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Abstract
Obesity represents an important risk factor for prostate cancer, driving more aggressive disease, chemoresistance, and 
increased mortality. White adipose tissue (WAT) overgrowth in obesity is central to the mechanisms that lead to these clini-
cal observations. Adipose stromal cells (ASCs), the progenitors to mature adipocytes and other cell types in WAT, play a 
vital role in driving PCa aggressiveness. ASCs produce numerous factors, especially chemokines, including the chemokine 
CXCL12, which is involved in driving EMT and chemoresistance in PCa. A greater understanding of the impact of WAT 
in obesity-induced progression of PCa and the underlying mechanisms has begun to provide opportunities for developing 
interventional strategies for preventing or offsetting these critical events. These include weight loss regimens, therapeutic 
targeting of ASCs, use of calorie restriction mimetic compounds, and combinations of compounds as well as specific recep-
tor targeting strategies.
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1  Introduction

Prostate cancer (PCa) is the most frequently diagnosed non-
skin cancer and is the second most common cause of cancer 
death in men in the United States (US). Approximately 1 in 
8 men will be diagnosed with PCa during their lifetime and 
about 1 in 41 will die of PCa. It is estimated that ~ 268,490 
new cases of PCa will be diagnosed and ~ 34,500 PCa-
related deaths will occur in the US in 2022. Concurrently, 

obesity is a major public health crisis, with 42–46% of men 
over age 40 with obesity [1]. While there is a high preva-
lence of both obesity and PCa among men, data associating 
obesity and PCa risk are inconclusive [2, 3]. Although most 
men with localized PCa are cancer-free for 5 years after radi-
cal prostatectomy (RP), 20–30% of these men show signs 
of biochemical recurrence (BCR) after the 5-year mark [4, 
5], and recently reported studies have shown obese men, 
particularly with androgen-responsive PCa and who rapidly 
gained weight after RP, have increased risk of metastatic 
progression, development of BCR, and decreased overall 
survival [6]. Men with obesity and PCa are at increased risk 
of lymphedema, positive surgical margins, BCR, and fatal 
PCa [7–9]. Being overweight at the time of diagnosis also 
increases the likelihood of dying from PCa by 50% [10]. 
Weight gain after RP is associated with higher risk of BCR 
[11, 12] and PCa-specific mortality [13, 14]. The role of 
weight loss after RP is less clear with observational data 
suggesting a lower risk of BCR [11] while other data show 
increased risk of death, likely due to reverse causality [15]. 
Detriments associated with being overweight/obese at RP 
include longer operative times, higher blood loss during RP, 
and slower recovery to continence and potency [9]. Also, 
RP is more difficult to perform in men with higher BMIs 
[9]. In contrast, several studies have shown that men with a 
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smaller waist-to-hip ratio, lower BMI, and low body fat have 
low-volume PCa in comparison to men with high-volume 
PCa [16, 17]. Since the prevalence of obesity is increasing 
continuously [18], a clear knowledge of the mechanism(s) 
underlying disease aggressiveness as well as interventions 
designed to disrupt the obesity-PCa link are urgently needed 
to reduce morbidity and mortality associated with PCa.

2 � Mechanisms associated with obesity 
and PCa progression

A number of mechanisms have been suggested for the effects 
of obesity on PCa progression. These include hyperinsu-
linemia, higher levels of growth factors in the circulation, 
inflammation and increased inflammatory mediators such 
as cytokines and chemokines, as well as changes in levels 
of steroid hormones and adiponectin as well as other factors 
(e.g., changes in microbiome, angiogenesis) [19, 20]. Obe-
sity and particularly abdominal obesity are associated with 
abnormal and excessive expansion of white adipose tissue 
(WAT). Multiple studies have confirmed the link between 
PCa progression and WAT overgrowth [21–23]. In addition, 
excessive WAT expansion leads to a pathological state of 
chronic inflammation thought to play a leading role in the 
obesity-cancer link [24–26]. Although WAT was considered 
previously as an inactive organ for fat storage, numerous 
recent studies now confirm its secretory and endocrine func-
tion to serve an essential physiological role and maintenance 
of various signaling events [27, 28]. Adipocytes are by far 
the major component of WAT along with vascular endothe-
lial cells; immune cells including monocytes, macrophages, 
fibroblasts, pericytes, and stem; and importantly adipocyte 
progenitor cells. The mesenchymal adipocyte progenitor 
cells with stem cell-like properties are known as adipose 
stromal cells (ASCs) and together with other cells in the 
WAT, produce numerous adipokines [26, 29] such as various 
cytokines (IL-1α, IL-1β, IL-6, TNFα), chemokines (CCL2, 
CCL3, CCL5, CCL7, CXCL1, CXCL8, CXCL12, CXCL16), 
growth factors (IGF-1), leptin, steroid hormones, and angio-
genesis-related factors (VEGFA, VEGFB, VEGFC) [30–32]. 
These factors are associated with various essential cell sign-
aling pathways for cancer development and progression and 
their higher secretion by WAT during obesity leads to pro-
gression of various cancers including PCa.

As noted above, in addition to ASCs, other cells of the 
WAT may also play essential roles in driving PCa progres-
sion. These include adipocytes, leukocytes (including vari-
ous immune cells such as macrophages), and lymphocytes 
that are expanded in obesity [33]. For example, obesity is 
associated with increased accumulation of macrophages in 
WAT and these cells can further transform to cancer-asso-
ciated macrophages and are recruited in tumor stroma [34, 

35]. In addition, macrophages in obese conditions acquire 
a more proinflammatory phenotype and secrete various 
proinflammatory mediators leading to chronic low-grade 
inflammation, growth promotion, and angiogenesis [35]. 
The inflammatory states of WAT also contribute to activa-
tion of T-lymphocytes leading to secretion of various proin-
flammatory chemokines and cytokines such as TNF-α, IL-6, 
IL-1α, CXCL2, and various angiogenesis factors including 
VEGF and MMPs [33]. Finally, adipocytes in the WAT are 
also involved in cancer progression [36]. Adipocytes in peri 
prostatic WAT (ppWAT) come in direct contact with cancer 
cells and upon lipolysis, they serve as the energy source for 
cancer cells [36–38].

ppWAT is the fat layer that surrounds the prostate surface 
and plays an essential role in cancer progression [39–43]. 
During the cancer progression, invasion of cancer cells 
into the ppWAT of the tumor microenvironment leads to 
tumor-adipocyte crosstalk and facilitates PCa aggressive-
ness and leads to poor prognosis [43–45]. It was reported 
that the number of pre-adipocytes is higher in ppWAT of 
PCa patients compared to BPH patients [46]. These pre-
adipocytes are also present in larger quantities in ppWAT 
compared to visceral WAT [47] and their interaction with 
cancer cells leads to formation of cancer-associated adi-
pocytes that contribute to development of aggressive PCa 
[48, 49]. Taken together, the various cell types in the WAT/
ppWAT that are increased in number and activated during 
obesity and that interact either directly or by secreting vari-
ous mediators ultimately drive aggressive cancer.

