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Abstract
To date, the use of immune checkpoint inhibitors has proven largely ineffective in patients with advanced pancreatic ductal
adenocarcinoma. A combination of low tumor antigenicity, deficits in immune activation along with an exclusive and suppres-
sive tumor microenvironment result in resistance to host defensives. However, a deepening understanding of these immune
escape and suppressive mechanisms has led to the discovery of novel molecular targets and treatment strategies that may hold the
key to a long-awaited therapeutic breakthrough. In this review, we describe the tumor-intrinsic and microenvironmental barriers
to modern immunotherapy, examine novel immune-based and targeted modalities, summarize relevant pre-clinical findings and
human experience, and, finally, discuss novel synergistic approaches to overcome immune-resistance in pancreatic cancer.
Beyond checkpoint inhibition, immune agonists and anti-tumor vaccines represent promising strategies to stimulate host re-
sponse via activation and expansion of anti-tumor immune effectors. Off-the-shelf natural killer cell therapies may offer an
effective method for bypassing downregulated tumor antigen presentation. In parallel with this, sophisticated targeting of
crosstalk between tumor and tumor-associated immune cells may lead to enhanced immune infiltration and survival of anti-
tumor lymphocytes. A future multimodal treatment strategy involving immune priming/activation, tumor microenvironment
reprogramming, and immune checkpoint blockade may help transform pancreatic cancer into an immunogenic tumor.
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) has the highest
case-fatality rate of any solid tumor and is projected to
surpass colorectal cancer as the 2nd leading cause of
cancer-related mortality nationally in the next 5 years [1,
2]. Even for the 15–20% of patients who are eligible for
curative resection at diagnosis, their 5-year overall surviv-
al remains discouraging low at 20% with >80% of cases
recurring just 2 years post-surgical intervention [3]. The
current mainstay of treatment for advanced PDAC con-
tinues to be limited to largely two cytotoxic chemotherapy

regimens: (1) fluorouracil, leucovorin, irinotecan, and
oxaliplatin (FOLFIRINOX); (2) gemcitabine (Gem) and
nanoparticle albumin-bound paclitaxel (NP) [4–6]. While
immune checkpoint blockade (ICB), namely inhibitors of
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4),
programmed cell death protein 1 (PD-1)T-cell check-
points, has dramatically changed frontline therapy and
survival outcomes in an impressive breadth of solid tu-
mors, it has proven, largely, ineffective in patients with
PDAC. With the exception of mismatch repair-deficient/
microsatellite instability high (dMMR/MSI-H) tumors,
which account for <1% of all PDAC tumors, there are
currently no approved immunotherapy (IO) regimens for
PDAC [7, 8]. However, IO remains an area ripe for
novel targets and strategies that could lead to therapeu-
tic breakthroughs in PDAC. In this review, we will
describe tumor-intrinsic and microenvironmental barriers
to effective IO in PDAC, examine novel IO and
targeted modalities, summarize relevant pre-clinical find-
ings and clinical trial experience, and discuss novel

* Nilofer Azad
Nazad2@jhmi.edu

1 Department of Medical Oncology, Sidney Kimmel Comprehensive
Cancer Center, Johns Hopkins University School of Medicine,
Baltimore, MD, USA

https://doi.org/10.1007/s10555-021-09981-3

/ Published online: 30 September 2021

Cancer and Metastasis Reviews (2021) 40:837–862

http://crossmark.crossref.org/dialog/?doi=10.1007/s10555-021-09981-3&domain=pdf
https://orcid.org/0000-0003-2606-3379
https://orcid.org/0000-0002-9613-3988
mailto:Nazad2@jhmi.edu


synergistic approaches to overcome the intrinsic
immune-resistance in PDAC.

2 Contemporary IO and PDAC

2.1 CTLA-4 and PD-[L]1 Checkpoint Inhibition

Unrivaled in clinical experience and commercial ubiquity, in-
hibitors of CTLA-4 and PD-[L]1 T-cell checkpoints form the
cornerstone of modern immunotherapy. Briefly, the binding
of CTLA-4 on activated T-cells by its ligands B7-1|2 prevents
CD28 co-stimulation and leads to T-cellanergy/apoptosis [9].
Generally, while CTLA-4 functions during central T-cell
priming, PD-1 signaling functions during the T-cell effector
phase in the peripheral tissues. The binding of PD-1 on T-cells
with its ligand, PD-L1, inhibits T-cell activation and leads to
T-cell exhaustion. Unlike CTLA-4 which is T-cell exclusive,
PD-1 is expressed on activated T-cells, B cells, and myeloid
cells [9]. Cancer cells and tumor-recruited immune cells over-
express PD-L1 as a means to blunt and escape T-cell-mediated
immune response [10]. Though the expression of both
CTLA4 and PD-L1 is upregulated and associated with poor
outcomes in PDAC [11, 12], the targeting of these check-
points has not improved upon outcomes with current standard
of care (SOC). In early phase clinical trials, the anti-CTLA-4
antibodies, ipilimumab and tremelimumab, were ineffective
as monotherapies and demonstrated no additive benefit when
added to a Gem-backbone in patients with previously treated
PDAC [13–15]. In KEYNOTE-028, objective response rate
(ORR) among PDAC patients treated with pembrolizumab
monotherapy (aPD-1 mAb) was 0% and median
progression-free survival (mPFS0) was just 1.7 months [16].
Durvalumab (aPD-L1 mAb) also proved ineffective both as a
monotherapy (0% ORR) and when combined with CTLA-4
blockade (3.1%ORR and 22% incidence of grade 3+ toxicity)
in patients advanced PDAC [17].

2.2 IO-responsive PDAC

While conventional ICB has disappointed in PDAC, overall,
there are rare, but notable exceptions. Patients with mutations
in homologous recombination repair genes may lead to in-
creased genomic instability and IO-sensitivity but evidence re-
mains anecdotal. In small case series of patients with refractory
mPDAC harboring either germline BRCA or RAD51 muta-
tions, one patient (gBRCA1 mutated) achieved a durable com-
plete response while another (gRAD51C mutated) had an on-
going PR when treated with combination ipilimumab and
nivolumab [18]. More robust data in ICB-responsive PDAC
has been observed in patients with tumors characterized as
dMMR/MSI-H. KEYNOTE-158 included 22 patients with
dMMR/MSI-H advanced, heavily pretreated, PDAC who had

an observed 18% ORR (1 CR, 3 PR) and a median duration of
response (DOR) of 13.2 months with pembrolizumab mono-
therapy. It should be noted that mPFS and mOS for patients
with this rare genotype were still only 2.0 and 4.0 months,
respectively. When comparing across dMMR/MSI-H GI pri-
maries, the 18% ORR of PDAC underperforms compared to
cholangiocarcinoma (40.9%), small intestine (42.1%), gastric
(45.8%), or colorectal adenocarcinomas (53%) [8, 19]. While
this remains a promising treatment signal, the noticeable dispar-
ity in therapeutic response reinforces the need for novel combi-
natorial strategies to achieve a breakthrough in IO and improve
survival in PDAC, regardless of MMR status.

2.3 Intrinsic immune-resistance

An anti-tumor immune response requires tumor recognition,
immune cell activation, tumor bed infiltration, and immune-
mediated cytolysis (Fig. 1). PDAC has adapted well to evade
immune surveillance and suppress immune response at each
of these levels: a combination of low tumor antigenicity, def-
icits in immune activation along with an exclusive and sup-
pressive tumor microenvironment all act as individual road-
blocks to effective IO in PDAC (Fig. 2). Strategic targeting of
these immunologic barriers may optimize the anti-tumor po-
tential of IO-based therapies in PDAC.

