells, senescent cells display an altered profile of secreted factors 
(secretome), termed the senescence-associated-secretory phenotype (SASP), comprising proteases, inflammatory cytokines, 
and growth factors that may render the local microenvironment favourable for cancer growth. It is well established that BM 
mesenchymal stromal cells (BM-MSCs) are key regulators of haematopoietic stem cell maintenance and fate determination. 
Moreover, there is emerging evidence that BM-MSC senescence may contribute to age-related haematopoietic decline and 
cancer development. This review explores the association between BM-MSC senescence and the development of haemato-
logical malignancies, and the functional role of senescent BM-MSCs in the development of these cancers.
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1 Introduction

All cellular components of the blood arise from haematopoi-
etic stem cells (HSCs) via a process called haematopoiesis. 
HSCs, present within the bone marrow (BM), possess the 
capacity for self-renewal and multilineage differentiation 

ensuring a lifetime supply of HSCs and various mature 
blood cell types found within the peripheral blood and tis-
sues. Healthy haematopoiesis is polyclonal whereby it is 
maintained by a large pool of individual HSC clones with 
equal proliferative capacity in the absence of clonal domi-
nance. However, chronological ageing can result in cellular 
acquisition of genetic abnormalities over time [1], including 
specific somatic mutations within individual HSC clones. 
This can provide a certain clone with a proliferative advan-
tage over others, thereby driving disproportional clonal 
expansion, leading to clonal dominance and clonal haemat-
opoiesis of indeterminate potential (CHIP) [2] also known as 
age-related clonal haematopoiesis (ARCH) [3]. Next-gener-
ation sequencing studies have shown that somatic mutations 
in HSC clones, which predispose individuals to CHIP, are 
practically universal in healthy 50–70-year-old individu-
als. These mutated clones generally remain stable for many 
years, without the development of clinical consequences [3, 
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4]. Nevertheless, 0.5–1% of individuals with CHIP are at 
risk of malignant transformation to haematological cancer 
per year [3]. Most frequently, the accumulation of mutations 
in HSCs or downstream myeloid progeny leads to the devel-
opment of myelodysplastic syndromes (MDS), a precursor 
condition for acute myeloid leukaemia (AML) [5]. The 
accumulation of genetic abnormalities within other com-
mitted haematopoietic cells also leads to clonal expansion 
of mature haematopoietic cell subsets. This promotes the 
development of dyscrasias that are recognised as precursor 
conditions of specific age-related haematological cancers. 
For example, clonal expansion of B cells can lead to high-
count monoclonal B lymphocytosis (MBL; precursor for 
chronic lymphocytic leukaemia (CLL)) and clonal expan-
sion of post-germinal centre plasma cells (PCs) can lead 
to monoclonal gammopathy of undetermined significance 
(MGUS; precursor to multiple myeloma (MM)). Each of 
these premalignant conditions possess a low, but significant, 
risk of progression to malignancy, with high-count MBL 
progressing to CLL at the rate of 1–2% per year [6] and 
MGUS progressing to MM at the rate of 1% per year [7].

Although it is currently unclear what drives the emer-
gence of CHIP and progression of MDS, MBL, and MGUS 
to overt cancers, it is evident that ageing is a critical factor 
for the development of these conditions. While these pre-
malignant conditions are characterised by different initiat-
ing mutations and are genetically diverse, the age-related 
progression to malignancy and dependence on the BM 
microenvironment for progression to overt cancer is a uni-
fying feature. For example, the overall incidence of CHIP 
increases with age from 0.9% in individuals aged < 50 years 
to 10.4% in individuals > 65 years, which further increases 
to 16% in individuals aged > 75 years [8]. Specifically, CHIP 
with mutations in leukaemia driver genes is rarely observed 
in individuals under the age of 50 (0.7%) but is observed 
in 5.7% of individuals over the age of 65 years [8]. Like-
wise, 86% of MDS patients are diagnosed after the age of 
60 (median age at diagnosis: 76 years), with only 6% of 
cases diagnosed in individuals under 50 years of age [9]. 
Furthermore, the prevalence of MBL increases from 20% in 
individuals older than 60 years to 75% in individuals over 
90 years of age [10]. Similarly, 3–5% of the population over 
the age of 50 years have MGUS, which increases to 7.5% in 
individuals over the age of 85 years [11]. Notably, the risk 
of progression from MGUS to MM significantly increases 
with age, with a yearly risk of progression of 0.3% per year 
in MGUS patients less than 60 years of age and 1.1% per 
year in patients over 60 years [7]. Indeed, AML, CLL, and 
MM are prevalent with age, with a median diagnosis age of 
69, 72, and 69 years of age, respectively [12–14].

Computational modelling of the relationship between cell 
intrinsic and extrinsic processes that govern somatic evolution 
and fitness dynamics within the HSC pool has revealed that 

the elevated incidence of haematological cancers in later life 
may not be exclusively dependent on intrinsic mutations but 
rather on changes in the microenvironment [15]. In accord-
ance with this, a landmark whole exome sequencing study 
of paired patient plasma cell samples from MGUS and MM 
showed that malignant PC clones are already present at the 
MGUS stage, highlighting the role of the extrinsic BM micro-
environment in stochastic PC clone activation and progression 
to malignant states [16]. Furthermore, it has been shown that 
genetic abnormalities alone are insufficient in driving the pro-
liferation of haematopoietic malignant clones in the absence 
of a cancer-fostering microenvironment. For example, PCs 
from patients with stable MGUS have been shown to possess 
a similar capacity to form overt BM tumours as PCs from 
MM patients, following transplantation into humanised mice, 
highlighting the importance of a conducive microenvironment 
[17]. In addition, while primary human MDS cells engraft 
poorly in immunodeficient NOD scid gamma mice, engraft-
ment can be significantly improved by co-transplantation with 
MDS patient-derived mesenchymal stromal cells [18]. In line 
with this, BM replacement studies using a NHD13 murine 
model of MDS have shown that healthy wild-type BM can 
attenuate MDS transformation to leukaemia and improve 
overall haematopoietic function [19].

Together with the importance of the BM microenviron-
ment in the development of haematological cancers, the 
association between benign dyscrasia progression to overt 
haematological cancer and advancing biological age sug-
gests that age-related changes to the BM microenvironment 
play a critical role in this process. A hallmark of chronologi-
cal ageing is the accumulation of senescent cells in various 
tissues and organs, including the BM [20–22]. Notably, it is 
well documented that senescent stromal cells enhance the 
neoplastic properties of partially transformed cells and pro-
mote the outgrowth of malignant cells in the context of solid 
cancers [23–29]. In this review, we discuss the evidence that 
accumulation of senescent BM mesenchymal stromal cells 
(BM-MSCs) may promote the progression from premalig-
nant haematological dyscrasias to overt malignancies. For 
the purposes of this review, BM-MSCs collectively refer to 
mesenchymal stem cells that possess multilineage potential 
and characteristic cell surface markers [30] and mesenchy-
mal stromal cell cultures which can include fibroblasts and 
committed mesenchymal stem cell progeny.

