
NON-THEMATIC REVIEW

Rethinking the biology of metastatic melanoma: a holistic approach

Hendrik HLD Vandyck1 & Lisa M Hillen1
& Francesca M Bosisio2

& Joost van den Oord2
& Axel zur Hausen1

&

Véronique Winnepenninckx1

Received: 15 January 2021 /Accepted: 29 March 2021
# The Author(s) 2021

Abstract
Over the past decades, melanoma-related mortality has remained nearly stable. The main reason is treatment failure of metastatic
disease and the inherently linked knowledge gap regarding metastasis formation. In order to elicit invasion, melanoma cells
manipulate the tumor microenvironment, gain motility, and adhere to the extracellular matrix and cancer-associated fibroblasts.
Melanoma cells thereby express different cell adhesion molecules like laminins, integrins, N-cadherin, and others. Epithelial-
mesenchymal transition (EMT) is physiological during embryologic development, but reactivated during malignancy. Despite
not being truly epithelial, neural crest-derived malignancies like melanoma share similar biological programs that enable tumor-
igenesis, invasion, and metastasis. This complex phenomenon is termed phenotype switching and is intertwined with
oncometabolism as well as dormancy escape. Additionally, it has been shown that primary melanoma shed exosomes that create
a favorable premetastatic niche in the microenvironment of secondary organs and lymph nodes. Although the growing body of
literature describes the aforementioned concepts separately, an integrative holistic approach is missing. Using melanoma as a
tumor model, this reviewwill shed light on these complex biological principles in an attempt to clarify the mechanistic metastatic
pathways that dictate tumor and patient fate.
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1 Introduction

Cutaneous malignant melanoma is a relatively rare type of
skin cancer but accounts for 73% of skin cancer-related deaths
worldwide with an incidence that continues to rise [1].
Metastatic melanoma mostly has a fatal course as the 5-year
overall survival rate drops to 23% in stage IV patients [1].
Despite recent therapeutic advances provided by immunother-
apy and targeted drugs, therapy resistance and disease recur-
rence usually are reality [2]. Drug resistance in minimal resid-
ual disease (MRD) is not only caused by “Darwinian selec-
tion” of specific genetic mutations but also by adaptive non-
mutational “Lamarckian induction” [3–5]. Successful metas-
tasis is accomplished by the five key steps of the metastatic
cascade: invasion, intravasation, circulation, extravasation,
and colonization at secondary tumor sites [6].

Epithelial-mesenchymal transition (EMT) is a cellular
program essential during embryogenesis that is revived
during malignancy [7, 8]. In EMT, epithelial markers are
downregulated while mesenchymal markers are upregulat-
ed [9]. Moreover cell-cell and cell-matrix interplay is
remodeled allowing subsequent motility and migration
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of cancer cells. This is accompanied by changes in adhe-
sion molecules on cancer cells and the adjacent cancer-
associated fibroblasts (CAFs) [10, 11]. An overwhelming
body of literature focuses on EMT in carcinomas; yet,
similar mechanisms drive melanomagenesis in which the
term phenotype switching is preferred [7, 12]. The
resulting melanoma cell plasticity leads to an increased
sensitivity and adaptation to microenvironmental changes.
Closely related is metabolic flexibility that depends on
nutrient availability, hypoxia and reactive oxygen species
(ROS) [13–15]. Here, the right context-dependent meta-
bolic “sweet spot” is achieved by utilizing the amount of
glucose that is present to meet the minimal viable needs
yet maximal anabolic potential. In addition to cooperation
with CAFs, metabolic symbiosis is amplified by nutrient
trade-off and interphenotypic communication between
melanoma subsets [16–20]. The established intercellular
“social” interaction results in tumors of greater fitness
[16, 17].

Nevertheless, macrometastatic outgrowth remains a highly
inefficient process, in part because of the plethora of environ-
mental noxae that kill unadapted tumor cells after
intravasation [21]. If disseminated melanoma cells survive,
they often undergo a dormant state that is featured by a high
survival phenotype at the expense of proliferation [22, 23].
This dormant state as well as its reversion (i.e., dormancy
escape) is inherently linked with a metabolic and phenotypical
switch. Nonetheless, dormancy escape and macrometastatic
outgrowth is only possible if adaptation to the new microen-
vironment is successful. Stated differently, not only epigenetic
reprogramming in a background of preexisting genetic alter-
ations must suffice, but also a favorable distant microenviron-
ment that defines tumor-specific organotropism must be pres-
ent. Interestingly, primary melanomas shed exosomes that
create “fertile soils”, or premetastatic niches at secondary sites
that are receptive and supportive for tumor colonization [24,
25]. Fundamental knowledge in depth about the mechanistics
of metastasis formation is indispensable before considering
new therapeutic approaches.