3 � ASCs as important drivers of PCa 
progression in obesity

ASCs constitute an important cellular component of peripro-
static WAT (ppWAT), increase in number in obesity, and are 
mobilized from their perivascular niche. The recruitment of 
ASCs into the tumor microenvironment in obesity leads to 
increased cancer cell proliferation and tumor angiogenesis 
[50]. The migrated ASCs in the tumor microenvironment 
increase tumor viability by enhancing the tumor vasculature 
which provides oxygen and essential nutrients while remov-
ing toxic metabolites [51]. ppWAT proliferation during obe-
sity is linked with a gene expression profile that stimulates 
proliferation, inhibits apoptosis and lipolysis, and increases 
matrix remodeling, lipid metabolism, and metastasis lead-
ing to increased PCa mortality [48, 52, 53]. Numerous ani-
mal studies have shown that ASCs, which are expanded in 
obesity, migrate from WAT to adjacent tumors [51, 54–59]. 
Once there, they become part of the cell population in the 
tumor stroma [51]. Trafficking of WAT-derived ASCs into 
tumors of obese PCa patients has been linked with decreased 
survival [60]. Recent studies have also shown that human 
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PCa cell–derived CXCL1 serves as a ligand for CXCR1 and 
CXCR2 receptors on ASC [60] and that activation of this 
CXCL1-CXCR1 signaling axis in obesity drives recruitment 
of ASC to the tumor microenvironment [60].

Recent studies have also shown that ASCs play several 
roles in PCa progression stages. In this regard, paracrine sig-
nals for ASCs lead to anti-apoptotic, mitogenic, angiogenic, 
and immunosuppressive signals that together promote can-
cer progression [54, 61, 62]. ASCs can acquire perivascular 
localization which promotes tumor vascularization [51]. 
MCP-1 secreted by ASCs [63] recruit macrophages [64] that 
also contribute to PCa progression [65] as well as effects on 
T cells that can inhibit anti-tumor immune responses [35, 
63, 66]. ASCs can facilitate remodeling of ECM leading to 
stimulation of cancer cell invasiveness through alterations in 
mechanotransduction and desmoplasia [67]. Studies in mice 
with grafted PCa tumors showed differentiation of ASCs 
into adipocytes further stimulating growth of nearby cancer 
cells [68]. The reported effects of ASCs on cancer progres-
sion [51, 57, 58] have been reproduced by several research 
groups [69–71]. In addition, ASCs have the ability to stimu-
late metastasis [70–74] and therapy resistance of multiple 
cancer types [75–78]. Recent studies using co-culture model 
systems have also revealed that ASCs induce EMT in PCa 
cells [79]. Obesity has also been shown to induce EMT in 
a mouse PCa allograft tumor model [64]. Notably, in this 
study, WAT invasion into the tumor microenvironment was 
observed. These latter studies also provided evidence for 
involvement of ASC in oxidative stress signaling in cancer 
cells [79] and have further clarified the induction of cancer 
cell invasiveness and chemoresistance mediated by ASCs.

4 � WAT and ASC‑derived factors 
in obesity‑driven PCa progression

A number of adipokines and cytokines and their role in obe-
sity-driven PCa have been previously reviewed by us and 
others [27, 30, 31, 80–84]. Here, we will focus the discus-
sion mainly on chemokines (both CXC and CC chemokines) 
and on lipids implicated in obesity-driven PCa progression.

4.1 � CXC chemokines

CXCL12 and its receptors CXCR4 and CXCR7  Mouse models 
have proven invaluable in understanding the role of obesity 
on cancer progression, including PCa [85–89]. We have 
shown, using the HiMyc mouse PCa model, that obesity 
drives disease progression while continuous calorie restric-
tion (cCR) inhibits disease progression [85]. Obese HiMyc 
mice exhibited a dramatic infiltration of inflammatory cells 
and elevated inflammatory gene expression compared to 
mice on control and cCR diets [85, 86]. Further analyses of 

the prostate tumor microenvironment in obese HiMyc mice 
support the hypothesis that CXCL12 derived from ASCs 
stimulates invasiveness of PCa cells and plays an important 
role in obesity-induced PCa progression [79, 86]. CXCL12, 
an extensively studied chemokine, acts as a potent chemotac-
tic factor for hematopoietic cells [90, 91] and is involved in 
metastatic progression of several cancer types including PCa 
[reviewed in 92]. CXCL12 binds with its receptors CXCR4 
and CXCR7 to modulate various downstream cell signaling 
events [reviewed in 92]. For example, when CXCL12 binds 
with CXCR4, it induces trimeric G protein signaling and 
stimulates numerous downstream signaling events including 
PI3K/Akt, MAPK (ERK and JNK), and Src/STAT3, lead-
ing to increased invasiveness and migration of cancer cells 
[92–96].

Although CXCR7 was initially considered a decoy recep-
tor due to lack of a specific G protein recruiting motif, more 
recent evidence suggests that binding of CXCL12 with 
CXCR7 stimulates downstream signaling, including MAP-
kinase signaling pathway, by recruiting β-arrestin and sub-
sequent ligand-receptor internalization [97]. CXCR4 and 
CXCR7 are expressed in cells either individually or together 
[92]. It is important to note that when co-expressed, they can 
form both homo and heterodimers; the heterodimers appear 
to play an essential role in modulating downstream signaling 
[97–99]. CXCL12 signaling is associated with progression 
of several cancers, including prostate, breast, pancreatic, 
and lung cancers [reviewed in 92]. Recent studies have also 
shown that CXCL12/CXCR4 signaling activates epidermal 
growth factor receptor family members [93, 100, 101]. Wang 
et al. [102] further reported that higher CXCR7 expression 
in human PCa cells was associated with more aggressive 
tumors. In addition, higher CXCR7 levels led to increased 
expression of pro-angiogenic factors (IL-8 and VEGF), acti-
vation of Akt, and were associated with increased xenograft 
tumor growth.

CXCL12 and its receptors have also been linked to metas-
tasis of PCa to bone and are considered a poor prognostic 
marker [103–106]. CXCL12/CXCR4 has been shown to 
participate in localizing PCa to the bone marrow which can 
be blocked by neutralizing antibody to CXCR4 [107]. Bone 
marrow adipose tissue (BMAT) is present in the bone mar-
row space and bone tissue and constitutes approximately 
10% of total adipose tissue in humans and also plays an 
important role in cancer progression including PCa [108]. 
Although BMAT shares some phenotypic characteristics 
with other WAT depots and serves as an energy storage in 
addition to secreting various adipokines and fatty acids, it 
is actually increased in young calorie restricted mice and 
in lean anorexia nervosa patients [109–111]. Several recent 
studies have confirmed the importance of BMAT in driv-
ing cancer progression by promoting survival, proliferation, 
migration, and invasion of various cancer cells [112, 113]. In 
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particular, Herroon et al. showed that BMAT stimulated PCa 
growth in bone marrow by induction of fatty acid binding 
protein 4 [112]. Furthermore, CXCL1 and CXCL2 derived 
from BMAT are also involved in osteolysis in metastatic 
PCa [114]. Finally, a population of CXCL12+ pre-adipo-
cyte like stromal cells has been identified in bone marrow 
that expresses CXCL12 and regulates marrow adipogenesis 
[115]. These CXCL12-producing stromal cells in bone mar-
row may also participate in driving PCa aggressiveness and 
metastatic disease.