2  The role of the BM mesenchymal 
stromal microenvironment in normal 
haematopoiesis and malignancy

The BM microenvironment plays a central role in maintain-
ing the dynamic balance between HSC self-renewal, dif-
ferentiation, quiescence and proliferation [31]. HSC fate is 
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largely dictated by specific anatomic locations in the BM, 
termed niches, within which they reside [32]. In addition to 
extracellular matrix, the niche consists of specialised sup-
porting cells including heterogeneous mesenchymal stromal 
cells, endothelial cells and osteolineage cells [33]. In normal 
physiological conditions, the BM niche functions to regulate 
HSC self-renewal and quiescence, critical to preserving the 
supply of HSCs throughout life. The BM niche also ena-
bles HSCs to exit quiescence under haematopoietic stress, 
such as BM injury or inflammation, to undergo subsequent 
proliferation and differentiation in response to the specific 
stimulus [34]. During homeostasis, HSCs are largely quies-
cent [35] and localise within perivascular regions, although 
there is contention whether they specifically reside around 
the endosteal area around arterioles (endosteal niche) [36] 
or at sinusoids (vascular niche) [37].

BM-MSCs control HSC fate by providing structural scaf-
folding as well as secreting soluble factors that regulate HSC 
proliferation and differentiation. Several BM-MSC popula-
tions including nerve/glial antigen 2–expressing  (NG2+), 
leptin receptor-expressing cells  (LEPR+) or C-X-C motif 
chemokine 12 (CXCL12)-abundant reticular (CAR) cells have 
been shown to play a role in promoting HSC maintenance. 
Specifically, secretion of CXCL12 or stem cell factor (SCF; 
also known as KITL) by BM-MSCs has been shown to regu-
late HSC niche retention, self-renewal, and trafficking [38]. 
The importance of mesenchymal lineage cells on HSC niche 
maintenance is exemplified by ablation studies. For example, 
the ablation of BM stromal cell populations such as CAR 
cells [39],  Nestin+ MSCs [40],  LEPR+ cells [41], and  NG2+ 
cells [36] has been shown to induce HSC cycling and their 
depletion in the BM.

Similar to HSCs, tumour cell interactions with specific BM 
niche components have been shown to exert an impact on their 
proliferation. For example, following intravenous injection of 
the murine MM cell line 5TGM1 in C57BL/KaLwRijHsd 
mice, dormant tumour cells are found in the BM localised to 
endosteal bone surfaces [42]. Activation of osteoclastic bone 
resorption by receptor activator of nuclear factor κB ligand 
(RANKL) administration decreases dormant MM PC num-
bers, suggesting that remodelling of BM trabecular architec-
ture may release these cells from dormancy [42]. Similarly, 
leukaemic stem cells in a CML mouse model have been shown 
to co-localise to CXCL12-secreting MSCs in the BM, which 
induces quiescence in the leukaemic cells [43]. Cre-mediated 
deletion of the CXCL12 gene in mesenchymal progenitors 
promoted the outgrowth of quiescent CML leukaemic stem 
cells (LSCs) by downregulating quiescence pathways in LSCs 
and promoting LSC cycling, thereby releasing them from 
dormancy in mice [44]. Therefore, modifications to the BM 
microenvironment can cause a switch between tumour cell 
dormancy and proliferation.

Notably, perturbed interactions between HSCs and the 
BM niche alters normal haematopoiesis and can lead to hae-
matological malignancies. Indeed, studies have shown that 
haematopoietic malignancies can develop by modulation of 
supporting cells in the BM microenvironment. For example, 
constitutive activation of β-catenin in osteoblastic cells can 
induce MDS and AML [45]. Similarly, the conditional ablation 
of osteoblasts can accelerate the development of chronic and 
acute leukaemias in mice [46, 47]. Moreover, conditional dele-
tion of Dicer1 miRNA endonuclease in BM-MSCs is sufficient 
to distort normal haematopoiesis and result in myelodysplasia 
which, in some cases, progressed to AML in a murine model 
[48].

Collectively, these studies demonstrate that malignant 
cells closely interact with the BM microenvironment to 
facilitate their proliferation and survival. Given the risk of 
transition to AML, CLL, and MM increases with age, these 
studies highlight a potential role for age-related changes in 
the BM microenvironment in creating a permissive milieu 
that promotes the early outgrowth of malignant cell clones 
and the subsequent development of malignancy.

3  Cellular senescence

A hallmark of ageing is the induction of cellular senes-
cence leading to the accumulation of senescent cells 
within normal tissues. Notably, the accumulation of senes-
cent cells has been linked to the deterioration of tissues 
including adipose tissue, skeletal muscle, eye tissue and 
cartilage [20, 21]. Cellular senescence is also associated 
with various age-related pathologies including glaucoma, 
cataracts, osteoarthritis, diabetes, and atherosclerosis [49].

Cellular senescence is characterised by irreversible cell 
cycle arrest, whereby cells cease to divide and differenti-
ate, but remain viable and metabolically active. A feature 
of cellular ageing is heightened activity of the senescence-
associated enzyme β-galactosidase which can be used to 
identify senescent cells [50]. Another characteristic of 
senescent cells is an enlarged and flattened cellular mor-
phology that is thought to arise due to endoplasmic reticu-
lum stress and the reorganisation of cytoskeletal scaffold-
ing proteins [51]. Cellular senescence can be induced by 
various cell-intrinsic effectors including telomere shorten-
ing and changes in telomere structure, epigenetic changes, 
chromatin disorganisation, perturbed proteostasis, DNA 
damage, and mitochondrial dysfunction [52, 53]. In addi-
tion, cellular senescence can also be induced by cell-
extrinsic effectors such as oxidative and genotoxic stress, 
mitogenic signals, inflammation, tissue damage signals, 
irradiation, chemotherapeutic agents, and nutrient depriva-
tion [52, 53]. Cellular senescence is induced by activation 
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of cyclin-dependent kinase inhibitors, including  p21Cip1, 
 p16INK4a,  p14ARF,  p15INK4b, and  p27Kip1, which inhibit cell 
cycle progression through p53 and RB-dependent and 
-independent pathways (reviewed in Kumari et al., 2021) 
[52]. While DNA damage-induced senescence is largely 
mediated by  p21Cip1, age-related or replicative senescence 
predominantly involves  p16INK4a and  p14ARF [52, 54, 55].