In this review, we will discuss the metastatic melanoma-
driving biological principles of (i) EMT-related phenotype
switching, (ii) the essential roles of the tumor microenviron-
ment (TME) and melanoma cell adhesion, (iii) metabolic
reprogramming and synergy with the stroma, (iv) melano-
ma cell dormancy, and (v) melanoma cell exosomes.
Moreover, we will elaborate on the unmistakable reciproc-
ity of these concepts as well as the recent advances of mech-
anistic insights in melanomagenesis and metastasis forma-
tion. Finally, we will provide a brief outlook on pending
future research questions in the field of metastatic melano-
ma. We thereby aim to help uncover the missing links of the
confounding mechanisms of metastasis that remain an on-
going matter of debate.

2 EMT and phenotype switching

2.1 General principles of EMT

EMT is a cellular program essential during embryogenesis,
fibrosis, wound healing and malignancy [8]. In EMT epithe-
lial markers like cytokeratins, E-cadherin and occludins
among others are downregulated while mesenchymal markers
like vimentin and alpha-smooth muscle actin (αSMA) are
upregulated [9]. These underlying molecular changes are ac-
companied by phenotypic alterations including the morpho-
logic change from an epithelioid towards a mesenchymal/
spindle cell shape. This process is orchestrated by EMT-
inducing transcription factors (EMT-TFs) such as TWIST1
and TWIST2, ZEB1 and ZEB2, and SNAIL and SLUG [9,
26] (Fig. 1). EMT-TFs act in a highly pleiotropic, cell context-
dependent manner in various combinations to express and
suppress a plethora of genes [8, 26, 28]. Rather than being a
binary process, the progressive loss of epithelioid and gain of
mesenchymal features is mainly partial in cancer [29]. The
following more mesenchymal state is reverted via
mesenchymal-epithelial transition (MET) that precedes the
formation of the metastasis [30]. Just as in embryological de-
velopment and its reversible physiological state of EMT-
MET, the underlying mechanism of metastatic dissemination
is believed not to be predominantly driven by sequential ge-
netic mutations [6, 30]. Instead, plasticity and reversibility are
needed for redifferentiation towards theMET phenotype. This
may explain why EMT-TFs are only seldom mutated despite
their overt oncogenic potential [30–32]. Rather they are fine-
tuned by transcriptional, translational, posttranslational and
other epigenetic mechanisms [32, 33]. Double strand DNA
breaks are one of the most damaging and apoptosis inducing
subcellular events [34]. EMT-TFs can induce repair of double
strand DNA breaks, chromosomal instability, apoptosis resis-
tance and senescence escape [26]. Indeed, EMT-TFs have
additional oncologic effects beyond merely the transition to-
wards a mesenchymal phenotype and back. For instance,
EMT-TFs also contribute to cancer progression through im-
mune evasion [35].

2.2 Melanomagenesis and metastasis are driven by
phenotype switching

Although a generally accepted term, EMT describes the
abovementioned processes in carcinomas, whereas expanding
data suggest explicit roles of EMT-TFs also in non-epithelial
malignancies (for overview, see Table 1). Thus, phenotype
switching is a more general but possibly more appropriate
term when considering the EMT-like processes in melanoma.
Transdifferentiation on the other hand is better defined as
exiting the (melanocytic) lineage to a different cell lineage like
endothelial cells or CAFs [7, 63]. Melanoma cell plasticity
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e n c omp a s s e s b o t h p h e n o t y p e sw i t c h i n g a n d
transdifferentiation. Although EMT does not exist in melano-
cytes as melanocytes are not true epithelial cells, a complete
EMT program does occur in the formation, delamination and
migration of (neuroepithelial) neural crest (NC) cells during
embryologic development [64]. Instead, melanomas undergo
phenotype switching which enables their striking invasive and
disseminating properties [7, 65]. NC cells are multipotent
transient cells that migrate and seed to different tissues to
differentiate into specific cell lineages like melanocytes [7].
In case of NC derivatives, ZEB2 has been proven to be indis-
pensable for terminal differentiation in vivo for melanocytes,
oligodendrocytes and Schwann cells by upregulation of the
microphthalmia-associated transcription factor (MITF) [66,
67]. Once arrived in the epidermis, melanocytes express ad-
hesion molecules like E-cadherin just as their neighboring
basal keratinocytes. Similar as in NC-derived melanoblasts,
the cadherin-switch (from E-cadherin to N-cadherin) takes
place in an important subset of melanomas and is induced
by ZEB1, TWIST and SNAIL [7, 68, 69]. Desmoplastic mel-
anomas typically are very invasive, poorly demarcated mela-
nomas with an obvious spindle cell morphology [70]. This is
in line with EMT and the more often observed cadherin-

switch in desmoplastic melanoma [71]. Moreover, they often
immunohistochemically lack the pigmentation markers
MITF, Melan-A, Human Melanoma Black 45 (HMB45) and
gain αSMA [70, 71].