We recently reported that treatment of cultured mouse 
PCa cells (HMVP2 cells isolated from HiMyc mice) with 
CXCL12 significantly increased migration, invasion, and 
activated several signaling events associated with develop-
ment and progression of PCa [86]. We further showed that 
inhibition of both CXCL12 receptors (CXCR4 and CXCR7) 
attenuated the effect of CXCL12 on PCa progression [86]. 
Collectively, these studies suggest that CXCL12 is highly 
expressed and secreted from ppWAT and ASCs in obesity 
and plays an important role in PCa progression.

CXCL1 and CXCL8 and their receptors CXCR1 and 
CXCR2  CXCL1 and CXCL8 are two additional chemotactic 
chemokines secreted by a variety of cells in the WAT and 
involved in progression of cancers including PCa [116–
118]. Both chemokines have also been shown to induce 
migration, angiogenesis, metastatic progression and PCa 
aggressiveness [119, 120]. CXCL1 and CXCL8 share the 
common receptors CXCR1 and CXCR2 and Zhang et al. 
showed that both chemokines facilitated the migration of 
ASCs that express CXCR1 and CXCR2 into the tumor 
microenvironment [60]. Multiple animal and human studies 
also have confirmed higher CXCL1 and CXCL8 expression 
in obesity and high-grade PCa [120, 121]. Numerous 
cytokines and chemokines (CXCL12, TNF-α, IL-1, and 
IL-6) that are highly upregulated in obesity further stimulate 
the expression of CXCL8 [122, 123]. Binding of ligand 
with CXCR1/CXCR2 causes activation of numerous cell 
signaling events mediated via pertussis toxin-sensitive G 
protein signaling [124]. This includes dissociation of GTP-
bound Gα subunit from Gβγ subunit leading to activation 
of phospholipase C (PLC) and protein kinase C (PKC) and 
subsequent cytosolic mobilization of Ca2+ from endoplasmic 
reticulum [124, 125]. In addition, activation of CXCR1/2 
leads to induction of PI3K/AKT, RhoA, Src kinases, FAK, 
and MAPKs including ERK1/2, JNK, and p38 ultimately 
playing important roles in regulation of various cellular 
processes including migration and chemotaxis [126–129]. 
In addition to binding with CXCL1 and CXCL8, CXCR2 
also binds with the chemokine CXCL5 that is released from 
various cell types in the SVF of adipose tissue [130, 131]. 
Expression of CXCL5 is also elevated in obese patients 
as well in prostate tumor samples and is associated with 

activation of JAK/STAT, PI3K, and MAPK signaling 
pathways that ultimately leads to higher migration, invasion, 
and cell survival [131, 132]. In summary, CXCL1, CXCL5, 
and CXCL8 acting through their receptors CXCR1 and 
CXCR2 play important roles in obesity-induced PCa 
progression.

CXCL13 and its receptor CXCR5  The chemokine CXCL13 
secreted by adipocytes and other cells of the TME plays 
important role in cancer progression including induction of 
cell survival, migration, invasion, angiogenesis, and metas-
tasis [133–135]. CXCL13 triggers its effect by binding with 
the G protein-coupled receptor CXCR5. Like other G pro-
tein-coupled chemokine receptors, CXCL13/CXCR5 inter-
action leads to G protein subunit dissociation and subsequent 
induction of different downstream signaling events includ-
ing activation of ERK1/2, JNK, Src, FAK, and PI3K/AKT 
signaling [136, 137]. CXCL13 is also involved in the induc-
tion of PCa cell survival, migration, invasion, and metas-
tasis [136–138]. Hypoxia increases the expression of both 
CXCL13 and CXCR5 in adipocytes and WAT isolated from 
mice on obesity inducing diet showed increased expression 
of CXCL13 [134]. Taken together, CXCL13 along with its 
receptor CXCR5 also play an important role in obesity-
induced PCa progression.

CXCL16 and its receptor CXCR6  CXCL16 is another 
chemokine that has been shown to be involved in obesity 
and cancer and is expressed in various cells including adi-
pocytes and tumor cells. The effect of CXCL16 is mediated 
through its interaction with the GPCR, CXCR6 which when 
bound with CXCL16 leads to activation of multiple down-
stream cell signaling pathways such as PI3K/AKT, NFκB, 
ERK1/2, and GSK3β. In addition to binding with CXCR6, 
recent studies have also shown an alternative transmem-
brane-mediated signaling called “Inverse signaling” [139]. 
In this type of signaling, membrane-bound CXCL16 acts 
like a receptor and CXCL16 in soluble form binds with the 
transmembrane CXCL16 and induces activation of AKT 
and ERK and stimulates various biological effects includ-
ing induction of proliferation and reduction of apoptosis 
[139]. WAT of obese mice showed increased CXCL16 levels 
compared to non-obese mice and mice undergoing calorie 
restriction appear to show lower level of CXCL16 [140]. 
CXCL16 also involved in PCa metastasis and development 
of chemoresistance [141, 142].

4.2 � CC chemokines

In addition to CXC chemokines, various CC chemokines 
derived from WAT are also involved in obesity-related PCa 
cancer progression. Several of these are summarized in this 
section.
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CCL2  CCL2 is expressed in various tissues including adi-
pose tissue and preadipocytes [143–145] and is associated 
with macrophage mobilization in adipose tissue, chronic 
inflammation particularly inflammation of the adipose tis-
sue, and is considered a promising biomarker of human PCa 
[146]. Various proinflammatory mediators such as TNFα, 
interferon γ (IFNγ), IL-1, IL-6, transforming growth fac-
tor β (TGFβ), vascular endothelial growth factor (VEGF), 
lipopolysaccharide (LPS), and platelet-derived growth factor 
(PDGF) increase the expression of CCL2 [147]. The expres-
sion of CCL2 also increases with higher BMI and weight 
loss decreses circulatory levels of CCL2 [148]. Like many 
CXC chemokines, CCL2 also mediates its effect by binding 
with a GPCR, CCR2. CCR2 serves as the receptor for CCL2 
and this receptor ligand interaction leads to activation of dif-
ferent cell signaling pathways including STAT3, PI3K, and 
MAPK leading to increased survival, anti-apotosis, therapy 
resistance, and tumor metastasis [149, 150].