Cellular senescence can either be acute or chronic in 
nature. Acute senescence is triggered by a sudden increase 
in a specific stressor, often during tissue repair, and devel-
opment and generates a sustained DNA damage response, 
which activates cell cycle checkpoints that enforce cell cycle 
arrest. Importantly, cells undergoing acute senescence are 
efficiently recognised by immune cells, leading to rapid 
elimination and replacement of senescent cells by healthy 
cells [56]. In contrast, chronic senescence occurs during age-
ing due to mild genotoxic stress, such as telomere shortening 
or DNA damage that accumulates over time, triggering a 
stochastic switch to senescence [57]. Ultimately, these cells 
undergo cell cycle arrest and transition into a senescent state, 
although they remain viable, displaying altered metabolic 
activity and apoptosis resistance [58]. In addition to greater 
induction of cellular senescence with age, there is also a 
defect in clearing these cells due to the concomitant age-
related deterioration of the immune system [59]. Moreover, 
senescent cells have also been reported to recruit immune 
cells and induce dysfunction, which may contribute to their 
retention within tissues [60]. Consequently, chronically 
senescent cells persist in tissues and organs.

The senescence-associated secretory phenotype (SASP) 
is a classical feature of senescent cells and comprised vari-
ous cytokines, growth factors, and pro-inflammatory medi-
ators. These include interleukin-1 (IL-1), interleukin-6 
(IL-6), C-X-C motif chemokine ligand 1 (CXCL1), C-X-C 
motif chemokine ligand 8 (CXCL8), C-C motif chemokine 
ligand 2 (CCL2), C-C motif chemokine ligand 5 (CCL5), 
C-C motif chemokine ligand 8 (CCL8), granulocyte mac-
rophage colony-stimulating factor (GM-CSF), matrix metal-
loproteinases (MMP)-1,-3, and insulin growth factor (IGF) 
family members [61, 62]. Collectively, these factors recruit 
a plethora of immune cells including macrophages, natural 
killer (NK) cells, and T lymphocytes, thereby creating a pro-
inflammatory tissue state [63]. Consequently, the accumula-
tion of senescent cells is speculated to contribute to chronic 
inflammation that is observed within tissues with advancing 
biological age. Chronic inflammation, often accompanied 
by fibrosis and cell death, has been linked to the develop-
ment and progression of various age-related conditions such 
as osteoarthritis, atherosclerosis, Alzheimer’s disease, and 
cancer [64–66]. Moreover, there is also strong evidence to 
suggest that SASP factors can augment normal haematopoie-
sis and create a favourable localised microenvironment for 

cancer, which are discussed in the following sections of this 
review.

4  BM‑MSC senescence and its impact 
on haematopoiesis

Normal haematopoiesis is disrupted by ageing and is 
associated with higher frequency of mutations within 
HSCs (CHIP) [67], myeloid skewing [68], reduced lym-
phopoiesis [69], reduction in erythropoiesis [70], and 
decreased BM cellularity [71]. These effects are largely 
thought to be mediated by increased inflammatory signal-
ling observed with ageing in the BM [72]. Studies sug-
gest that a senescent BM microenvironment plays a critical 
role in promoting BM inflammation and the dysregulation 
of haematopoiesis with ageing. For example, it has been 
shown that myeloid skewing can be alleviated in a murine 
model when HSCs from aged mice are introduced into a 
young BM microenvironment. Specifically, transplantation 
of BM from 17- to 18-month-old mice into 2-month-old 
recipients revealed that that when ‘aged’ cells were trans-
planted into ‘young’ animals, fewer myeloid cells were 
generated compared with ‘aged-to-aged’ transplants [73]. 
Moreover, induction of BM-MSC senescence by knock-
down of the endoribonuclease Dicer1 has been shown to 
significantly inhibit the ability of BM-MSCs to support 
HSCs in vitro [74, 75]. Knockout of Dicer1 in BM-MSCs 
also alters haematopoiesis in vivo by promoting increased 
apoptosis and proliferation of primitive HSCs, which is 
accompanied by a reduction in B cells and B cell progeni-
tors and an increased frequency of myeloid cells, resulting 
in myelodysplasia [48]. In contrast, reversal of BM-MSC 
senescence by Dicer1 over-expression enhances their stem 
cell-supporting properties [74].

SASP factors secreted by senescent BM-MSCs are 
thought to play a central role in ageing-associated haema-
topoietic decline. For example, the inflammatory cytokine 
CCL5, characteristic of the SASP profile, is elevated in 
BM-MSCs of aged mice compared with young controls 
[73] and has been shown to favour the induction of pro-
myeloid transcription factors in HSCs [73], which may 
be linked to myeloid skewing of HSCs observed with age 
[76]. Furthermore, it has been shown that the SASP fac-
tor interleukin-6 (IL-6), secreted by aged BM-MSCs, can 
alter HSC homeostasis in vitro [77]. Specifically, IL-6 
secreted by aged BM-MSCs acts as a HSC growth factor 
and induces rapid HSC expansion, thereby driving clonal 
outgrowth [77], leading to depletion of the HSC pool and 
increased risk of genomic aberrations in HSCs [78].
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5  MSC senescence as a cancer driver

Senescent MSCs have been shown to facilitate tumour 
growth in a variety of cancer contexts. For example, co-cul-
ture of the breast cancer cell line MDA-MB-231 with senes-
cent fibroblasts increases tumour growth in vitro, when com-
pared with co-culture with non-senescent fibroblasts [79]. In 
line with this, subcutaneous co-injection of MDA-MB-231 
breast cancer cells with senescent fibroblasts leads to earlier 
onset and more rapid tumour growth when compared with 
co-injection with non-senescent control fibroblasts in mice 
[24, 26]. Similarly, subcutaneous growth of the prostate can-
cer cell line PC3 is increased by co-injection with senes-
cent fibroblasts, compared with non-senescent fibroblasts 
[27, 28]. Importantly, studies using the fibroblast accelerate 
stromal supported-tumourigenesis (FASST) mouse model, 
whereby collagen I promoter-driven Cre recombinase upreg-
ulates the CDK-inhibitor  p27Kip1 and induces senescence in 
mesenchymal lineage cells, have shown that senescent mes-
enchymal cells drive the development of cancer-supportive 
BM microenvironment. Here, BM tumour growth following 
intra-cardiac injection of NT2.5 breast cancer cells was sig-
nificantly greater in FASST mice compared with littermate 
controls, suggesting that senescent mesenchymal lineage 
cells promote breast cancer cell homing and/or subsequent 
proliferation in the BM [29].