MITF plays an ambiguous but central role in melanoma
(Fig. 1). On the one hand, MITF functions as proto-
oncogene and plays a key role in cell cycle, cell survival and
autophagy, DNA damage repair and metabolism [72, 73]. On
the other hand, MITF is also a pigmentation and differentia-
tion inducer, which explains the observation that melanoma
stem cells and melanoblasts are amelanotic [74]. As a result,
the MITFhigh state yields in higher proliferative activity and a
higher grade of differentiation with less invasive capacity.
Conversely, melanoma cells exhibiting a MITFlow state are
less proliferative but highly invasive and less differentiated
[65, 75]. In this perspective, the potential back and forth flip-
ping of singlemelanoma cells betweenMITFhigh andMITFlow

states characterizes cell plasticity [68, 76]. The ambiguous
roles of EMT-TFs are further illustrated by the oncogenic
effects of ZEB1 and TWIST1 versus the seemingly
oncosuppressive effects of ZEB2 and SLUG, with MITF be-
ing their downstream target [67, 68]. Furthermore ZEB2 and
SLUG are expressed in melanoblasts but also in melanocytes

Fig. 1 Phenotype switching in melanoma. Proposed model of phenotype
switching in melanoma with integrative reciprocity of dormancy,
metabolic reprogramming, and role of the TME. Phenotype switching is
orchestrated by EMT-TFs and involves MITFlow and MITFhigh inter-
changeable states that provide context-dependent malignant potential.
Note that multiple intermediate states exist and that phenotype switching
in melanoma is not a binary process, just as EMT/MET is only partial in
carcinogenesis. The recently discovered distinct transcriptional melano-
ma cell states include: undifferentiated, NCSC, intermediate, SMC,

melanocyte-like and hyperdifferentiated/pigmented state. The different
melanoma cell states predominantly are the result of epigenetic induction
that contribute to plasticity, reversibility and therapy resistance. Adopted
from [5, 7, 27]. Abbreviations: EMT, epithelial-mesenchymal transition;
MET, mesenchymal epithelial transition; MITF, microphtalmia transcrip-
tion factor; NCSC, neural crest stem cell; NF-1, neurofibromin 1; RTK,
receptor tyrosine kinase; SMC, starved melanoma cell; TF, transcription
factor
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Table 1 Examples of epithelial and non-epithelial derivedmalignancies inwhich EMT has essential roles in tumorigenesis, progression, metastasis and
therapy resistance

Tumor type
examples

Observations that link EMT to cancer (epithelial) Reference

Breast SNAIL expression is observed in invasive ductal carcinomas and correlates with lymph node
metastasis

Moody et al., 2005 [36]

Breast TWIST1 promotes metastasis of mouse mammary carcinomas Yang et al., 2004 [37]

Breast HER2-induced mammary tumors spontaneously express SNAIL and express features of EMT Blanco et al., 2002 [38]

Breast SNAIL expression is observed during carcinoma progression in an autochthonous model of
breast cancer

Ye et al., 2015 [39]

Pancreatic Invasive carcinoma cells exhibit features of EMT in an autochthonous mouse model of
pancreatic cancer

Rhim et al., 2012 [40]

Pancreatic ZEB1 strongly impacts tumor progression, invasion and metastasis by inducing stemness in
pancreatic cancer

Krebs et al., 2017 [41];
Lemma et al., 2013 [42]

Lung The expression of EMT markers is tightly associated with disease progression in NSCLC Prudkin et al., 2009 [43]

Lung EMT markers are expressed at the peripheral leading edge of NSCLC, and marker presence is
correlated with tumor progression

Mahmood et al., 2017 [44]

Colorectal SLUG expression is correlated with tumor progression and is a marker for poor prognosis in
patients

Shioiri et al., 2006 [45]

Colorectal ZEB2 is expressed at the invasive front, which correlates with tumor progression and is a
prognostic marker for colorectal cancer

Kahlert et al., 2011 [46]

Colorectal N-cadherin drives malignant progression of colorectal cancer Yan et al., 2015 [47]

Hepatocellular Overexpression of TWIST induces EMT and promotes invasion and metastasis of
hepatocellular carcinomas

Lee et al., 2006 [48]

Hepatocellular SNAIL induces EMT and promotes metastasis and tumor-initiating properties in hepatocellular
carcinomas

Zhou et al., 2014 [49]

Bladder EMT markers are associated with tumors of high grade and stage Baumgart et al., 2007 [50]

Bladder SNAIL-induced EMT promotes metastasis in a xenograft model of bladder cancer Roth et al., 2017 [51]

Bladder E-cadherin is negatively correlated with tumor grade and stage, while expression of SOX2 and
NANOG positively correlates with those clinicopathological parameters.