CCL3, CCL4, and CCL5  The chemokines CCL3, CCL4, and 
CCL5 share common receptor, namely CCR5, in addition to 
their other binding receptors and all three ligands are highly 
expressed in WAT and serum of obese mice compared to 
their non-obese counterparts [86, 151, 152]. WAT of obese 
mice also showed higher CCL3 level compared to lean mice. 
We also found higher CCL5 level in ppWAT of obese HiMyc 
mice compared to control mice [86]. CLL4 and CCL5 are 
also associated with promoting PCa progression through 
activation of the STAT3 signaling pathway [153, 154].

CCL7  CCL7 or monocyte chemoattractant protein-3 (MCP-
3) is a chemokine produced by various cells including adi-
pocytes and cancer cells and functions as chemoattractant 
for immune cells [36, 155–158]. There are several receptors 
for CCL7, for example, CCR1, CCR2, CCR3, CCR5, and 
CCR10 [159, 160]. During obesity, adipocytes including 
periprostatic adipocytes produce higher amount of CCL7 
[155, 161] leading to increased migration of CCR3 express-
ing cancer cells including PCa cells into the ppWAT of 
tumor microenvironments [36]. The expression of CCL7 is 
higher in the adipose tissue of patients with severe obesity 
compared to their lean counterparts and it is also associated 
with increased migratory potential of PCa cells by induc-
tion of ERK and high MMP3 level mediated through CCR3 
[162]. The level of CCR3 also shown to be higher in adipose 
tissue of obese subjects and in PCa patients and involved in 
poor prognosis [36].

4.3 � Fatty acids

Long chain fatty acid (LCFA) is mainly stored in WAT 
[163] and undergoes lipolysis due to activation of catecho-
lamines and β3 adrenergic signaling [164, 165]. Hydrolysis 

of triglycerides via various lipases such as adipose triglycer-
ide lipase, monoacylglycerol lipase, and hormone sensitive 
lipase is responsible for the release of free LCFAs [166]. 
It was reported that monoacylglycerol lipase which serves 
in the final step of lipolysis is highly expressed in andro-
gen-independent PCa cells (DU145 and PC3) compared to 
androgen-dependent cells (LNCaP) [167]. Monoacylglycerol 
lipase is also associated with a gene signature that involves 
EMT and cancer stem cell-like properties and inhibition 
of this enzyme reduces PCa aggressiveness [167]. Animal 
studies demonstrated that loss of body fat during aggressive 
cancers and growth of tumors stimulates lipolysis in adi-
pocytes [168–170]. Lower free LCFA levels reduce cancer 
pathogenicity [166] due to decreased lipolysis. Several can-
cers including pancreatic, breast, and ovarian cancers show 
increased invasive potential due to alteration in adipose tis-
sue lipolysis in tumor microenvironment [171–173]. Cancer 
cells acquire LCFAs derived from lipolysis of adipocytes 
[38] that leads to accelerated proliferation and invasion of 
breast cancer cells [74, 174, 175]. LCFAs from adipocyte 
also cause AMPK-mediated induction of mitochondrial bio-
genesis [168, 176]. Recent studies in animal models have 
shown the potential importance of adipocyte-derived LCFAs 
for PCa progression [177, 178].

5 � Brown adipose tissue (BAT) in PCa

BAT, named based on the color, was initially thought to 
be present only in infants. However, recent advancement of 
imaging techniques has led to accurate identification and 
distribution of BAT in human adults [179]. BAT plays an 
essential role in non-shivering thermogenesis. Recent evi-
dence suggests that formation of beige/brown adipose tissue 
from WAT may play a role in PCa progression [35, 180]. 
Browning of WAT is associated with higher expression of 
PPARγ or PGC-1 as well as activation of the sympathetic 
nervous system, leading to stimulation of β-adrenergic sign-
aling [181, 182]. Although the role of WAT in PCa progres-
sion has been extensively studied and is well recognized, the 
impact of BAT and the browning of WAT in PCa progression 
are not clearly understood at the present time. Further stud-
ies are clearly warranted to understand the role of BAT in 
PCa progression.

6 � Strategies to offset obesity effects on PCa 
progression

6.1 � Calorie restriction

Calorie restriction (CR) is a very potent and broad acting 
dietary intervention for weight loss and cancer inhibition in 
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experimental studies, including studies in non-human pri-
mates [183]. Using the HiMyc mouse model of PCa, a 30% 
continuous CR (cCR) diet significantly decreased in situ 
adenocarcinoma (AC) formation and completely inhibited 
the progression of AC to locally invasive PCa compared 
to both overweight control and obese mice [85]. This was 
associated with a marked reduction in mRNA expression of 
various inflammatory and angiogenesis-related genes. cCR 
further decreased various important cell signaling pathways 
in prostate lobes such as AKT/mTORC1, STAT3, NFκB, 
and CXCL12/CXCR4/CXCR7 signaling involved in cancer 
progression and metastasis [85, 86]. Galet et al. also showed 
that cCR decreased growth of 22Rv1 xenograft tumors by 
modulating IGF-1 signaling [184]. Similarly, cCR with a no 
carbohydrate ketogenic diet prolonged survival and reduced 
LAPC-4 PCa tumor growth in SCID mice by modulating 
insulin and IGF-1 axis compared to mice on a Western diet 
[185].

Translation of CR studies to human cancer prevention 
strategies is of great importance because of the high preva-
lence of overweight/obesity and the essential role of obesity 
on metabolic changes and progression of multiple cancers, 
including PCa [186]. Several funded clinical trials have 
addressed whether the potential benefits of cCR reported in 
preclinical studies translate to humans. The Comprehensive 
Assessment of Long-Term Effects of Reducing Intake of 
Energy (CALERIE) Study evaluated the impacts of a 2-year 
cCR regimen (25% less energy than controls) in nonobese, 
healthy individuals [187]. Results from this study indicated 
that humans showed many similar cCR-induced endocrine 
and metabolic changes observed in rodents and monkeys. 
The results are consistent with studies in patients at high 
risk for breast cancer showing better reduction in insulin, 
metabolic, and growth factor signaling pathways by cCR or 
2 days/week of calorie restriction (hereafter referred to as 
intermittent CR or iCR) [188–190]. The observed metabolic 
effects of iCR are particularly important, since it is much 
easier, attainable, and more feasible to restrict calories for 
2 days/week, than to chronically restrict calories. While iCR 
data show better insulin and body fat/weight reduction in 
the short-term in women [188], effects in older men and 
long-term sustainability of the weight/fat loss and metabolic 
improvements are unknown.