SASP factors are thought to play a central role in the 
cancer-promoting properties of senescent cells. Indeed, 
studies have shown that treatment of a variety of epithelial 
cancer cell types (including breast, colorectal and prostate 
cancer) with conditioned media collected from senescent 
fibroblasts or MSCs increases cancer cell proliferation com-
pared with conditioned media collected from non-senescent 
cells in vitro [80–82]. In addition to promoting proliferation, 
SASP factors have also been shown to exert pro-migratory 
effects on cancer cells. For instance, it has been shown that 
conditioned medium from senescent fibroblasts significantly 
increases the migration of MCF7 breast cancer cells in vitro 
compared with conditioned medium from non-senescent 
fibroblasts [83]. Furthermore, treatment of non-aggressive 
human breast cancer cell lines T47D and ZR75.1 with con-
ditioned media collected from senescent fibroblasts induces 
epithelial-mesenchymal transition and enhanced invasive-
ness of cancer cells, thereby promoting a malignant cell 
phenotype [84].

Moreover, senescent cells have also been implicated in 
driving neoplastic transformation of pre-neoplastic cells. 
For example, conditioned medium from senescent fibro-
blasts significantly enhances in vitro migratory and inva-
sive properties of a partially transformed ovarian epithelial 
cell line compared with conditioned medium from non-
senescent fibroblasts [23]. Similarly, senescent fibroblasts 

have been shown to promote the outgrowth of immortalised 
epithelial cell lines HaCAT, HMT-3522 S1, and SCp2 in a 
co-culture setting compared with non-senescent fibroblasts 
[24]. In addition, while HaCAT and SCp2 cell lines do not 
form tumours in immunocompromised mice when injected 
alone, co-injection of these cells with senescent ovarian 
fibroblasts leads to increased incidence and earlier onset of 
tumour development, which is not observed with co-injec-
tion of non-senescent fibroblasts [24]. In line with this, co-
injection of weakly tumourigenic EpH4-v mouse mammary 
epithelial cells with irradiation-induced senescent murine 
mammary fibroblasts into mammary fat pads of female 
nu/nu mice significantly promotes tumour formation and 
vascularisation relative to co-injection with non-senescent 
fibroblasts or EpH4-v cells alone [25]. Notably, studies have 
also shown that senescent fibroblasts are unable to induce 
neoplastic properties in normal, untransformed epithelial 
cells [24].

Collectively, these studies support the notion that senes-
cent MSCs provide a localised microenvironment that sup-
ports the outgrowth of malignant cells and pre-malignant 
cells harbouring cancer-initiating mutations. Moreover, there 
is evidence to suggest that the accumulation of senescent 
cells specifically in the BM may create a cancer-permissive 
niche that enables the outgrowth of malignant cell clones in 
the BM. As senescent cells accumulate with age, this may 
contribute to age-related progression from cancer precur-
sor conditions to overt cancers, including in the context of 
haematological cancers.

6  BM‑MSC senescence in haematological 
malignancies

In addition to playing a role in solid cancers and aberrant 
haematopoiesis, there is increasing evidence that MSC 
senescence contributes to the development and progression 
of haematological cancers. As the growth of transformed 
pre-neoplastic and neoplastic cells can be influenced by 
SASP factors, it is possible that age-related accumulation 
of senescent BM-MSCs and SASP leads to clonal outgrowth 
of transformed cells and malignancy (Fig. 1). In the fol-
lowing sections, we discuss evidence for the role of senes-
cent BM-MSCs in blood disorder precursor conditions and 
haematological malignancies, as the prevalence of these 
dyscrasias dramatically increases with age. An overview of 
evidence that BM-MSC senescence is a common feature of 
age-related haematological cancers and disorders is provided 
in Table 1. Additionally, a summary of common SASP fac-
tors that may play a role in haematological dysfunction are 
listed in Table 2.
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6.1  Myelodysplastic syndromes (MDS) and acute 
myeloid leukaemia (AML)

MDS are a group of asymptomatic disorders character-
ised by ineffective haematopoiesis with varying degrees of 
cytopenias and dysplasia. MDS is diagnosed based on the 
presence of one or more cytopenias (anaemia, neutrope-
nia, thrombocytopenia), ≥ 10% morphologically dysplastic 
nucleated cells of one lineage and < 20% blasts in peripheral 
blood and BM [85]. MDS can transform into AML, with 
the diagnosis of AML established by ≥ 20% blood and BM 
involvement of leukaemic blasts, presence of cytopenias and 
in some cases the presence of genetic abnormalities includ-
ing t(8;21), inv(16) or t(16;16) [85].

Numerous studies have shown that BM-MSCs from MDS 
and AML patients display senescent characteristics, includ-
ing flattened polygonal morphology, a reduced expression 
of Dicer1 and proliferative and osteogenic potential, while 
displaying increased β-galactosidase activity and  p16INK4a 
and  p21Cip1 expression [74, 86–95]. BM-MSCs from MDS 
patients have been shown to express increased levels of 
SASP factors, including IL-6 and tumour necrosis factor α 

(TNF-α), compared with those of healthy controls [96, 97]. 
Further, BM-MSCs from AML patients express increased 
levels of SASP factors IL-6 [98], interleukin-7 (IL-7) [99], 
and CXCL8 [100] compared with healthy controls.

Notably, increased expression of SASP factors in the BM 
and blood plasma of MDS patients is predictive of overall 
survival and progression to AML, supporting a potential role 
for senescence and SASP factors in MDS-to-AML transi-
tion. For example, several studies have demonstrated that 
SASP components such as IL-6, IL-7, CXCL8, and TNF-α 
are significantly elevated in MDS patient BM and peripheral 
blood plasma compared with healthy controls [101, 102]. In 
addition, plasma IL-6 levels in MDS patients are an inde-
pendent predictor of overall survival and risk of progression 
to AML [101]. In fact, BM-MSC gene expression of IL-6 
gradually increases with progression from MDS to AML 
[98]. Moreover, blood plasma IL-7 levels have been identi-
fied as independent prognostic factors for overall survival in 
MDS patients [101]. Furthermore, decreased proliferative 
rate of BM-MSCs isolated from AML patients was found 
to be independently associated with poor patient outcomes 
such as treatment failure and early relapse [103].