3 [IO barrier] impaired tumor recognition
and blunted host immune response

The process of adaptive immune recognition should be initi-
ated when tumor antigens are processed and displayed onto
major histocompatibility complexes (MHC/HLA) by nucleat-
ed cells (class I) and antigen presenting cells (class II) [20].
Once these antigenic flags are taken up by antigen presenting
cells (APCs), such as dendritic cells (DCs), these
immunostimulatory cells then traffic to lymph nodes and sec-
ondary immune organs to mature and present their antigen-
MHC complex to previously quiescent naïve T-cells [20].
Following T cell receptor (TCR) binding with the antigen-
MHC(or antigen-HLA) complex, along with a co-
stimulatory signal, the T cell undergoes clonal expansion
and differentiation towards effector (CD8+ cytotoxic T lym-
phocytes [CTL] and CD4+ helper T cells [Th]) and memory
functions (central [Tcm], tissue resident [Trm]& effector
[Tem] subtypes) [21]. There are three main areas where
PDAC hampers this process: (1) antigenic load, (2) tumor cell
MHC presentation, and (3) APC dysfunction.

3.1 [IO barrier] low tumor neoantigen burden

Although the proteins encoded by cancer genes are intracellu-
lar, short peptides (epitopes) derived through proteolytic
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processing within the tumor cell are presented on the cell
surface by MHC (HLA) molecules for recognition as self/
foreign antigen by surveilling immune cells. There are three
broad categories of tumor antigens:

1) Tumor-associated antigens (TAA)—normal host proteins
that demonstrate distinct expression profiles between host
and tumor cells. Though the best characterized, TAAs
induce limited endogenous T cell responses due to central
tolerance and/or lower TCR-MHC binding affinity due to
similarity to self-peptides [22].

2) Cancer-germline or cancer/testis antigens (CTA)—CTAs
can be expressed in testes, fetal ovaries, or trophoblasts,
but are otherwise absent in healthy somatic cells [22].
Although CTA targets are also shared between tumors,
they are known to be expressed in only a limited number
of tumor types, potentially reducing the applicability of
CTA-targeted immunotherapy [23].

3) Tumor-specific antigens (TSA)—these cancer-restricted an-
tigens are generated from tumor-specific mutations
(neoantigens) and oncogenic viral proteins (e.g., HPV,
EBV). Since neoantigens arise from non-synonymous so-
matic mutations during oncogenesis, they are uniquely
expressed on tumors, and T cells involved in their

recognition are less likely to be eliminated by central toler-
ance [23]. For the purposes of this review, antigens in the
context of “antigen burden” or “tumor antigenicity”will be
in reference specifically to tumor neoantigens (TSAs).

Tumor mutational burden (TMB), a predictor of ICB re-
sponse [24], strongly correlates neoantigen load [25]. As com-
pared to PDAC, ICB-responsive tumors, such melanoma,
non-small cell lung cancer (NSCLC), and dMMR tumors,
generally have significantly higher TMB indices and
neoantigen loads (1000s–10,000s) [26]. In comparison,
PDAC expresses an average of 30–50 neoantigens per tumor
[27]. Among those small numbers, only a select few immuno-
genic neoantigens can trigger T cell activation and expansion.
Consistent with this, data shows that tumors with both abun-
dant CD8+ T cell infiltrates and a high volume of
neoantigens—but neither alone—are associated with the lon-
gest survival in patients with PDA [28].

3.1.1 [IO strategy] increase the tumor antigen/neoepitope
pool with radiation and DNA damage repair inhibition

Radiation Combining localized radiation therapy (RT, SBRT)
with ICB may provide a boost to what is known as the

Fig. 1 Adaptive Immune Response in Cancer Immunotherapy relies
on the ability of host immune cells to recognize cancer as cells that need
to be eliminated. For this to happen, a tumor cell needs to alert surveilling
antigen presenting cells (APCs), such as dendritic cells (DC), that they are
abnormal by expressing antigens on their cell surface. When APCs
recognize this abnormal signal, they take up the antigen, traffic to

lymph nodes to mature and, in turn, activate cytotoxic and helper T
cells with T cell receptors (TCR) specific to that tumor antigen. Once
these T cells are activated, they should further differentiate, expand, and
migrate to the tumor bed and kill that tumor cell. Adapted from “Antigen
Presentation in Cancer”, by BioRender.com (2021). Retrieved from
https://app.biorender.com/biorender-templates
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“Abscopal Effect”—an observation of focal intervention in-
ducing a systemic antitumor response in sites outside the treat-
ment area [29]. This is presumably due to RT-induced tumor
cell injury leading production of additional tumor antigens
which are then engulfed by APCs [30, 31]. In addition, RT
can diversify the TCR repertoire of intratumoral and periph-
eral T-cells and can synergize with ICB through non-
redundant immune activation mechanisms [32–34].
Preliminary results from a phase II study examining use of
dual CTLA-4 and PD-1 blockade with RT(NCT03104439)
have shown promising results as a strategy to stimulate im-
mune response in patients with pretreated metastatic PDAC.
Among 22 patients enrolled, all pMMR tumors, disease

control rate (DCR) was 27% and ORR was 14% including 1
CR. Notably, all objective responses occurred outside of the
radiation field [35]. There are several other ongoing clinical
trials looking at RT in combination with several classes of IO
and TME modifying therapies (e.g., NCT03599362,
NCT02648282, NCT04327986).

DNA damage repair modulators Defective DNA repair re-
sponse (DDR) pathway mutations—such as BRCA1,
BRCA2, ATM, and PALB2—occur frequently in both inherited
and sporadic PDAC [36]. Germline DDRmutations are found
in 5–10% of PDAC patients. Additionally, a quarter of PDAC
tumors carry somatic mutations in either BRCA1, BRCA2,

Fig. 2 Mechanisms of Immune Resistance in Pancreatic Cancer
Pancreatic cancer (PDAC) has several protections against the generation
and execution of an anti-tumor hostimmune response. A) PDAC’s low
antigen burden, sequestration of MHC/HLA-I molecules, and local
tolerogenic TME signaling all contribute to poor immune surveillance
and stunt normal dendritic cell maturation. Without normal antigen
processing and presentation, anti-tumor effectors are not activated. B) If
activation and clonal expansion of effector T cells still does manage to
occur, trafficking to the tumor bed is complicated by disrupted
chemokines gradients, abnormal vasculature, and the desmoplastic
tumor stroma that acts as both a physical & chemical barrier to entry.
C) Anti-tumor immune cells that are able to penetrate the TME are

quickly exhausted by local metabolic conditions combined with
immunosuppressive molecular crosstalk (e.g. upregulated interleukin 1
beta [IL-1b ], transforming growth factor beta [TGFb], interleukin 10
[IL-10], and beta-catenin [b-catenin]) between tumor and tumor-
coopted immune cell populations (cancer-associated fibroblasts [CAF];
tumor associated macrophages [TAM]; tumor associated neutrophils
[TAN]; tolerogenic dendritic cells [DC]; myeloid derived suppressor
cells [MDSC]; type II T helper cells [Th2]; T regulatory cells [Treg]; B
regulatory cells [Breg]). Adapted from “Challenges for CAR T-Cell
Immunotherapy in Solid Tumors” and “Tumor Extracellular Matrix
Reduces Therapeutic Efficiency in Solid Tumors”, by BioRender.com
(2021). Retrieved from https://app.biorender.com/biorender-templates
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and other “BRCA-like” DNA repair genes (e.g., ATM, ATR,
BARD1, BRIP1, CHK1, CHK2, PALB2, RAD51, and FANC)
[37]. These mutations may predict increased sensitivity to
platinum-based chemotherapy and could be therapeutically
targetable 34. Poly ADP-ribose polymerase inhibitors
(PARPi) were welcomed into the arsenal of approved pancre-
atic cancer treatments after maintenance olaparib demonstrat-
ed a significant PFS and OS benefit of in advanced PDAC
patients harboring germline BRCA mutations who had dis-
ease control with first-line metastatic therapy [38]. Inhibiting
DDR with PARPi may lead tumor cells to develop a more
immunogenic repertoire of antigens and cause release inter-
ferons to serve as signals for immune response that can be
further augmented with ICB [39]. Preclinical data have shown
that treatment with PARP inhibition is associated with upreg-
ulated PD-L1 expression in the TME [40]. Consistent with
this observation, synergy between PARPi and ICB has been
demonstrated in mouse models of BRCA1-deficient ovarian
and breast cancers [41, 42]. Current ongoing studies of
BRCA-mutated PDAC patients include neratinib (PARPi) in
combination with dostarlimab (anti-PD1) (NCT04493060),
dostarlimab plus RT (NCT04409002), nivolumab, or
ipilimumab (anti-CTLA-4) (NCT03404960). Outside of
PARPi, ATM and ATR inhibitors are in the early stages of
clinical development in patients with solid tumors, but preclin-
ical data has suggested potential therapeutic synergy between
these inhibitors, chemotherapy, ICB, and RT. [43–46]

3.1.2 [IO strategy] administering anti-cancer vaccines
and immune adjuvants to optimize immune priming

To overcome the issue of low immune recognition of PDACs,
several anti-cancer vaccine platforms have been developed to
generate a novel or boost existing immune responses [47].
Several vaccination strategies have demonstrated antigen-
specific immunological responses in patients with PDAC
[48–50].