In contrast, clinical trials show that intentional weight 
loss of greater than 5% by cCR with exercise in men prior 
to RP is feasible. In an RCT, 25–30% cCR with exercise 
led to 5.5% of weight loss (95% CI, 4–7%) from baseline 
to RP (mean = 5 weeks) [191]. Furthermore, 26 weeks 
post-RP, the cCR group maintained or kept losing to a 
net loss of 11% initial body weight (95% CI, 8–14%). The 
cCR regimen decreased insulin, leptin:adiponectin ratio 
(LAR), and visceral adipose tissue (VAT) associated with 
inflammation (Hamilton-Reeves, unpublished data). In an 

earlier study, a novel finding of lower level of CXCL12, 
CXCR7, and CXCR4 comparing biopsy to RP tissue with 
cCR was observed [192, 193], which agrees with other 
evidence of altered gene expression of CXCR4, CCL2, 
and IGF-2 receptor in prostate tissue with 5% weight loss 
by cCR diet in four men prior to RP [194]. VAT, LAR, 
and chronic inflammation are parameters to which cCR 
weight loss studies report inconsistencies with a higher 
degree of variability. Henning et al. showed significant 
decrease in insulin and body fat, without alteration in LAR 
or trunk fat mass in a similar study design with combined 
cCR (1200–1500 kcal/day) and 60 min/day exercise [195]. 
Alternatively, Demark-Wahnefried et al. showed no change 
in insulin or body fat but a significant decrease in leptin, 
with intentional weight loss by cCR of a 1000 kcal/day 
deficit and additional 250–500 kcal expenditure through 
aerobic exercise in men prior to RP compared to the control 
group [196]; participants’ microbiota changed in response 
to types of foods but not due to cCR [197]. Wilson et al. 
showed a significant decrease in VAT and fat mass in 
a retrospective analysis of patients following cCR of 
750–1000 kcal/day and 90 min/day of aerobic exercise for 
up to 12 weeks before RP [198]. Although cCR improves 
health overall, it is possible that iCR may have as great or 
greater impact on molecular pathways and may be easier 
for adherence; thus, efficacy in men with obesity and PCa 
needs to be tested.

Data from some human studies suggest that compared 
to cCR, iCR shows greater increases in insulin sensitivity 
[188, 189], faster weight loss [188], greater reductions in 
fat mass [188], better retention of lean mass [199], altera-
tions in gut microbiota [200, 201], inflammation reduction 
[188, 202], and better LAR [188], while systematic reviews 
deem iCR and cCR equivalent for weight/fat loss and meta-
bolic changes [203, 204] although primarily only women 
were studied [205]. While it seems plausible that iCR may 
allow more flexibility for adherence and for avoiding weight 
regain, long-term effects in humans are unknown. Currently, 
there are no published human iCR intervention studies in 
patients with cancer. It is also unknown if greater metabolic 
benefits occur when the two fasting days are consecutive 
or if the carry-over effects of spontaneous CR observed on 
normal eating days persist long term [188, 189]. Restrict-
ing calories mostly from carbohydrates for 2 days/week is 
appealing for simplicity and also to mitigate risk by allowing 
sufficient protein intake on restricted days to prevent mus-
cle/function loss [206]. Some benefits may be independent 
from weight loss, with one study in healthy men showing 
improved insulin sensitivity from iCR without weight/fat 
loss [207], which is particularly interesting since men and 
women have different acute effects to fasting [208]. iCR may 
make greater improvements than cCR on the cancer bio-
markers that contribute to PCa progression and BCR.
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Since one of the major impacts of obesity is the extensive 
alteration of WAT and its secretory status, it is important 
to look at the role of CR on WAT. Several studies reported 
that cCR provides beneficial effects by modulating the WAT. 
This includes a significant decrease in adiposity leading to 
lower level of various secretory components, biosynthesis 
of fatty acid, mitochondrial biogenesis, and alteration in 
adipose tissue metabolism. In this regard, using the HiMyc 
mouse model of PCa, 30% cCR significantly decreases 
ppWAT mass as well as complete inhibition of the infil-
tration of adipocytes into the prostate gland compared to 
control or obese mice [86]. Miller et al. recently showed 
that cCR in mice significantly decreased adiposity and 
high molecular weight adiponectin levels. CR also acti-
vated downstream signaling of adiponectin receptor such 
as increased expression of peroxisome proliferator-activated 
receptor gamma coactivator 1 alpha (PGC-1α), SIRT1, and 
nicotinamide phosphoribosyl transferase (NAMPT) in adi-
pose tissue of cCR mice [209]. These authors also found a 
greater oxidative metabolic state of the adipose tissue micro-
environment [209]. In addition, adipose tissue lipid metabo-
lism was altered with cCR in mice with differences in free 
fatty acid (FFA), monounsaturated fatty acid (MUFA), and 
polyunsaturated fatty acid (PUFA) as well as decreases in 
desaturation, elongation, and omega-3 metabolism in cCR 
mice [209]. cCR also increased mitochondrial biogenesis, 
mitochondrial DNA, and oxidative phosphorylation in WAT 
[210–212]. Decreases in IL-15 signaling and TNF-α expres-
sion were also observed in WAT of cCR mice [213]. AMPK 
and SIRT1 are modulated by cCR and both of them act as 
positive regulators of PGC-1α. In addition, recent studies 
showed that induction of PGC-1α in WAT during cCR is 
mediated by sterol regulatory element-binding protein 1c 
(SREBP1c) and fibroblast growth factor 21 (FGF21) [214, 
215]. Taken together, cCR produces an array of changes in 
WAT including metabolic reprogramming leading to reversal 
of the harmful effect of obesity.

6.2 � Physical activity

Exercise training is a potential strategy to offset PCa pro-
gression. Data from several studies have demonstrated that 
a higher level of physical activity is associated with a lower 
risk of PCa progression [216] and cancer-specific mortality 
[217–219]. There is growing evidence linking the molec-
ular pathways underlying these associations. Postulated 
mechanisms of exercise training include indirect effects by 
modulating cytokines, improving glucose regulation, reduc-
ing insulin resistance, reducing adiposity, and modulating 
hormones [220]. Physical activity may also directly sup-
press tumors and the tumor microenvironment by lowering 
chronic inflammation [221], altering tumor vascularization, 

modulating growth factors, and improving immune function 
[220, 222].

Physical activity is prescribed with recommendations for 
the frequency, intensity, time/duration, and type of activity; 
however, the understanding of how these different variables 
inhibit carcinogenesis is not fully understood. Exercise phys-
iology elicits acute effects after a single bout of exercise and 
different effects after weeks of consistent exercise training. 
These differences are summarized in a review by Kim et al. 
comparing the changes in PCa cell lines treated with serum 
obtained after a single exercise session showing reductions 
in AKT, mTOR, ERK, and mitogenic activity to the changes 
in PCa cell lines treated with serum obtained after consist-
ent long-term exercise training showing increased p53, 
reduced PCNA, and increased apoptosis [223]. Interestingly, 
after single bouts of exercise, several groups have reported 
increased circulating CXCL12 directly after moderate to 
vigorous exercise [224–230] while no changes in plasma 
CXCL12 were found after a single bout of strength train-
ing [231, 232] suggesting intensity and type may impact 
this outcome in the plasma. Effects of acute or prolonged 
exercise on the prostate tissue expression of CXCL12 or 
related pathways are unknown. Wedell-Neergaard et al. 
demonstrated that IL-6 signaling is required for exercise to 
reduce visceral adipose tissue mass; IL-6 increases acutely 
after a bout of exercise [233]. In general, prolonged exercise 
interventions have been purported to lower inflammation and 
improve immune editing, and although these outcomes are 
known to be highly variable, a meta-analysis by Khosravi 
et al. of 27 exercise intervention trials in cancer (prostate 
cancer = 4) reported that exercise training decreased cir-
culating pro-inflammatory markers CRP and TNF [234]. 
As proposed by Rocha-Rodriques et al., exercise training 
may also alter the tumor microenvironment by the effects 
on the secretions of adipokines from WAT/ppWAT and on 
secretions of myokines by skeletal muscle and the crosstalk 
between the two [235]; however, these effects have not yet 
been tested in patients with PCa or in animal models of PCa. 
Idorn et al. proposed the idea of using exercise to help hone 
T cells for immunotherapy through its effects of promot-
ing infiltration of immune cells into the tumor [236]. These 
data open several future exciting areas of research, including 
adjuvant exercise with cancer therapy.