Fig. 1  Schematic model depicting how senescent BM-MSCs may 
promote the progression of haematological malignancies. The acqui-
sition of genetic abnormalities with ageing within individual hae-
matopoietic stem cell clones and committed haematopoietic clones 
predisposes them to disproportional clonal expansion. These clones 

reside or home to the BM, where they remain stable for long peri-
ods of time. Concurrently, senescent BM-MSCs accumulate with age 
and constitute SASP factor-rich activating niches, resulting in the 
outgrowth of transformed malignant clones and progression to active 
malignancy
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Beyond the association between BM-MSC senescence 
and MDS to AML transition, there is also evidence that BM-
MSC senescence may play an active role in driving progres-
sion from MDS to AML. Indeed, senescent BM-MSCs from 
MDS patients exhibit an enhanced ability to increase sur-
vival of leukaemic cells and decreased capacity to support 
normal haematopoiesis [74, 86, 92, 96]. Moreover, transwell 
co-culture of mouse myeloid leukaemic cells with senescent 
BM-MSCs significantly increases leukaemic cell prolifera-
tion in comparison to co-culture with non-senescent BM-
MSCs [104], suggesting that senescent BM-MSCs promote 
leukaemic cell proliferation via secreted factors. Impor-
tantly, the expression of SASP factors IL-6 and CXCL8 by 
BM-MSCs has been implicated in promoting leukaemic 
cell growth. For example, BM-MSCs from MDS patients 
exhibit an increased expression of IL-6 compared with 
healthy BM-MSC controls, with IL-6 previously reported 
to promote the growth of AML cell line HL-60 [105]. In line 
with this, the administration of an anti-IL-6 receptor block-
ing antibody was shown to inhibit the proliferation of AML 
cell lines as well as the clonogenic growth of primary AML 
cells in vitro [106]. Knockdown of CXCL8 in BM-MSCs 
has also been shown to significantly inhibit the ability of 
BM-MSCs to promote the survival of primary AML cells 
in a co-culture setting [107]. The role of CXCL8 in BM-
MSC-mediated promotion of AML cell proliferation has also 
been explored by blocking the CXCL8 receptor (CXCR2) 

on CXCL8-knockdown HL-60 and THP1 AML cell lines. 
In this study, treating co-cultures of AML patient-derived 
BM-MSCs and CXCL8-knockdown AML cells with CXCR2 
inhibitor SB225002 decreased AML cell line proliferation 
and colony-forming ability, induced cell cycle arrest, and 
induced AML cell apoptosis in a dose-dependent manner, 
when compared with vehicle treated controls [100].

The functional role of senescent BM-MSCs in AML 
progression has been directly explored in vivo using a p16-
3MR mouse model [104]. These mice have been engineered 
to express the  p16INK4a promoter coupled with thymidine 
kinase, enabling the selective ablation of senescent BM-
MSCs by administration of ganciclovir. Strikingly, ablation 
of  p16INK4a-expressing senescent BM-MSCs following the 
engraftment with mouse myeloid leukaemia cells signifi-
cantly decreased subsequent tumour growth and increased 
mouse survival, when compared with controls [104], dem-
onstrating the role of senescent BM-MSCs in AML disease 
progression.

As BM-MSC senescence and secretion of pro-leukaemic 
SASP factors, including IL-6 and CXCL8, is evident at the 
MDS stage, and elevated levels of SASP factors are pre-
dictive of MDS-to-AML progression, it is possible that the 
age-related accumulation of senescent BM-MSCs at MDS 
provides a permissive, SASP-factor rich growth- activating 
niche for leukaemic cells which facilitates MDS-to-AML 
progression. Taken together, these studies support the 

Table 1  Overview of evidence 
for BM-MSC senescence 
in various haematological 
malignancies

Molecular or functional BM-MSC characteristic Featured haematological disorder 
(relative to healthy BM-MSCs)

Enlarged, polygonal and flattened morphology MDS [74, 86, 87, 90, 93, 96]
AML [91, 92]
CLL [110]
MM [75, 93, 129]

Reduced proliferative potential MDS [74, 86, 87, 89, 90, 93, 96]
AML [92, 94, 103]
CLL [110, 121]
MM [75, 93, 129, 130, 134]

Increased β-galactosidase staining MDS [74, 86, 87, 90, 95]
AML [91]
CLL [110]
MM [75, 129, 134, 135]

Increased expression of  p15INK4b/p16INK4a/p53/p21Cip1 MDS [74, 87, 90, 93]
AML [91]
MM [75, 93, 129, 134–136]

Dicer1 downregulation MDS [74]
AML [103]
MM [75]

Decreased osteogenic potential MDS [86, 90, 93, 96]
AML [94]
MM [75, 93, 129–132]

Senescent MSC promoting the growth of malignant cells AML [104]
MM [75, 132, 155]

Tumour cells inducing BM-MSC senescence AML [104, 185]
MM [75, 155]
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hypothesis that accumulation of senescent BM-MSCs with 
age in MDS patients may increase the proliferation of the 
myeloid lineages, increasing the rate of progression to AML 
in these patients.

6.2  Monoclonal B cell lymphocytosis (MBL) 
and chronic lymphocytic leukaemia (CLL)

MBL is an asymptomatic haematological dyscrasia char-
acterised by the presence of clonal B cell populations in 
the blood and no other sign of lymphoproliferative disorder. 
MBL can be further categorised into low and high count 
MBL, based on whether the B cell count in the peripheral 
blood is above or below 0.5 ×  109/L [108]. High count MBL 
has an increased risk of progression to CLL, defined by 
peripheral blood B cell count of greater than > 5 ×  109/L 
[108].

Studies characterising BM-MSCs isolated from CLL 
patients have revealed that CLL BM-MSCs, similar to those 
of patients with MDS and AML, display senescent character-
istics such as decreased CFU-F frequency [109], decreased 
growth rate and growth arrest [109], an enlarged polygonal 
morphology [110], increased β-galactosidase staining [110], 
and increased  p16INK4a mRNA expression [110] compared 
with BM-MSCs from healthy, age-matched individuals. 
Additionally, BM-MSCs from CLL patients display elevated 
gene and protein expression of several SASP factors, includ-
ing IL-6, CXCL8, and vascular endothelial growth factor 
(VEGF), compared with BM-MSCs from healthy indi-
viduals [110, 111]. Peripheral blood levels of SASP factors 
including IL-6 [112], VEGF [113], and CXCL8 [114] are 
also increased in patients with CLL compared with healthy 
controls. Importantly, CLL patients with elevated serum 
levels of IL-6, TNF-α, and CXCL8 exhibit poorer overall 
survival compared with patients with low serum levels of 
these SASP factors [112, 114–117]. Additionally, increased 
serum levels of VEGF have been shown to be indicative of 
shorter progression-free survival in early B cell CLL patients 
[113]. While it is unclear whether increased levels of these 
cytokines is due to age-related accumulation of senescent 
BM-MSCs, it is notable that peripheral blood levels of SASP 
factors IL-6, CXCL8, and TNF-α positively correlate with 
patient age in CLL patients [115, 116].