GVAX The most extensively studied vaccine in PDAC is the
allogenic, whole-cell vaccine, GVAX. GVAX is composed of
two human PDAC cell lines modified to express granulocyte-
macrophage colony stimulating factor (GM-CSF) to activate
T-cells against a variety of tumor antigens. This whole cell,
allogeneic vaccine is less specific, but offers the advantages of
being standardized, and faster to give off-the-shelf to patients.
This is as opposed to autologous, personalized vaccines that
use the patient’s own tumor as an antigen source [51]. In
clinical trials, GVAX combined with chemoRT in the adju-
vant setting for resected PDAC revealed an expansion of
mesothelin-specific CD8+ T cells. Mesothelin, a TAA, has
relatively high specificity for PDAC and has been implicated
as mediator of tumor progression/metastasis [52, 53]. This led
to the development of a live-attenuated, mesothelin-

expressing, Listeria monocytogenes vaccine (CRS-207) added
as a method to prime-boost response to GVAX. Despite prom-
ising phase I results in a metastatic PDAC population [54],
this combination, ultimately, failed to improve OS compared
physician’s choice chemotherapy in the 2nd- and 3rd-line
metastatic settings [55]. Notably, on correlative tissue analy-
sis, vaccination-induced increases in tumor infiltrating (TILs)
CD8+ Teff cells were met with an upregulation of PDL1 and
other immunosuppressive markers suggesting potential syner-
gy with ICB [56]. In line with this hypothesis, a phase Ib study
in pretreated mPDAC patients showed that combining GVAX
and ipilimumab (anti-CTLA4) was associated with improved
overall survival compared to treatment with ipilimumab alone
(5.7 vs. 3.6 mo) [57]. However, in a recent phase II trial, the
addition of nivolumab to a backbone of a combined GVAX+
CRS-207 vaccine regimen provided no additional benefit to
OS compared to vaccination alone in mPDAC patients [58].
This has prompted investigation into combining anti-tumor
vaccination with immunomodulators beyond conventional
aCTLA-4/aPD-1 targets. Combinatorial GVAX + nivolumab
+ an anti-CD137 immune agonist, administered to 10 resect-
able PDAC patients prior surgery, resulted in three moderate
pathologic responses on resected tumor surgical specimens.
Additional doses of this regimen were given prior to and con-
tinued (every 4 weeks) after completion of standard adjuvant
chemotherapy. At a median 12-month follow-up, 9 of 10 en-
rolled patients remained disease-free. Correlative studies no-
tably showed treatment-related expansion of activated, cyto-
lytic Granzyme B+ CD8 TILs [59].

Additional TAA-targeted vaccines As with GVAX and CRS-
207, other TAA-targeting vaccines using various platforms,
including dendritic cells [60], viruses [61], and peptides [62],
have yielded mixed results thus far. A notable phase II study
of GV1001, a human telomerase reverse transcriptase
AQ9catalytic subunit (hTERT) peptide vaccine, along with
GM-CSF adjuvant, demonstrated objective immune re-
sponses in 63% of participants. Those same patients also ex-
perienced significantly longer OS when compared to the pa-
tients who did not have an immune response to GV1001 [50].
However, this may have been more a function of the tumor/
host-immune substrate rather than due to the intrinsic-efficacy
of the vaccine. In a follow-up phase III trial, the addition of
GV1001 (with GM-CSF) to adjuvant gemcitabine and cape-
citabine failed increase OS compared to the chemotherapy
alone [63]. BSK01, an intra-dermal, autologous DC vaccine
(ex vivo primed and matured DCs pulsed with TAAs—SP17,
AKAP4, PTTG1, Ropporin-1, Span-Xb) demonstrated immu-
nogenicity and clinical response in a patient with refractory,
metastatic pancreatic cancer, but has not yet moved onto a
phase II trial [64]. Another vaccine, BN-CV301, a genetically
modified poxvirus expressing TAAs carcinoembryonic anti-
gen (CEA) and mucin-1(MUC-1) along with three
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costimulatory molecules (B7.1, ICAM-1, and LFA-3) is cur-
rently in trial with durvalumab (anti-PDL1) and maintenance
capecitabine in the advanced PDAC patients who are respon-
sive to first-line chemotherapy (NCT03376659). Overall,
TAA-based vaccination strategies remain limited in generat-
ing robust host immune responses due to variable immunoge-
nicity and presence/expression of selected TAAs across
PDAC patients and within heterogeneous tumors. The expres-
sion of TAAs by normal cells risks further damping of re-
sponse due to negative selection of TAA-specific T-cells
and/oroff-target autoimmune toxicity [51].

TSA-targeted vaccines Targeting TSAs, as opposed to TAAs,
may offer a solution to the above limitations since it targets
antigen unique solely to the tumor. However, these biologic/
immunologic benefit currently comes with a high technologic
and economic cost: neoantigens often being unique to each
individual patient and thus typically require personalized vac-
cines [65]. Generating a neoantigen vaccine first must begin
with neoantigen identification. Generally, this starts with tu-
mor and host genomic and whole exome sequencing to iden-
tify unique neoepitopes produced by the tumor. Next, these
antigens are assessed for immunogenicity via factors such as
variant allele frequency, MHC-binding avidity predictions
[66], and similarity to self. Those neoantigens identified as
most likely to trigger a robust immune response are synthe-
sized into long chain peptides and combined with an adjuvant
to induce innate immune response (e.g., GM-CSF,
polyinosinic-polycytidylic acid [poly-ICLC], and a synthetic
RNA TLR3 agonist). This technological workflow has al-
ready been successfully carried out in human trials.

Pilot studies in melanoma, glioblastoma, and other solid tu-
mors have shown that the generation/administration of person-
alized neoantigen peptide vaccines is not only feasible but also
induces neoantigen-specific CD4+ and CD8+T-cells in periph-
eral blood in response to vaccines targets [67–72]. Ott and col-
leagues generated and administered personalized neoantigen
peptide vaccines (n=13–21, 21-mer synthetic long chain pep-
tides) with poly-ICLC adjuvant in 8 melanoma patients follow-
ing definitive resection; six of whom demonstrated peripheral T
cell responses [67]. Thirty-two months post-vaccination, half of
participants remained disease free, with the 2 patients recurring,
who had peripheral T cell response, going on to achieve com-
plete responses after treatment with subsequent anti-PD-1 ther-
apy [67]. Pilot studies in glioblastoma, a low-TMB tumor sim-
ilar to pMMR PDAC, have shown that neoantigen vaccines can
induce peripheral immune response and effector T-cell infiltra-
tion [68, 69]. In a very recent combinatorial protocol [73], per-
sonalized neoantigen vaccines were added to on-going
nivolumab (anti-PD1) treatment in patients with high-TMB tu-
mors (e.g., melanoma, NSCLC, and bladder cancer). The addi-
tion of the neoantigen vaccine to ongoing PD1 blockade result-
ed in robust neoantigen-specific T cell immunity and led to

vaccine-induced direct tumor cell killing. Taken together, the
pre-clinical and human pilot study data supports the therapeutic
synergy of increasing immune activation/expansion with an
anti-tumor vaccine and optimizing effector response/
countering immunoregulatory signaling with ICB.