A meta-analysis by Bourke et al. found that exercise inter-
ventions across all stages of PCa improved cancer-specific 
quality of life and cancer-specific fatigue in men with up to 
6 months of follow-up [237]. A more recent meta-analysis 
by Anderson et al. confirmed that exercise improved cancer-
specific quality of life with a greater magnitude than previ-
ously reported and significantly improved cardiovascular 
fitness as well [238]. An interesting sub-study of INTER-
VAL-GAP4 trial [239] which uses moderate to high inten-
sity exercise training for 6 months showed tumor suppressive 
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effects in the supervised exercise arm compared to the con-
trol arm when serum obtained from participants with meta-
static PCa was added to the human PCa cell line, DU145 
[240]. In summary, exercise training is a potential strategy 
to offset the progression of PCa with or without obesity and 
there are several potential areas of research opportunities to 
further evaluate the impact of frequency, intensity, duration, 
and type of exercise training to benefit patients with PCa at 
various stages of disease.

6.3 � Calorie restriction mimetics (CRM)

Although numerous studies have established the potential 
benefit of cCR from animal studies to humans for a large 
number of diseases including obesity and cancer, it is 
extremely difficult to maintain a certain level of cCR for 
a long period of time to get a desired clinical outcome. In 
addition, since there are no prolonged cCR studies in human, 
it is still unclear whether long-term dietary restrictions might 
cause any adverse side effects. An alternative approach is the 
use of agents that can provide the similar benefits of CR 
without altering the dietary manipulations. This has led to 
recently developed concept of CRM to describe the agents or 
molecules that mimic the beneficial effects of CR. In order 
to be an ideal candidate, CRM agents are proposed [241] to 
have several key characteristics including (i) exert the simi-
lar physiological, metabolic, and hormonal effects produced 
by CR; (ii) not significantly decrease long-term food intake; 
(iii) produce similar levels of stress response pathways and 
show protection against a variety of stressors seen in CR; 
and (iv) reduce age-related diseases as well as inflammation 
and autoimmunity. Based on these criteria, several agents 
have been identified as CRM agents including 2- Deoxy-
D-Glucose, metformin, rapamycin, peroxisome proliferator-
activated receptor (PPAR) activators, and certain natural 
phytochemicals such as resveratrol, curcumin, EGCG, and 
quercetin. Here we will briefly discuss the potential benefits 
of some of the CRM agents in reversing the effects of obe-
sity and PCa progression.

Resveratrol  The plant-derived polyphenol resveratrol is 
found in grapes, berries, peanuts, and red wine. Numerous 
studies reported the potential health benefits of resveratrol 
including its effects as anti-cancer, anti-aging, anti-diabetes, 
and as an anti-obesity agent [242]. Recently, resveratrol has 
been considered as an ideal CRM agent for its role in meta-
bolic effects and effects on adipose tissue. In this regard, 
Lagouge et al. showed that dietary administration of resvera-
trol significantly decreased the body weight and WAT depos-
its in mice maintained on a high-fat diet [243]. Several other 
reported studies also confirmed that resveratrol decreases 
body weight and WAT mass in mice on HFD [244–246]. 
Although there are only a few human trials to evaluate the 

effect of resveratrol in comparison to vast majority animal 
studies, the beneficial effect of resveratrol was still evi-
dent. For example, administration of resveratrol at a dose 
of 500 mg 3 × /day for 3 months in patients with metabolic 
syndrome [247] showed significant decrease in body weight, 
BMI, fat content, and waist circumference (WC) compared 
to patient with placebo group. Similarly, several other clini-
cal trials found positive outcomes of resveratrol intake and 
body weight reduction as well as decrease in adipose tis-
sue mass [248–250]. In addition to its effect on obesity 
and WAT mass, resveratrol has shown potential benefit 
as an anti-cancer agent for several cancers including PCa 
[251–255]. Preclinical studies using both cultured cells and 
transgenic animal models of PCa showed that resveratrol 
decreases PCa cell growth and metastasis by modulating 
multiple cell signaling pathways [251, 252, 256, 257]. For 
example, Seth et al. reported that oral administration of res-
veratrol decreases xenografted PCa tumor growth and lung 
metastasis by modulating AKT/miRNA-21 pathway [251].

Curcumin  Curcumin is another plant-derived polyphenolic 
compound with CRM activity. It is present in the rhizome 
of the plant Curcuma longa, widely consumed as a food 
additive and several studies showed potential anti-obesity 
effect of curcumin. Dietary administration of curcumin 
showed significant weight loss in both DIO and ob/ob mice 
[258]. Curcumin also showed reduction of macrophage 
infiltration in WAT, reduced NFκB activity, and increased 
adiponectin production [258]. Shao et al. similarly reported 
that curcumin feeding reversed the HFD-induced weight 
gain in mice [259]. In addition, curcumin administration 
increased insulin sensitivity, decreased oxidative and inflam-
matory signaling in adipocytes, and decreased lipogenic 
gene expression in the liver [259]. Additionally, Ejaz et al. 
reported that supplementation of 500 mg/kg of curcumin 
per day in 22 kcal% HFD significantly reduced body weight, 
adipose tissue mass, and microvessel density in adipose tis-
sue along with decreased expression of VEGF and VEGFR2 
compared to mice fed in HFD [260]. Numerous cell culture 
and preclinical animal model studies also showed the ability 
of curcumin to inhibit growth and progression of various 
cancers including PCa [261]. In addition, several completed 
and ongoing clinical studies with curcumin show promise 
for its effect on cancer treatment [261].