From a functional perspective, studies have shown that 
BM-MSCs isolated from CLL patients exhibit an increased 
capacity to support the proliferation of normal periph-
eral blood B cells, when compared with BM-MSCs from 
healthy donors [109]. In addition, BM-MSCs support in vivo 
engraftment and ex vivo expansion of primary CLL cells 
[111, 118–121]. As BM-MSCs isolated from CLL patients 
exhibit a senescent phenotype, these pro-proliferative effects 
may, in part, be due to secretion of pro-proliferative SASP 
factors. Indeed, blocking BM-MSC protein secretion using 

the exocytosis inhibitor brefeldin A greatly reduces the pro-
survival effects BM-MSCs exert in direct co-culture with 
CLL cells [122]. Specifically, BM-MSC-derived IL-6 has 
been suggested to increase primary CLL cell survival in 
vitro, with the addition of an IL-6 receptor antagonist to co-
cultures of BM-MSCs and primary CLL cells significantly 
attenuating CLL cell survival [118]. Moreover, BM-MSCs 
have been shown to support the engraftment of CLL cells 
in vivo via an IL-6-mediated mechanism. Here, NOD scid 
gamma mice reconstituted with peripheral blood mono-
nuclear cells (PBMCs) from CLL patients in combination 
with BM-MSCs or supernatants of BM-MSCs displayed 
superior CLL engraftment compared with PBMC injection 
alone. Furthermore, the administration of tocilizumab, an 
IL-6 receptor antagonist, abrogated the supportive effect of 
BM-MSCs and BM-MSC supernatant on CLL engraftment 
[118]. BM-MSC-derived VEGF has also been shown to 
act as a pro-survival factor of primary CLL cells and CLL 
cell lines in vitro [122, 123]. Indeed, the addition of VEGF 
neutralising antibody, mAb293, abolished the BM-MSC 
co-culture-mediated survival of CLL cells, while having 
no effect on CLL survival in monoculture [122]. Similarly, 
VEGF inhibitors vatalanib and pazopanib significantly 
reduce tumour growth of JVM-3 CLL-like cells in vivo 
[124], although it cannot be ruled out that an anti-angiogenic 
mechanism may also contribute to the anti-tumour response. 
Exogenous CXCL8 has also been shown to prolong ex vivo 
survival of leukaemic cells by upregulating the expression 
of anti-apoptotic proteins in B-CLL cells [125]. As IL-6, 
VEGF, and CXCL8 are expressed as part of the SASP 
milieu, it is plausible that the age-related accumulation of 
senescent BM-MSCs may provide a CLL growth permissive 
microenvironment via paracrine proliferative and survival 
factors.

While it remains to be determined whether senescent 
BM-MSCs actively promote clonal B cell outgrowth in MBL 
and CLL, serum levels of SASP factors IL-6, CXCL8, and 
TNF-α are significantly increased in the peripheral blood of 
MBL patients compared with healthy individuals [126, 127]. 
Further studies are required to determine whether BM-MSC 
senescence is evident at the MBL stage and whether BM-
MSC senescence is associated with, and plays an active role 
in, MBL-to-CLL progression.

6.3  Monoclonal gammopathy of undetermined 
significance (MGUS) and multiple myeloma 
(MM)

MGUS is an asymptomatic PC dyscrasia, characterised by 
the clonal expansion of post-germinal centre PCs in the 
BM. MGUS is defined by the presence of < 30 g/L serum 
monoclonal protein (M protein), < 10% monoclonal PCs in 
the BM and absence of end organ damage (CRAB features: 
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hypercalcaemia, renal failure, anaemia, and bone lesions) 
[128]. MGUS is the precursor condition to MM. MM is 
characterised by ≥ 30 g/L M protein and/or ≥ 10% monoclo-
nal PCs in the BM, usually accompanied by CRAB features.

There is mounting evidence that BM-MSCs from MM 
patients have a senescent phenotype in culture and that 
BM-MSC senescence is associated with poorer MM patient 
outcomes. Compared with ex vivo-cultured BM-MSCs from 
healthy controls, BM-MSCs from MM patients are larger, 
more irregular in shape, display reduced proliferative poten-
tial, reduced osteogenic differentiation potential, increased 
 p16INK4a and  p21Cip1 expression and β-galactosidase activity, 
and decreased expression of Dicer1 and cell-cycle related 
genes [75, 93, 129–136]. MM BM-MSCs also display an 
altered secretory profile compared with that of healthy 
controls, closely resembling that of senescent BM-MSCs 
[129, 137, 138]. Specifically, BM-MSCs from MM patients 
exhibit significantly higher gene expression of SASP fac-
tors including IL-6, TNF-α, growth differentiation factor 
15 (GDF15) and CXCL8, relative to BM-MSCs from age-
matched healthy controls [75, 129, 132, 136, 138]. Further-
more, BM-MSCs from MM patients secrete significantly 
higher IL-6 and GDF15 protein compared with age-matched 
controls [130, 132, 139, 140].

Notably, serum levels of canonical SASP factors in the 
peripheral blood of MM patients have been shown to corre-
late with MM disease severity and progression. For example, 
serum levels of IL-6 [141–145], TNF-α [146], and GDF15 
[145, 147–149] are elevated in MM patients compared 
with healthy individuals. Moreover, serum levels of IL-6 
[141–144], GDF15 [145, 147, 148], and TNF-α [146, 150] 
positively correlate with more advanced stage of the disease 
according to both the Durie-Salmon and ISS classification 
systems. In addition, serum levels of SASP factors have been 
shown to negatively correlate with MM patient survival. For 
example, elevated serum levels of IL-6 and GDF15 are asso-
ciated with significantly shorter overall survival times in 
newly diagnosed MM patients [140, 142, 151]. Although it 
is unclear whether increases in the levels of these cytokines 
are due to the accumulation of senescent BM-MSCs, there 
is evidence to suggest an association between BM-MSC 
senescence and MM disease outcomes. Notably, increased 
numbers of β-galactosidase-positive senescent cells in ex 
vivo-cultured BM-MSCs from patients are associated with 
a shorter progression free survival, compared with patients 
with low numbers of senescent BM-MSCs [75]. Taken 
together, these findings support the association between 
increased BM-MSC senescence, increased SASP factors 
production and disease progression in MM.