With regard to neoantigen vaccine use in PDAC, specifi-
cally, a pre-clinical proof of concept study was successfully
conducted by Zaidi and colleagues, who generated and admin-
istered a neoantigen-targeted long peptide vaccine
(PancVAX), with STING adjuvant (ADU-V16), in Panc02
mouse model [74] . Encouragingly, this vaccine led to
neoepitope-specific T-cell responses and transient tumor re-
gression that was noted to be significantly more durable when
combined with immune checkpoint modulators (e.g., aPD-1
and agonist OX40 mAbs) [74]. These findings formed the
basis of two clinical trials. The first, opening later this year,
will seek to generate and administer a personalized neoantigen
peptide vaccine with poly-ICLC adjuvant along with MGA-
012(aPD-1) therapy to metastatic PDAC patients in the main-
tenance setting. The second, is an ongoing phase 1 clinical
trial (NCT04117087) testing the safety and immunogenicity
of administering dual ICB (nivolumab and ipilimumab) with a
mutant KRAS “off-the shelf” neoantigen vaccine—consisting
of six SLPs corresponding to KRAS G12C, G12D, G12V,
G12R, G12A, and G13D mutations, respectively, with poly-
ICLCadjuvant—in patients with resected mKRAS PDAC fol-
lowing adjuvant chemotherapy. Overall, while currently car-
rying a high technologic and economic cost to produce, the
growing ubiquity and standardization of high-throughput
next-generation sequencing and immunogenicity algorithms,
neoantigen-targeted vaccination may soon have the feasibility
to realize its therapeutic potential in PDAC and other immu-
nologically “cold” tumors types.

3.2 [IO Barrier] sequestration of tumor MHC/HLA I
molecules

Effector T-cells directly identify tumor cells as foreign via anti-
gen presentation by MHC (HLA) class I molecules expressed
on the surface of tumor cells. However, when examining the
tumors of PDAC patients, the locus-specific expression of HLA
I was found to be reduced in 61% of PDAC primary tumors and
in 93% of tumor metastases [75]. Recently, Yamamoto and
colleagues, using a mouse-model of PDAC, observed that, in-
stead of being located of the cell surface, most PDAC antigen-
MHC I complexes were sequestered inside the tumor cell within
autophagosomes and autolysosomes [76]

3.2.1 [IO strategy] increase tumor HLA class 1 expression
by inhibiting autophagy

PDAC cells exhibit constitutive elevated basal autophagy
which plays multiple pro-tumorigenic roles, including
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promoting immune evasion and supporting tumor metabolic
demand in a nutrient-deprived microenvironment [77, 78]. In
the same preclinical study mentioned above, the investigators
showed that inhibiting an autophagy mediator, NRB1 with
chloroquine (CQ) induced an influx of CTLs to the TME
and generated robust antitumor clinical responses [76].
While encouraging, this synergy between IO and CQ/
hydroxychloroquine(HCQ) has not proven consistent with
other preclinical studies suggesting CQ/HCQ attenuates IO
response [79]. Clinically, HCQ has not shown significant
anti-tumor benefit as a single-agent [80] or in combination
with standard chemotherapy in PDAC [81, 82]. This may
be, in part, due to off-target systemic immunosuppressive ef-
fects of HCQ/CQ’s unselective inhibition of endosomal deg-
radation and vesicular trafficking [78, 83, 84]. Given this, the
future role of autophagy inhibitors in IO-based regimens will
be dependent on the discovery and exploitation of tumor-
specificautophagy/metabolic pathways.

3.2.2 [IO strategy] target KRAS signaling to increase
sensitivity to autophagy inhibition and IO

Oncogenic KRAS (mKRAS), mutated in 95% of PDAC,
has recently been implicated as a mediator of both an-
titumor immune response and autophagy influx. In
models of mKRAS PDAC, inhibition of signaling
downstream of RAS (e.g., MEK/ERK) increased tumor
cell metabolic reliance on autophagy [85]. Notably, au-
tophagic signaling and transcription of autophagy-
associated genes were increased in cells with suppressed
mKRAS but not in PDAC cells with suppressed wild-
type(WT)KRAS. This could represent a therapeutic vul-
nerability for combinatorial targeted therapy, autophagy
inhibition, and IO in mKRAS tumors [86]. Based on
these preclinical results, a phase I/II(NCT04214418) is
underway evaluating combination of cobimetinib (MEK
inhibitor), atezolizumab (aPDL-1), and HCQ (autophagy
inhibitor) in KRAS-mutated advanced malignancies, in-
cluding PDAC [87].

Furthermore, promising early phase trial results of the first-
in-class, KRAS Gly12Cys inhibitor, AMG510, in KRAS
G12C-mutated advanced solid tumors [88], particularly in
NSCLC [89], shows it is possible to directly target mKRAS.
While KRAS G12C mutations are only present in ~2% of
PDAC, inhibitors of more common KRAS mutations (e.g.,
G12A, G12V, or G12A) may soon follow suit. This would
have important implications beyond single-agent anti-cancer
activity since inhibiting mKRAS may also enhance IO re-
sponse. In a mouse model of mKRAS PDAC, tumors were
unable to evade host immune response after KRAS inactiva-
tion. The ongoing phase 1b CodeBreak 101 study
(NCT04185883) is examining several combinatorial

AMG510-based regimens, including with ICB, in advanced
solid tumors harboring mKRAS G12C [90].

3.2.3 [IO strategy] bypass absent antigen presentation
with NK-cells

PDAC is known to suppress signaling needed to recruit and
activate natural killer (NK) cells, and rightly so [91–95]. The
innate ability of NK cells to recognize the absence of MHC-
proteins and respond rapidly—independent of transcription or
proliferation—makes them promising cellular agents to target
tumors evading T-cell immunity via mechanisms such as dis-
ruption of INF-γ signaling or downregulating MHC-I presen-
tation [96]. NK-cell-based strategies for PDAC include
receptor-mediated activation and ex vivo expansion of NK
cells, chimeric antigen receptor engineering (CAR-NK),
adoptive immunotherapy using donor-transformed NK cells,
and increasing antibody-dependent cellular cytotoxicity
(ADCC) [97].

NK cell checkpoint inhibitors Similar to ICBs, mAbs have
been developed to target inhibitory receptors on the surface
of NK cells such as the killer-cell Ig-like receptors (KIRs) and
Natural Killer Group 2A receptors (NKG2A). Lirilumab
(IPH2102/BMS-986015), which targets several inhibitory
KIRs, unfortunately has yet to demonstrate a definite im-
provement in survival outcomes in human trials [98].
IPH2201, a first-in-class mAb targeting NKG2a was shown
to be well-tolerated with durvalumab (aPDL-1) in ad-
vanced solid tumors (NCT02671435) and demonstrated
encouraging preliminary outcomes when add to first-line
SOC therapy (mFOLFOX6 + bevacizumab) in pMMR
mCRC patients [99].