Quercetin  Quercetin is a widely studied polyphenolic com-
pound present in a diverse range of fruits and vegetables 
including apple, berries, onion, broccoli, cherries, and red 
grapes [262]. Quercetin is considered as a CRM because 
of its potential to modulate many cellular changes that are 
similar to changes observed with cCR. For example, several 
studies have reported that administration of quercetin causes 
activation of AMPK, reduction in inflammation, induction of 

656 Cancer and Metastasis Reviews (2022) 41:649–671



1 3

autophagy, and lifespan increase [263–267]. In mice main-
tained in 40 kCal% HFD, dietary supplementation of querce-
tin (0.33%) produced significant decrease in body weight 
gain, lipid level in serum, and liver without modulation of 
energy intake [268]. In another study, oral administration 
of 100 μg/day quercetin produced a 29% decrease in body 
weight of C57BL6 mice. Additionally, quercetin together 
with exercise showed further decrease in body weight with 
43.5% reduction compared to control mice [269]. Recently, 
Pei et al. reported that dietary administration of 1% querce-
tin decreased inflammation in brown adipose tissue (BAT) 
in HFD-induced obese mice by modulation of NFκB and 
SIRT1 signaling [270]. Furthermore, Dong et al. showed 
that 0.1% quercetin decreased body weight gain in C57BL/6 
mice fed a HFD and improved glucose intolerance and 
insulin sensitivity. Quercetin administration also decreased 
expression of proinflammatory cytokines and activated 
AMPK and SIRT1 in epididymis adipose tissue of HFD-fed 
mice [265]. In comparison to a vast majority of animal stud-
ies, there are only a few human studies [271, 272] to evaluate 
the potential CRM benefits of quercetin. For example, in 
a randomized, double-blind, placebo-controlled study, Lee 
et al. reported that daily intake of onion peel extract capsules 
containing 100 mg of quercetin significantly decreased the 
body weight, BMI, and percentage of body fat in subjects 
in the treated group compared to the subjects in the placebo 
group [271]. Thus, in order to fully elucidate the benefi-
cial effect of quercetin as a CRM agent, further properly 
designed human studies are necessary.

Metformin  Worldwide, metformin is a highly prescribed 
agent used for the treatment of type II diabetes and sev-
eral studies identified its potential as a CRM agent [88, 241, 
273, 274]. In this regard, several animal studies showed 
anti-cancer, anti-aging, and lifespan extension after treat-
ment with metformin. For example, Martin-Montalvo et al. 
reported that long-term administration of 0.1% metformin 
in drinking water increased survival of mice compared to 
control and was associated with better physical performance, 
higher insulin sensitivity, lowered LDL and cholesterol lev-
els, and activation of AMPK [273]. In another study, Ani-
simov et al. showed that female outbred SHR mice treated 
with 100 mg/kg of metformin in drinking water produced a 
decrease in body weight and extension of the mean lifespan 
by 37.8% compared to control mice [274]. Numerous pub-
lished data in preclinical models including our own studies 
suggested the potential anti-cancer effect of metformin in 
part due to modulation of multiple cell signaling pathways 
as well as its effect on body weight reduction [88, 275, 276]. 
Although there is a growing interest for the potential anti-
cancer and anti-obesity effects of metformin, the results in 
human studies have been inconsistent. A review by Lev M 
Berstein nicely pointed out some of the factors related to 

the inconsistency [277]. However, future, more carefully 
designed long-term human clinical studies will be needed 
to provide definitive information related to the use of met-
formin as a CRM agent in treating cancer and obesity. In 
this regard, multiple clinical studies are currently ongoing in 
several countries with metformin to clarify its role in cancer 
and obesity.

Rapamycin  Rapamycin is a potent bacterial derived mac-
rolide compound used widely for its role as immunosup-
pressant treatment for organ transplant recipients as well as 
in autoimmune disorders. Rapamycin possesses many char-
acteristics of cCR and numerous reports including our own 
studies showed the potential anti-aging, anti-obesity, anti-
cancer, and lifespan extension effect of rapamycin in animal 
models [275, 278–280]. Chang et al. showed that rapamycin 
treatment decreased body weight and epidydimal fat pad in 
obese C57BL/6 mice maintained on HFD compared to con-
trol treatment [279]. We also showed that rapamycin treat-
ment reduced TPA-induced skin tumor promotion as well as 
reduction of PCa progression in HiMyc mouse model with 
complete inhibition of adenocarcinoma formation in this 
mouse model [275, 280]. Similar to cCR, rapamycin exerts 
it effect by inhibiting mTORC1 signaling pathways with 
subsequent decrease in activation of downstream signaling 
pathways, including p70S6K and ribosomal S6 kinase [85, 
275], and might serve as a potential CRM agent for treating 
obesity and cancer including PCa.

Phytochemical combinations as CRM  The use of combina-
tions of agents including phytochemical combinations for 
various diseases such as cancer has received considerable 
recent interest due to the potential to (i) provide synergistic 
effects, (ii) target multiple cell signaling pathways leading 
to better beneficial effects, and (iii) produce less toxic effects 
due to smaller dose requirements. Several recent studies 
including our own studies with combinations of agents have 
shown effects on obesity as well as modulation of key sign-
aling such as AMPK [275, 281]. In this regard, one recent 
study by Lee et al. showed that treatment with a combination 
of phytochemicals containing p-octopamine hydrochloride, 
p-synephrine, and hispidulin significantly lowered the body 
weight of HFD-induced obese mice compared to control 
mice with concomitant decrease in the expression of various 
adipogenic markers such as CCAAT/enhancer-binding pro-
tein alpha (C/EBPα), CCAAT/enhancer-binding protein beta 
(C/EBPβ), and peroxisome proliferator-activated receptor 
gamma (PPARγ) [281]. Furthermore, combinations of sev-
eral phytochemicals (resveratrol, genistein, and quercetin) 
together with vitamin D showed decreased body weight and 
adiposity compared to control diet in aged ovariectomized 
rats. We also showed that combinations of curcumin + urso-
lic acid, resveratrol + ursolic acid, curcumin + resveratrol, 
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and metformin + rapamycin produced significant decreases 
in tumor growth in a PCa allograft tumor model as well 
as in the HiMyc mouse model of PCa [275, 282]. In addi-
tion, these combinations of agents have shown induc-
tion of AMPK, a signaling pathway previously shown to 
be activated by cCR and considered as a marker of CRM 
[275, 282]. Taken together, the concept of using combina-
tions of agents including phytochemical combinations has 
shown promise and should be considered as potential CRM 
approach for treating obesity-related cancer, including PCa.

6.4 � Targeting ASC in WAT and the tumor 
microenvironment

As noted above, ASCs are believed to play a major role in 
obesity-driven PCa progression. Targeting ASC in WAT and 
the tumor stroma could be a strategy for offsetting the effects 
of obesity on PCa progression. By screening a combinato-
rial library in vivo, Kolonin and colleagues isolated a cyclic 
peptide called WAT7 with a sequence of CSWKYWFGEC 
that attacks ASCs that are found in both WAT and tumor 
stroma [283, 284]. This peptide was attached to another pep-
tide (KLAKKLAK) to generate the “Hunter-Killer” peptide 
and ultimately targeting and killing ASCs. This hybrid pep-
tide, called D-CAN, has been used to selectively deplete 
ASCs in vivo [284, 285]. In this regard, D-CAN has been 
tested in vivo for suppression of EMT and tumor growth 
in obese mice [79]. D-CAN injected into mice harboring 

HMVP2 allograft tumors led to significant inhibition of 
tumor growth, reduced periprostatic WAT, and a reversion 
of EMT-related changes in the tumors [79]. In addition, 
targeting ASC has been shown to reverse chemoresistance 
in both mouse allograft and human xenograft PCa models 
[79]. Further studies have revealed that targeting ASCs with 
D-CAN in vivo in obese HiMyc mice significantly reduced 
the number of CXCL12 producing cells in tumor stroma and 
reversed EMT changes associated with obesity [178]. These 
and other data have provided strong evidence that ASCs are 
the source of CXCL12 involved in driving PCa progression 
in obesity and that targeting ASCs could be a novel strategy 
for offsetting the effects of obesity on PCa.