Functionally, MM MSCs have been shown to significantly 
promote the adherence and proliferation of human MM cell 
lines compared with BM-MSCs from healthy individuals 
[132, 152–154]. While it is unclear if this is attributable 

to the senescent properties of MM BM-MSCs, the genetic 
induction of BM-MSC senescence has been shown to pro-
mote MM tumour cell growth in a co-culture setting. To 
this end, direct co-culture of the NCI-H929 MM cell line 
with senescent BM-MSCs (induced by Dicer1 knockdown) 
significantly enhanced MM cell growth relative to co-cul-
ture with non-senescent BM-MSCs in vitro [75]. Moreover, 
an association between the induction of BM-MSC senes-
cence by over-expressing the lysophosphatidic acid recep-
tor 1 (LPAR1) and enhanced MM tumour growth has been 
observed in vivo. Specifically, co-transplantation of IM-9 
MM cells with LPAR1-over-expressing senescent BM-
MSCs significantly promoted tumour growth in BALB/c-
nu/nu mice in comparison to co-transplantation with control 
BM-MSCs [155]. In line with this, several canonical SASP 
factors have been shown to promote the proliferation of 
MM PCs. For example, BM-MSC-derived IL-6 is a potent 
inducer of MM PC growth and survival [132, 156–159]. 
The survival and proliferation of patient-derived MM PCs in 
short-term cultures is increased with recombinant IL-6 [158, 
159] and is abrogated with the addition of anti-IL-6 mono-
clonal antibodies [158]. Similarly, the growth promoting 
effects of BM-MSCs on MM cell lines can be abrogated with 
the addition of an anti-IL-6 monoclonal antibody [132, 160]. 
Likewise, IL-6 siRNA-mediated knockdown in healthy BM-
MSCs significantly reduces the proliferation of the U266 
MM cell line both in vitro and in an in vivo subcutaneous 
xenograft model compared with normal BM-MSCs [161], 
suggesting that BM-MSC-derived IL-6 mediates a favour-
able microenvironment for MM cell growth. Notably, there 
is also a significant positive correlation between MM patient 
serum IL-6 levels and the proliferation of primary MM BM 
PCs, as assessed by PC labelling index or Ki67 staining of 
tumour cells in patient biopsies [141, 144]. Interestingly, 
anti-IL-6 monoclonal antibodies have been assessed in 
phase II clinical trials in patients with relapsed or refractory 
MM [162–164] and high-risk smouldering MM (patients at 
high risk of progressing to overt MM within 2 years) [165]. 
While anti-IL-6 alone was insufficient to induce anti-tumour 
responses in heavily pre-treated MM patients [164], there 
is some evidence that anti-IL-6 therapy may delay disease 
progression in SMM patients [165].

Several other canonical SASP factors that are secreted 
by MM BM-MSCs have also been suggested to increase 
MM PC proliferation in vitro. For example, GDF15 is a 
MM BM-MSC-derived SASP factor shown to increase 
MM cell growth and survival in vitro [147]. Supplemen-
tation with GDF15 promotes the survival and clonogenic 
growth of human MM cell lines and primary human MM 
cells in vitro [140]. Furthermore, pre-treatment of NCI-
H929 cells with GDF15 increases their ability to develop 
MM tumours in vivo [140]. Moreover, survival of mice 
injected with Vk*Myc MM cells was significantly longer in 
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Gdf15-knockout mice, compared with wild-type controls, 
strongly supporting the role of microenvironmental GDF15 
in myeloma disease progression in vivo [140]. TNF-α is 
another SASP factor produced by MM BM-MSCs that has 
been shown to promote survival and proliferation of MM 
cell lines in vitro. Exogenous supplementation of TNF-α has 
been shown to reduce apoptosis and increase the percent-
age of MM cells in S and G2/M cell-cycle phases: an effect 
that can be reversed by supplementation with an anti-TNF-α 
antibody [166].

Although the precise role that accumulating senescent 
BM-MSCs play in MGUS-to-MM progression is cur-
rently unknown, emerging evidence suggests an association 
between BM-MSC senescence and MM disease progression. 
Analysis of serum cytokine profiles of MGUS patients has 
revealed that MGUS is associated with a shift towards a 
pro-inflammatory phenotype compared with healthy indi-
viduals [167]. In particular, it has been shown that serum 
protein levels of canonical SASP factor IL-6 is elevated in 
MGUS and SMM patients compared with healthy individu-
als [141, 168, 169]. Furthermore, IL-6 has been shown to be 
upregulated in BM-MSC culture supernatants from MGUS 
patients, while it was undetectable cultures from normal 
donors [170]. However, whether increased IL-6 is a conse-
quence of BM-MSC senescence is currently unknown.

Collectively, as the risk of MGUS-to-MM progression 
increases age, it is plausible that the accumulation of senes-
cent BM-MSCs with advancing age during MGUS can con-
tribute to creating a niche conducive to the outgrowth of 
MM PCs, leading to transition to overt MM. Further studies 
are required to characterise BM-MSCs from MGUS patients 
in the context of senescence, and to establish whether these 
cells play an active role in the transition from MGUS to 
MM.

7  Therapeutic targeting of senescent cells

Recent studies have revealed that senescent cells may repre-
sent a novel therapeutic target. For instance, studies in mice 
expressing the INK-ATTAC transgene enabling the elimina-
tion of  p16INK4a-expressing senescent cells have shown that 
global clearance of senescent cells from aged mice is able 
to delay tumourigenesis and prevent age-related deteriora-
tion of organs such as the kidney, heart, and adipose tissues 
[20]. These findings highlight the possibility that therapeu-
tic agents targeting senescent cells could have anti-tumour 
effects. In line with this, there is emerging data to suggest 
that the use of small molecule senolytic agents (drugs 
intended to induce apoptosis in senescent cells) may rep-
resent a novel therapeutic strategy to alleviate various age-
related pathologies. Indeed, pharmacological approaches to 
eliminate senescent cells are increasingly being investigated. 