CAR-NK cell therapy While T cells equipped with chimeric
antigen receptors (CAR) have proven highly beneficial in B
cell lymphoma and ALL, the required time and difficulty in
generating a therapeutic dose of autologous CAR-T cells com-
bined with lack of surface targets in PDAC limits CAR-T cell
therapeutic utility. Here, allogenic CAR-NK cells may be a
more effective, and more readily available alternative. A novel
combinatorial immunotherapy protocol of (1) reduced-dose,
metronomic chemotherapy, (2) SBRT, (3) avelumab (anti-
PD-L1), (4) N803 (IgG1 Fc-engineeredIL-15-fusion protein),
and (5) off-the-shelf, allogeneic (PDL1-targeted), high-
affinity NK cell infusion (haNK) resulted in the first reported
complete response (CR) to an NK-based immunotherapy
combination in advanced PDAC [100]. QUILT-88
(NCT04390399), an ongoing phase 2, randomized, three-
cohort study (2 randomized, 1 single-arm) is evaluating PD-
L1-targeted haNK cells as part of multimodal treatment regi-
men combining IO (IL-15 agonist [N-803] and PDL1 t-
haNK), SBRT, and SOC chemo in PDAC. Cohort A will test
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above experimental combinatorial regimen against gem-NP in
the first-line maintenance setting, cohort B will randomize
patients to either the experimental regimen or SOC 5-FU +
liposomal irinotecan in the second-line setting, and cohort C
will be a single arm examining the study therapy in the 3rd-
line or later setting (total goal accrual of 250 patients across all
cohorts and arms) [101]. Finally, CAR-NK-cell tumor infiltra-
tion could be further optimized with an NK cell-recruiting
protein-conjugated antibody (NRP-body) that has been shown
to enhance tumor-infiltration of ex vivo expanded NK cells
(via CXCL16 gradient) and increase survival inmousemodels
of PDAC [97].

3.3 [IO barrier] paucity of mature dendritic cells

A recent study by Hedge and colleagues (2020) demonstrated
that a strongly matched pair of an immunogenic neoantigen-
MHC complex and CD8+ TCR was not enough to mount an
anti-tumor response without functioning conventional den-
dritic cells (cDC) required for antigen presentation and T-
cell priming. In mice bearing PDAC, the rare DCs present in
the TME were observed to be phenotypically immature and
dysfunctional both in terms of both antigen sampling and traf-
ficking to draining lymph nodes [102]. DC dysfunction is
mediated, in part, by dysregulating cytokines (e.g., IL-10,
TGFβ) secreted directly by the tumor or tumor-recruited im-
mune subsets [103] .

3.3.1 [IO strategy] optimize dendritic cell recruitment
and maturation

CD40 agonism In addition to blockade of negative immune
checkpoints (e.g., CTLA-4, PD1-PDL1 axis), immune
agonism (e.g., co-stimulatory mAbs targeting CD27,
CD137, and CD40) is an area of growing clinical inqui-
ry. Anti-CD40 agonism, to date, has garnered the most
translational experience in PDAC. Preclinically, CD40
activation on DCs and monocytes upregulates the ex-
pression of other costimulatory molecules (e.g., CD80
and CD86), enhances antigen presentation, licenses
DCs, and activates effector T cells [104–107]. The
CD40 agonistic monoclonal antibody, APX005M, and
SOC chemotherapy (Gem-NP) with or without
nivolumab (aPD-1) were recently examined in the first-
line setting for advanced PDAC (NCT03214250).
Fourteen of the 24 patients enrolled in the initial study
phase showed a partial response (58%), and 8 (33%)
had stable disease. Compared to a historical mOS for
8.5 - 12.1 months for Gem-NP [5, 108], mOS for the
total study cohort was an impressive 20.1 months (12·7
months for cohort B1[0·1 mg/kg APX005M], 20·1
months for cohort B2 [0·3 mg/kg APX005M], 15·9
months for cohort C1 [0·1 mg/kg APX005M + aPD-

1], and not evaluable for cohort C2 [0·3 mg/kg
APX005M dose + aPD-1]) [109]. In a follow-up phase
II study, presented at ASCO 2021, the primary endpoint
of 1-year OS > 35% (historical OS rate for Gem-NP)
was met when combining chemo with either aPD-1 (1-
year OS 57%, mOS 16.7 mo, mPFS 4.8 mo) or
APX005M (1-year OS 51%, mOS 14.5 mo, mPFS 5.5
mo); however, it is not with the combination of aCD40
+ aPD-1 [1-year OS 41%, mOS 10.7 mo, mPFS 6.7
mo] [110]. Detailed multi-omic immune and tumor bio-
marker analyses are underway to identify patient subsets
that benefit most from these combinations [110]. While
these results do temper expectations, aCD40 agonism,
along with other immune co-stimulants, are still likely
to play a key role in a future effective IO-based regi-
men(s) for PDAC.

Recombinant FLT3L Recombinant FLT3L has been shown to
increase the number of DC precursors and DCs in blood and
tissue in vivo [111], while CD40 agonism can promote DC
maturation [112]. Interim results from a phase I study
(NCT03329950) shows that the combination of CDX-1140
(aCD40 mAb agonist) with CDX-301 (recombinant FLT3L)
is well-tolerated and in patients with treatment-refractory solid
tumors. Additionally, pretreatment of patients with recombi-
nant FLT3L greatly increases the number of circulating and
aCD40-responsive DCs [113].

IL-10 modulation The anti-tumor and systemic immune ef-
fects of IL-10 signaling, as is the case with other direct inter-
leukin modulatory treatments, remain complex and, at times,
even contradictory. For example, IL-10 agonism and antago-
nism have been observed to enhance anti-tumor outcomes,
preclinically [114, 115]. Despite promising early phase re-
sults, IL-10 agonist, pegilodecakin, failed to enhance response
to FOLFOX in the 2nd line for mPDAC [116] and led to
increased toxicity without enhancing survival when paired
with aPD-1 therapy in NSCLC [117]. Human trials with IL-
10 inhibition are limited. A phase 1 study (NCT02731742)
examining the combination of an IL-10 inhibitor (MK-1966)
with a TLR9 agonist (SD-101) was recently halted due to lack
of efficacy [118]. More investigation is required to examine
context-dependent IL-10 signaling, specifically the effects of
blockade on peripheral and tumor-infiltrating T cell activation
and expansion [119].

4 Impaired anti-tumor immune cell trafficking
to tumor bed

Once primed, activated T cells, primarily the effector sub-
types, should traffic to the tumor site via chemotaxis, crossing
vasculature, while being maintained by pro-survival growth
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factors signaling [120]. However, upon examination of the
PDAC TME, we instead observe an “immune desert” with
only a small and impotent T cell infiltrate.

4.1 [IO barrier] desmoplastic stroma and dysregulated
T cell recruitment

A major factor contributing to this immune exclusion is the
dense stromal compartment of PDAC. This a collagenous,
desmoplastic hypo-vascular matrix, produced by cancer-
induced pancreatic stellate cells and accounts for the vast ma-
jority of tumor cellularity [121]. The resultant desmoplasia is
known to be responsible for creating a mechanical barrier
around the tumor cells, preventing appropriate vascularization
and thus limiting exposure to chemotherapy and leading to
poor immune cell infiltration. In addition to a physical bound-
ary, PDAC sets up a chemical barrier via disrupted chemokine
expression to deregulate signaling involved in effector T-cell
recruitment resulting in significantly reduced CD8+T-cell in-
filtrate. Intratumoral TGFβ signaling via cancer-associated
fibroblasts (CAF) appears critical in counteracting anti-
tumor immunity via restricting movement of CTLs in the
TME. TGFβ signaling also mediates recruitment of immune
suppressive cells (e.g., regulatory T cell [Tregs] and myeloid-
derived suppressor cell [MDSC]) via downstream signaling
targets (e.g., VEGF) further establishing an unfavorable envi-
ronment for Teff-infiltration [121, 122].