6.5 � Targeting FAs

In PCa, higher lipogenesis is a characteristic feature of more 
advanced PCa [286]. As noted above, reduced levels of free 
LCFA have been shown to reduce cancer pathogenicity 
[166] due to decreased lipolysis. These observations have 
prompted investigation into whether lipogenesis enzymes 
might represent therapeutic targets in obesity and PCa [166]. 
FA synthase (FASN) inhibitors have been shown to reduce 
cancer cell viability and have demonstrated promise in stud-
ies using animal models of PCa [287]. Unfortunately, sys-
temic toxicity has been a problem with lipogenesis inhibitors 
as well as the observation that cancer cells can switch to 
extracellular LCFA utilization thereby resisting the effects 

Table 1   Strategies to offset obesity effects on PCa progression

Strategies Effects Signaling changes Ref

Calorie restriction • Reduction of body weight
• Alteration in gut microbiota
• Reduction of inflammation
• Reduction of WAT and ppWAT​
• Changes in metabolism

• Reduction of PI3K/AKT/mTOR signaling
• Inhibition of JAK/STAT pathway
• Decreased NFκB signaling
• Decreased CXCL12/CXCR4/CXCR7 

signaling
• Decreased insulin/IGF1/growth factors

[85, 86, 
184, 188, 
191, 195, 
200–202]

Physical activity • Reduction of PCa progression
• Improvement of metabolic function
• Improved insulin sensitivity
• Improved cancer-specific quality of life 

and cancer-specific fatigue

• Reduction of AKT/mTOR, ERK signal-
ing

• Induction of p53

[216, 223, 237]

Calorie restriction mimetics (CRM) • Decreased body weight, BMI, and WAT​
• Reduction of macrophage infiltration in 

WAT​
• Increased insulin sensitivity
• Reduction of inflammation
• Induction of autophagy
• Lowered LDL and cholesterol

• Reduced NFκB activity
• Decreased expression of VEGF and 

VEGFR2
• Activation of AMPK and SIRT1
• Inhibition of mTORC1 signaling

[244–246, 
259, 260, 
263–267, 
270, 273, 
275]

Targeting ASCs • Suppression of EMT
• Inhibition of tumor growth
• Reduction of periprostatic WAT​
• Reversal of chemoresistance

• Decreased CXCL12 signaling [79, 178]

Targeting chemokine receptors • Suppression of EMT
• Inhibition of PCa progression

• Reduction of STAT3, ERK, and JNK 
signaling

[92–96]
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of these types of inhibitors [288]. Further development of 
agents and research in this area is warranted to determine 

whether targeting FAs is a viable approach for treating obe-
sity-driven PCa progression.

Fig. 1   Obesity-driven PCa progression and intervention strategies. 
Obesity is associated with adipocyte hypertrophy and hyperpla-
sia along with the presence of higher number of other cells such as 
ASCs, immune cells, and endothelial cells. These increased number 
of cells produce and secrete excessive amount of various signaling 
molecules and factors including various inflammatory chemokines 
(CXCL1, CXCL8, CXCL12 etc.), cytokines (IL-1, IL-6, TNFα), and 
growth factors (IGF-1, VEGF). These factors modulate multiple cell 
signaling pathways such as PI3K/AKT/mTOR, JAK/STAT3, ERK/

JNK/p38 MAPK, NFκB, insulin/IGF-1, and MAPK signaling leading 
to higher EMT, proliferation, survival, angiogenesis, inflammation, 
migration, invasion, and tumor progression that ultimately results in 
development and progression of aggressive PCa. There are several 
interventional strategies such as use of CR and CRM, physical activ-
ity, and approaches that target ASCs, FAs, and chemokine receptors 
that could be utilized to reverse the effect of obesity on aggressive 
PCa
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6.6 � Targeting chemokine receptors

As noted above, various chemokines have been shown to 
play a role in obesity-driven PCa progression. ASCs pro-
duce CXCL12 which has been linked, at least in part, to PCa 
aggressiveness in obesity [79, 86, 178]. CXCL12 binds to 
both CXCR4 and CXCR7 [92]. Both CXCR4 and CXCR7 
are highly expressed in various tumors [103, 104, 289, 290] 
and have been proposed as important players in cancer pro-
gression [291, 292]. CXCL12 binding to CXCR4 activates 
several signaling pathways related to cell survival, angiogen-
esis, and cell proliferation, such as JAK-STAT, PI3K-AKT-
NFκB, and MEK-ERK signaling [293–295]. CXCR7 is an 
atypical chemokine receptor, and its role in cancer progres-
sion has been somewhat controversial [95, 296]. Previously, 
we reported a correlation of CXCR4 and CXCR7 expres-
sion in obesity with increased HiMyc tumor growth and also 
demonstrated the importance of CXCL12 signaling for can-
cer cell invasiveness as noted above [86]. Notably, blockade 
of either CXCR4 (either genetically or pharmacologically) 
or CXCR7 (pharmacologically) suppresses obesity-driven 
EMT and PCa progression in mouse models [297].

A summary of the various strategies discussed above, to 
offset the effects of obesity on PCa, is presented in Table 1.

7 � Conclusions and future perspectives

While not completely defined, it is clear from current 
research that ppWAT and cells within this compartment, 
especially ASCs, are critical drivers of PCa progression in 
obesity. Multiple mechanisms likely play a role in obesity-
driven PCa progression but secreted factors, especially 
chemokines appear to play a significant role. In addition to 
chemokines, other molecules such as cytokines, angiogen-
esis factors, growth factors, and lipids [27, 30, 84] also likely 
contribute to the effects of obesity with the possibility that 
multiple pathways that are activated may synergize to drive 
PCa aggressiveness and chemoresistance. The accumulating 
knowledge of mechanisms has led to research into strategies 
to offset the effects of obesity on PCa and other cancers and 
include weight loss interventions, CRMs, and more targeted 
approaches to block specific signaling pathways. Figure 1 
summarizes some of the relevant mechanisms associated 
with obesity-driven PCa progression and potential preven-
tion/treatment strategies discussed in this review. Further 
understanding of the cellular and molecular mechanisms 
underlying the activity of ppWAT and in particular ASCs, 
as well as other components of the ppWAT, will allow fur-
ther development of strategies for their inhibition and will 

facilitate the development of strategies to reduce obesity-
associated PCa progression.
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