For instance, treatment of 24-month-old C57BL/6 mice with 
the BCL-2 pro-survival protein family inhibitor navitoclax 
has been shown to reduce the number of senescent cells in 
the cerebral circulation and improve regional cerebral blood 
flow, thereby improving memory and age-related cognitive 
decline in mice [171]. Similarly, treatment of irradiated 
C57BL/6 mice with navitoclax significantly attenuated the 
number of senescent alveolar cells in the lungs and reversed 
persistent pulmonary fibrosis induced by ionising radiation 
[172]. Administration of navitoclax to naturally aged or total 
body irradiation-induced prematurely aged C57BL/6J mice 
has also been shown to effectively clear senescent muscle 
stem cells and HSCs in vivo. Notably, this selective clear-
ance of senescent cells significantly improved overall HSC 
and muscle stem cell clonogenicity and long-term BM 
engraftment ability of HSCs, demonstrating the utility of 
navitoclax to rejuvenate senescent cell populations [173]. 
However, while navitoclax has been shown to effectively 
clear senescent cells in murine [174, 175] and human [176] 
BM-MSC cultures in vitro, its utility to eliminate senescent 
BM-MSCs in vivo is yet to be investigated. Importantly, 
the utility of senolytic agents to eliminate senescent MSCs 
in the BM has been shown using the medicinal compound 
tetramethylpyrazine (TMP). In addition to reducing BM-
MSC senescence in vitro by suppression of NF-κB signal-
ling [177], local injection of TMP into the BM cavity of 
20-month-old C57BL/6 mice has been shown to significantly 
decrease  p16INK4a-positive BM-MSC numbers and decrease 
protein and mRNA levels of SASP factors including IL-6, 
TNF-α and IL-1β in the BM of treated mice [178]. TMP 
administration also improved maintenance of the HSC niche 
and increased HSC numbers by promoting BM-MSC expres-
sion of HSC maintenance and chemo-attraction-related 
genes such as Cxcl12, Kitlg, Angpt1, Il7, Vcam1 [178].

Additionally, the senolytic agents dasatinib and quercetin 
have been shown to decrease human senescent cell numbers 
in vitro [179]. While dasatinib is more effective at clearing 
senescent adipocytes, quercetin better eliminates senescent 
BM-MSCs and endothelial cells, with the combination of 
these agents targeting a broader range of senescent cell types 
than either agent alone [179]. The effectiveness of dasatinib 
and quercetin combination therapy at targeting senescent 
cells has also been explored in mice. Treatment of 20-month-
old C57BL/6 mice with both dasatinib and quercetin was 
reported to significantly lower  p16INK4a mRNA expression 
levels in a population of osteocyte-enriched cells derived 
from the bones of treated mice and to reduce the percent-
age of senescent osteocytes, compared with vehicle-treated 
controls [180]. This attenuated age-related bone loss, as 
evidenced by improved trabecular bone microarchitecture 
in the spine and femur compared with vehicle-treated con-
trol animals [180]. On this basis, the use of dasatinib and 
quercetin may be applicable to targeting senescent cells in 
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the BM of humans. Indeed, a Phase 1 pilot study in patients 
with diabetic kidney disease showed oral administration of 
dasatinib and quercetin for three days reduced senescent cell 
burden. Specifically, preliminary analyses demonstrated a 
significant decrease in the number of  p16INK4a and  p21Cip1 
expressing cells and β-galactosidase positive cells in adipose 
tissue biopsies and  p16INK4a and  p21Cip1 expressing epider-
mal cells in skin biopsies. Notably, the levels of circulating 
SASP factors in the plasma, namely, IL-1α, IL-6, MMP-9, 
and MMP-12, were also significantly reduced in drug-treated 
patients compared with vehicle-treated patients [181]. Fur-
thermore, dasatinib and quercetin have recently been used 
in the first human open-label pilot study of senolytic agents 
for the treatment of idiopathic pulmonary fibrosis, a senes-
cence-driven condition [182]. Dasatinib and quercetin treat-
ment significantly improved the physical function of study 
participants, including chair stand and walking tests, and 
was accompanied by a trend towards decreased serum SASP 
factor expression [182]. While preliminary, these stud-
ies suggest that the use of senolytic agents is a promising 
strategy for the treatment of age-related, senescence-driven 
pathological conditions. Nevertheless, the utility of senolytic 
agents as a potential treatment or intervention in the context 
of haematological cancers is yet to be investigated.

8  Concluding remarks

It is clear that the BM microenvironment plays a pivotal 
role in haematopoiesis and the development and progres-
sion of haematological cancers. Evidence suggests that the 
presence of increased numbers of senescent BM-MSCs is a 
characteristic feature of a variety of haematological cancers, 
and these cells secrete an altered cytokine profile that closely 
resembles the SASP. Indeed, SASP molecules such as IL-6, 
CXCL8, and GDF15 have been widely shown to be associ-
ated with disease progression in patients and to drive haema-
tological cancer cell proliferation in vitro. Together with the 
age-related emergence of CHIP, MDS, MBL, and MGUS, 
concurrent age-related increases in BM-MSC senescence 
may contribute to the progression from these benign states to 
overt malignancies. In addition to age-related accumulation 
of senescent BM-MSCs, evidence suggests that BM-MSC 
senescence can also be induced by haematological cancer 
cells. For instance, healthy human BM-MSCs co-cultured 
with primary MM cells or MM cell lines show increased 
levels of senescence relative to BM-MSCs in monoculture 
in vitro [75]. Moreover, young adult mice engrafted with 
primary human AML blasts demonstrate increased levels of 
BM-MSC senescence compared with mice engrafted with 
normal human  CD34+ HSCs [104]. As such, haematological 
cancer cells can exacerbate BM-MSC senescence, creating a 
feed forward loop that further promotes the development of 

haematological cancers. While there is compelling evidence 
that BM-MSC senescence promotes MDS-to-AML progres-
sion, the role of senescent BM-MSCs in the progression of 
MBL and MGUS to overt cancer requires further explora-
tion. However, it is clear that SASP factors have pro-pro-
liferative effects on CLL and MM tumour cells, suggesting 
that age-related increases in BM-MSC senescence may be 
key drivers of MBL-to-CLL and MGUS-to-MM progres-
sion. This is further supported by the observation that SASP 
factors are detectable at elevated levels in the blood of MBL 
and MGUS patients and that levels of these factors increase 
with advancing disease stages. Further studies are required 
to directly confirm the effects of BM-MSC senescence on 
haematological tumour outgrowth in vitro and in vivo, as, 
to date, this has only been explored in the context of AML. 
There is tremendous scope to investigate the utility of seno-
lytic agents for the treatment of haematological malignan-
cies. As the incidence of haematological malignancies and 
precursor conditions dramatically increases with age, a bet-
ter understanding of the relationship between the ageing BM 
microenvironment and the outgrowth of malignant cells may 
revolutionise treatment strategies. This may not only allevi-
ate the pro-tumourigenic effects exerted by the SASP, but 
also improve general haematopoietic function throughout 
the ageing process.
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