4.1.1 [IO strategy] disrupting the extracellular matrix (ECM)

Non-specific targeting of the ECM with matrix metallopro-
teinases (MMP) inhibitors such as marimastat and tanomastat
failed to demonstrate significant clinical activity in patients
with advanced-stage pancreatic cancer [123, 124]. A more
specific approach to weakening ECM-scaffolding is targeting
hyaluronan (HA), a major component of the PDACECMwith
high levels associated with poor prognosis [125]. In preclini-
cal models, decreasing the hydrostatic pressure in the dense
PDAC stroma with PEGPH20, a pegylated hyaluronidase
(HA), was shown to increase vascular permeability and in-
crease drug delivery when used in combination with chemo-
therapy [126] Paradoxically, a phase 1b/II trial of adding
PEGPH20 to mFOLFIRINOX resulted in significantly inferi-
or OS, PFS, and ORR with compared to chemotherapy alone
[127]. In contrast, PEGPH20 appeared to add a PFS benefit to
Gem-NP [128]. However, in a follow-up phase III trial
(HALO 109-301), PEGPH20 in combination with chemother-
apy failed to improve PFS or OS in metastatic PDAC patients,
even among those with HA-high tumor expression [129].
Since it has been observed that PEGPH20 enhances GVAX-
induced CD4+ and CD8+T-cell TME infiltration in a preclin-
ical PDAC model [130], it is worth considering whether
adding an immunomodulator/ICB to the studied regimen

would have led to a change in outcome [131]. Along these
lines, the combination of atezolizumab with PEGPH20 is cur-
rently being tested in pre-treated advanced PDAC population
(NCT03214250).

4.2 [IO strategy] eliminating cancer-associated
fibroblasts

Fibroblast activation protein (FAP) found ~90% CAFs and
higher levels of tumor expression are associated with poor
clinical outcomes in PDAC. Despite preclinical models show-
ing anti-tumor effects of FAP-targeting/ablative strategies
[132–134], a FAP antagonist mAb (sibrotuzumab) and small
molecule inhibitors (talabostat) have not been able to translate
this meaningful benefit to the clinical trial setting [135, 136].
Recently, there has been a growing appreciation for the het-
erogeneity and plasticity of CAFs and their associated pro-
and anti-tumorigenic functioning [136]. This phenotypic com-
plexity may underly the preclinical observations that show
depletion of CAFs paradoxically accelerates tumor progres-
sion [137, 138]. The next generation of therapies targeting
stromal resistance mechanisms in PDAC must account for
the functional heterogeneity of CAFs.

4.2.1 [IO strategy] reprogramming cancer-associated
fibroblasts

Instead of simply eliminating the stromal fibroblasts from the
TME, a more sophisticated approach might be to disrupt
crosstalk between tumor-stroma-immune compartments. An
example of this is blocking CAF-mediated pro-tolerogenic
signaling (e.g., CXCL12/CXCR4) or disrupting CAF–cancer
cell immunosuppressive communication loops through block-
ade of TGFβ and IL-1β.

Targeting CXCL12/CXCR4 chemokine axis CXCL12, produced
by CAFs, misdirects effector T cells to the extratumoral stro-
ma, preventing them from entering the tumor [139]. Pre-clin-
ically, disrupting the binding of CXCL12 with its receptor
CXCR4 improves the anti-tumor activity of ICB and the com-
bination has been shown to reactivate endogenous TILs in
PDAC models [140, 141]. On the basis of this, AMD3100, a
small molecule inhibitor of CXCR4, is now being studied in
patients with metastatic pancreatic cancer in combination with
cemiplimab (aPD-1) in metastatic PDAC (NCT04177810).
BL-8040, another CXCR4 antagonist, is being examined in
combination with pembrolizumab and chemotherapy for 2nd-
or 3rd-line treatment for metastatic PDAC. Preliminary out-
comes from the expansion cohort of the COMBAT trial
(NCT02826486) showed tha t the BL-8040 and
pembrolizumab added to the NAPOLI-1 regimen (liposomal
irinotecan, fluorouracil, and leucovorin) resulted in an encour-
aging ORR of 32% and a DCR of 77% in PDAC patients

845Cancer Metastasis Rev (2021) 40:837–862



following 1st-line Gem-based treatment [142]. These results
compared favorably with the NAPOLI-1’s ORR of 17% and
DCR of 52% [143] suggesting BL-8040 and pembrolizumab
may expand the benefit of chemotherapy in PDAC [142, 143].

TGFβ inhibition Transforming growth factor beta (TGFβ), re-
leased by PDAC tumor cells, stromal fibroblasts, and other cell
types in the TME, contributes to the tolerogenic architecture of
the TME and suppresses the cytotoxic activities of anti-tumor
immune cells [144]. T-cells with constitutively active TGFβ
signals remain refractory to full activation [145]. Serum TGFβ
have correlated with poor prognosis in pancreatic cancer [146].
Several preclinical models have demonstrated therapeutic syn-
ergy of TGFβ signaling inhibition and immunomodulatory
agents [147–149]. The combination of gemcitabine and
galunisertib, a small molecule inhibitor of TGFβ, enhanced
OS compared to chemo alone in first-line treatment in patients
with mPDAC (mOS 8.9 and 7.1 months for galunisertib and
placebo, respectively [HR = 0.79, 95% CI: 0.59–1.09, posterior
probability HR < 1 = 0.93]) [150]. Galunisertib with
durvalumab (aPD-L1) was shown to be well-tolerated but had
limited in clinical efficacy when used the 3rd or later line for
patients with mPDAC [151]. More recently, a bifunctional
checkpoint inhibitor comprised of an aPD-L1 mAb fused with
a TGFβ ligand trap (M7824, Bintrafusp Alpha) was tested in
the phase I setting in a cohort treatment-refractory advanced
solid tumor patients. Of the 5 PDAC patients included, there
was 1 PR but this patient also had dMMR disease [152].
Expectations for the dual-targeting fusion protein have been
further tempered since M7824 fell short of its primary endpoint
for second-line treatment in advanced biliary tract cancers
(BTC) [153]. However, there are pending results of an ongoing
phase II/III trial of M7824 combined with chemo in the 1st line
for advanced BTC (NCT04066491), and a similar approach
may warrant consideration in PDAC.

IL-1β antagonismHigh stromal IL-1β expression is associated
with poor overall survival of PDAC patients [154]. CAFs are
reprogrammed by tumor-derived IL-1β to produce cytokines
and chemokines that subvert anti-tumor immunity and further
promote cancer growth [154, 155]. Preclinically, the addition
of anti-IL-1β antibody significantly enhanced the anti-tumor
activity of aPD-1 mAb in the variety of tumor models, includ-
ing PDAC, and resulted in increased tumor infiltration of
CD8+ T cells [155]. In human experience, combination of
pembrolizumab and the aIL-1β antagonist, canakinumab,
has demonstrated safety in metastatic solid tumor patients
[156]. A phase III study (NCT03631199) evaluating the addi-
tive impact of canakinumab to SOC first-line immunotherapy
and chemotherapy in NSCLC is expected to report final re-
sults before the end of the year. A phase II trial of examining
dual IL-1β and PD1 blockade in patients’ resectable PDAC is
in development.

FAK inhibition Another stromal target is focal adhesion
kinase-1 (FAK1), a tyrosine kinase expressed on both tumor
and stromal cells that has been implicated in driving stromal
desmoplasia. Pre-clinically, FAK inhibition decreased tumor
cell proliferation, reduced tumor-associated macrophages and
CAFs, increased CD8+ T cell infiltration, and sensitized tu-
mors to RT. [157, 158] A phase I trial of defactinib, an oral
FAK1 TKI, in combination pembrolizumab and gemcitabine
(NCT02546531) showed modest but encouraging efficacy
signals in both maintenance and treatment refractory
mPDAC settings [159]. Correlative studies with paired biop-
sies in PDAC patients show increased proliferating CD8+ T
cells, while Tregs, macrophages, and stromal density de-
creased with treatment [159]. FAK inhibition’s limited clinical
efficacy may be in part related to a resistance mechanism via
STAT3 upregulation triggered by FAK-induced stromal de-
pletion, arguing for a combinational approach with direct/
indirect STAT3 inhibitors [160, 161].

5 [IO barrier] immunosuppressive cellular
TME

Even with sufficient effector T-cell priming, infiltration
through the desmoplastic ECM, anti-tumor immune cells are
still left to deal with local immunosuppressive cell populations
that further dampen and exhaust effector functions. The
PDAC TME is populated by multiple types of immunosup-
pressive cells, including regulatory T (Treg) cells, myeloid-
derived suppressor cells (MDSCs), tumor-associated macro-
phages (TAMs), and tumor-associate-neutrophils(TANs)
[162].

Tumor-associated macrophages Tumor-associated macro-
phages (TAMs) are one of the most abundant immune cell
populations in the pancreatic tumor stroma due in part to re-
cruitment by oncogenic KRAS [163]. Either via direct tumor-
signaling or via tumor-CAF crosstalk, TAMs are generally
polarized to the immunosuppressive phenotype (M2) defined
by Csf1R, CD206, and IL-10 expression along with reduced
expression of MHC class II and Ly6C [155, 164]. These M2
TAMs support tumorigenesis, immune escape (e.g., promot-
ing Th2 cell differentiation), metastasis, and chemotherapeutic
resistance [165].

Myeloid-derived suppressor cellsMyeloid-derived suppressor
cells (MDSCs) are a heterogeneous population of immature
myeloid cells that accumulate in the TME, reducing anti-
tumor T cell activity and promoting tumor immune escape.
These cells can be divided into two general groups termed
granulocytic (G-MDSCs) and monocytic (M-MDSCs), phe-
notypically and morphologically similar to neutrophils and
monocytes, respectively. MDSCs suppress effector TILs by
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depleting metabolites critical for T cell function (via upregu-
lation of arginases and IDO-mediated sequestration of cyste-
ine), blocking T cell homing (via nitric oxide-mediated down-
regulation L-selectin expression in T cells), induction of other
immunosuppressive cells (e.g., FoxP3+ T reg andM2 TAMs),
and upregulating expression of PDL1 to induce T cell anergy
[166].

Tumor-associated neutrophils More recently, tumor-
associated neutrophils (TANs) have become increasingly rec-
ognized for their ability to promote tumor progression, medi-
ate resistance to therapy, regulate immunosuppression, and
correlate with poor prognosis numerous cancers in a variety
of cancers including PDAC [167–169]. TAN-recruitment to
the TME appears to be mediated via the chemokine CXCR2.

5.1 [IO strategy] reprogramming TME myeloid cells

5.1.1 CD40 agonism

As discussed earlier, CD40 is a key mediator of adaptive im-
mune response. Additionally, it may also help reprogram the
TME reprograming via effects on myeloid cell populations.
Specifically, CD40 agonism potentiates the immunogenic
profile of DCs, converts TAMs from a tumor permissive
(M2) to a tumoricidal phenotype (M1), and may help reverse
stromal desmoplasia [103, 170]. A summary of the current
clinical trial data with CD40 agonism can found in
Section 3.3.1.

5.1.2 CD11b modulation

CD11b is almost universally expressed on myeloid cells in
PDAC and is an important mediator of myeloid cell migration
and functional phenotype. Panni and colleagues developed a
small molecule, allosteric agonist of CD11b (ADH-503) that
resulted in a partially active CD11b that suppressed myeloid
cell infiltration by increasing adhesion to the endothelium,
repolarized TAMs to M1 phenotypes, and lead to tumor re-
gression and long-term immune memory when combined
with ICB [171, 172]. These preclinical findings are the basis
for an early phase clinical trial (NCT04060342) examining
safety and tolerance of GB1275, a first-in-class CD11b mod-
ulator, alone and in combination with pembrolizumab.
Preliminary results from the trial suggest the combination is
well-tolerated but responses in PDAC patients included were
limited [173].

5.1.3 BTK inhibition

Activation of Bruton’s tyrosine kinase (BTK), mediated
by PI3Kδ protein kinase, has been linked to M2

macrophages polarization. Blockade of the signaling path-
way using BTK inhibitors has resulted in decreased tumor
growth, reduced M2-TAMs and B reg TME populations,
and increased CD8+ TILs in preclinical models of PDAC
[174, 175]. .On the basis of these findings, the BTK in-
hibitor, acalabrutinib, was studied in a phase II trial as
monotherapy and in conjunction pembrolizumab in
pretreated advanced PDAC patients (NCT02362048).
Though acalabrutinib treatment was associated with re-
duced circulating MDSCs and the combination induced
activation of CD4 and CD8 memory T cells detected in
peripheral blood, BTKi plus aPD-1 did not improve PFS/
OS [176]. Due to limited on-treatment tumor biopsies, it
was not possible to assess treatment-related TME changes
[176].

5.1.4 CSF1/CSF-1R inhibition

The colony stimulating factor 1 and colony stimulating factor
1 receptor (CSF-1/CSF-1R) pathway is crucial for the differ-
entiation and survival of pro-tolerogenic M2 macrophages
and represents a potential target of reprogramming TAMs
from M2 to M1 type [177]. Preclinically, blockade of CSF-
1/CSF-1R pathway has shown promising results in
repolarizing TAM towards M1 type and induced distinct
TME remodeling [178–180]. Although early studies showed
potential synergy of cabiralizumab, a humanized IgG4 CSF-
1R mAb, with PD1 blockade, the combination when added to
SOC chemotherapy-backbone did not improve PFS compared
to SOC chemotherapy alone in advanced pretreated PDAC
[181]. A small molecule inhibitor of CSF1R, pexidartinib, is
being examined in combination with durvalumab in patients
with metastatic PDAC or CRC (NCT02777710). Preliminary
results from the study showed an ORR of 0% and DCR of
21% with 4 patients achieving SD, two of which happened to
be dMMR CRC patients [182].

5.1.5 CCL2/CCR2 inhibition

In mouse models of PDAC, small molecule inhibitors of
CCR2 decreased TAM infiltration, increased TIL CD8+Teff
to CD4+Treg ratios, and enhanced response to ICB [183,
184]. This led to phase I study of PF-04136309, an oral inhib-
itor of CCR2, in combination with Gem-NP in patients with
mPDAC (NCT02732938). The trial concluded that PF-
04136309 was associated with worse pulmonary toxicities
and added no clinical benefit compared to gemcitabine and
nab-paclitaxel alone [185].

5.1.6 CXCR2 inhibition

Preclinically, inhibiting CXCR2 decreases TAN infiltra-
tion, abrogates PDAC metastasis, augments T cell
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infiltration and synergizes with aPD-1 and chemothera-
py to extend survival [186, 187]. A phase Ib/II clinical
trial (NCT02583477) investigating AZD5069, an oral
small molecule inhibitor of CXCR2, in combination
with aPD-L1, durvalumab, demonstrated limited efficacy
in advanced PDAC patients with 8 (40%) of patients
experiencing serious adverse events causally related to
treatment (3 [15% of patients] requiring study discontin-
uation, but no reported deaths related to therapy) [188,
189].

5.1.7 Epigenetic therapy

Epigenetic changes are an integral part of PDAC’s develop-
ment, progression, intratumoral heterogeneity, TME makeup,
immune escape, and chemoresistance [190]. Revising dynam-
ic epigenetic changes with DNA methyltransferases (DNMT)
or histone deacetylases (HDAC) inhibitors may augment im-
munotherapy [191] by preventing/reversing immune exhaus-
tion [192], increasing tumor antigens and MHC 1 expression
[193], and reprogramming local stromal and immune cells to
create a more immune permissive TME [194, 195]. Recently,
epigenetic regulation of the biologic behavior of MDSCs has
emerged as a promising tool in PDAC therapy. In a murine
model of PDAC, use of the HDACi, entinostat, changed the
polarity of immunosuppressive MDSCs to a nonfunctional
phenotype. Additionally, the combination of HDACi plus
aPD-1 significantly improved survival as compared with mice
treated with either agent [194]. On the basis of these findings,
entinostat and nivolumab are under current clinical trial inves-
tigation (NCT03250273) for use in pre-treated advanced
PDAC patients with preliminary outcomes expected to be
reported soon.

5.2 [IO strategy] additional TME-targeted approaches

5.2.1 Reducing T regulatory cells

CD4+CD25+FOXP3+ Tregs, in the context of PDAC, can limit
anti-tumor immune responses and are associated with poor
prognosis [196]. However, depletion of Tregs in a preclinical
PDAC model failed to relieve immunosuppression and para-
doxically led to accelerated tumor progression. Clinically,
targeting CCR4, highly expressed on Tregs with
Mogamulizumab, reduced intratumoral Tregs, but did not en-
hance responses to ICB [197].

5.2.2 MEK inhibition

MEK inhibitors have shown immunomodulatory effects and
efficacy when combined with PD-(L)1 inhibitors in multiple
preclinical models via a variety mechanisms including en-
hanced MHC I/II expression, increased CD8+ TIL infiltration

and survival, and reduced recruitment of mMDSCs, M2
TAMs, and B regs [198, 199, 200. 201, 202, 203, 204, 205].
Unfortunately, the combination of a MEK inhibitor
(cobimetinib) plus a aPD-L1 inhibitor (atezolizumab) failed
to show compelling immune activity in a large phase III clin-
ical trial in colon cancer [206]. However, a phase II trial of this
same combination demonstrated a beneficial PFS therapeutic
signal in advanced pretreated BTC patients [207]. One possi-
ble explanation for the discrepancy between preclinical and
clinical outcomes is that systemic MEK inhibition may impair
T cell priming and activation [198]. Dovetailing off of this,
multiple pre-clinical models, including PDAC and mKRAS
cell lines, have demonstrated synergy between MEKi and im-
mune agonists [199–209]. A clinical trial combining MEKi,
ICB, and an aCD27 immune agonism is in development for
advanced BTC patients (NCT04941287), and could also rep-
resent a future immunotherapeutic strategy in PDAC should it
prove successful.

5.2.3 Targeting B-cells

While contemporary IO is firmly grounded in optimiz-
ing cellular immunity, mainly T cell function, the anti-
tumor potential of humoral immunity and B cell modu-
lation is a relatively new area of exploration. In addition
to producing antibodies and secreting cytokines, B cells
are able to recognize antigens, regulate antigen process-
ing and presentation, and modulate cellular immune re-
sponse [210]. The latter has been shown clinically in
treatment of autoimmune processes. For example, in
multiple sclerosis and rheumatoid arthritis, conditions
characterized by pathogenic T-cell function, selective
B-cell depletion with aCD20 antagonizing mAbs im-
proves symptoms, lowers disease activity, and increases
time between disease flares [211, 212]. As with other
cellular counterparts, B cell pro- and anti-tumorigenic
functions are context-dependent and influenced by the
TME milieu. The use of CD20-targeted B cell therapy
in patients with advanced solid tumors patients has
shown mixed-to-no clinical benefit [213, 214]. Several
strategies to antagonize immunosuppressive B-regs have
shown promise in the preclinical setting but their clini-
cal utility has yet to be established [215]. Therapies
activating of B cells are also under investigation.
Beyond optimizing DC function, IL-10 inhibition and
CD40 agonism may sustain anti-tumor B cells in the
TME as well as promote B-cell-mediatedT-cell activa-
tion and memory formation [216, 217]. Additionally, B
cell–activating factor (BAFF, BLyS), a B cell–activating
cytokine, has been shown to activate B cells expressing
high levels of costimulatory molecules (CD40, ICOSL),
augment antigen presentation to CD4+ T cells through
increased expression of MHC-II, and increases IL-12
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expression to promote the differentiation of Th1 cells
and T memory cells [218]. BAFF/BLyS was safely tol-
erated in a clinical trial for treatment of IgA deficiency
(NCT00024934) may be valuable adjuvant for CD40
targeted and/orvaccine-based regimens [218, 219].

6 Conclusions and perspectives

Pancreatic adenocarcinoma has multiple layers of immune-
resistance to overcome, but it is not an immune-refractory
tumor [56]. A growing understanding of its resistance mech-
anisms and intricate tumor microenvironment dynamics are
revealing novel IO therapeutic targets and combinatorial

approaches (see Table 1 for a selection ongoing clinical trials
examining novel IO-based regimens). Specifically, immune
agonists, such as aCD40 agonism, and anti-tumor vaccines
represent promising strategies to stimulate host immune re-
sponse via activation and expansion of anti-tumor effector
cells. With the advancement of high-throughput multi-omics
technologies accurately characterizing tumor-specific anti-
gens and their respective immunogenicity, neoantigen-
targeting strategies may enhance the effectiveness of current
systemic immunotherapies, minimize off-target toxicities, and
lead to formation of long-term anti-tumor memory.
Furthermore, off-the-shelfNK-cell therapies may be an effec-
tive method for bypassing downregulated antigen-MHC com-
plex presentation on PDAC cells. Optimization of anti-tumor

NNK1 
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N1 

M1 Th1 

Innate Res pons e 

Adaptive Priming 
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Myeloid Targeting 
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Fig. 3 AFramework for Successful IO-based Treatment in PDAC To
block immune escape, next generation IO-based approaches for PDAC
must be built on targeting immune priming/activation pathways
simultaneously with modulating local TME immunosuppression and
blocking immune checkpoints blockade for effective sustained anti-
tumor immune trafficking and sustained cytotoxic response. This will
require several IO and targeted agents on top of conventional therapies.
Standard chemotherapy with combinatorial cocktail of an anti-tumor
vaccine, co-stimulatory agent (aCD40), TME crosstalk modulator
(CXC4Ri or TGFb trap), and ICB (aPD-1) is one such potential
combination. Key (selected terms): [cDC] conventional dendritic cell;
[CSF-1Ri] colony-stimulating factor-1 receptor inhibitor; [CTL]

cytotoxic T lymphocyte; [CTLA-4] cytotoxic T lymphocyte antigen 4;
[DDRi] DNA damage repair inhibitor; [DNMTi] DNAmethyltransferase
inhibitor; [FAKi] focal adhesion kinase inhibitor; [FLT3L] Fms-related
receptor tyrosine kinase 3; [HDACi] histone deacetylase inhibitor;
[Hyals] hyalanurinases; [LAG3] lymphocyte activating 3; [M1] tumor
associated macrophage, type I phenotype; [mAbs] monoclonal
antibodies; [N1] Neutrophil, type 1 phenotype; [NK] – natural killer;
[NK1] natural killer cell, type 1 phenotype; [PARPi] Poly (ADP-ribose)
polymerase inhibitor; [PD-L1] – programmed death-ligand 1; [RT]
radiation therapy; [TGFb] transforming growth factor beta; [Th1] T
helper cell, type 1 phenotype; [VEGFi] Vascular endothelial growth
factor inhibitor. Created with BioRender.com
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lymphocyte activation will need to be coupled with strategies
that disrupt tumor-myeloid immunosuppressive communica-
tion loops within the TME to promote anti-tumor effector
infiltration and prevent immune exhaustion. This will require
a sophisticated and nuanced approach to targeting the TME
that focuses more on reprogramming (e.g., inhibiting
CXCL12/CXCR4 chemokine signaling, or blocking tumor-
CAF pro-tolerogenic crosstalk mediated via TGFβ and IL-
1β) rather than simply depleting cellular targets.

Looking ahead, the template for successful immunotherapy
in PDAC will be built on multipronged targeting of immune
priming/activation pathways in parallel with TME modulation
and immune checkpoint blockade to ensure sustained anti-tumor
responses (Fig. 3). Given the numerous barriers preventing a
robust and durable anti-tumor immune response, it is not sur-
prising that the vast majority of the clinical trials discussed in
this review have returned largely negative, or, at best, modest
outcomes because the IO strategies examined, at their core, are
incomplete. An effective IO regimen for pMMR PDAC will
require several IO and molecular agents on top of conventional
therapies. Standard chemotherapy with combinatorial cocktail
of an anti-tumor vaccine, co-stimulatory agent (aCD40), TME
crosstalk modulator (CXC4Ri or TGFβ trap), and ICB (aPD-1)
is one such potential combination. The IO breakthrough that
PDAC needs will take the form of regimen that takes this com-
prehensive approach to immune response while accounting for
compensatory signaling pathways, and context-dependent im-
munomodulatory roles of therapeutic targets.
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