Migita et al., 2017 [52]

Prostate A switch from E-cadherin to N-cadherin shows significant associations with prostate cancer
progression in patients

Gravdal et al. 2007 [53]

Prostate TWIST expression is higher in tumor tissue than in benign prostate hyperplasia and correlates
with Gleason grade >7; TWIST expression is also increased in bone and lymph node metastases

Kwok et al., 2005 [54]

Tumor type
examples

Observations that link EMT to cancer (non-epithelial) Reference

Leukemia/lymphoma ZEB2-overexpression in immature as well as in more differentiated T-cell precursors drives
malignant T-cell development

Goossens et al., 2019 [55]

Leukemia/lymphoma ZEB1 is associated with adverse clinical presentation and clinical outcome, whereas
cytoplasmatic SLUG expression is linked to a favorable prognosis in DLBCL

Lemma et al., 2013 [42]

Multiple myeloma
(MM)

TWIST1 expression is elevated in skeletal extramedullary disease of patients with MM and
correlates with a lower rate of progression-free survival

Yang et al., 2016 [56]

MM Hypoxia drives mesenchymal(-like) transition in MM cells by a decrease in E-cadherin levels
and increasement in EMT-inducing proteins such as SNAIL and TGF-β

Azab et al., 2012 [57]

Glioblastoma
multiforme
(GBM)

ZEB1 promotes tumorigenicity, invasion and chemoresistance against temozolomide Siebzehnrubl et al., 2013 [58]

Glioma/GBM TWIST1 promotes early glial tumorigenesis and subsequent malignant progression Elias al., 2005 [59]; Mikheeva
et al., 2010 [60]

Sarcoma SNAIL expression provides tumorigenic capabilities to fibroblastic cells, whereas SNAIL
depletion decreases sarcoma growth in a mouse model

Alba-Castellón et al., 2014
[61]

Sarcoma Overexpression of ZEB1 relates to metastasis and invasion in osteosarcoma Shen et al., 2012 [62]

Abbreviations: DLBCL, diffuse large B-cell lymphoma; EMT, epithelial-mesenchymal transition; MM, multiple myeloma; NANOG, NANOG homeo-
box; NSCLC, non small-cell lung carcinoma; SNAIL, Snail family transcriptional repressor 1; SOX2, SRY-box 2; SLUG, Snail family transcriptional
repressor 2; TGF-β, transforming growth factor beta; TWIST = TWIST1, Twist family bHLH transcription factor 1; ZEB1, zinc finger E-box binding
homeobox 1; ZEB2, zinc finger E-box binding homeobox 2
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and benign nevi [67, 77]. Surprisingly SLUG is required for
metastasis as metastasis is impeded by suppression of SLUG
[78]. Similarly, the EMT-TF ZEB2 promotes the growth from
micro- to macrometastasis by activating a proliferative tran-
scriptional program, at the expense of invasiveness [79]. This
paradox is explained by the observed phenotype switching
from an invasive ZEB1/TWISThighMITFlow state towards an
“anti-invasive” but proliferative ZEB2/SLUGhighMITFhigh

state that allows macrometastatic outgrowth, similar as MET
in carcinomas [26, 67, 78] (Fig. 1). This further supports the
role of EMT/MET balancing (i.e., phenotype switching) in
metastatic melanoma and underlines that EMT-TFs exert their
oncobiologic roles in time and context-dependent manners
that are somewhat counterintuitive [28]. For example, inva-
siveness is needed at the primary tumor of cutaneous melano-
ma, but to a much lesser degree at distant sites to elicit malig-
nant behavior. Conversely, in order to elicit the ultimate ma-
lignant behavior—namely death—proliferation is more im-
portant at secondary metastatic sites.

The transcription factor BRN2 is another important central
regulator in melanocytic development and melanomagenesis
[80] (Fig. 1). BRN2 is a key player in phenotype switching as
it drives transition into a dedifferentiated and slow-cycling but
highly invasive state by transcriptionally repressingMITF and
vice versa [81]. The BRN2 downstream transcription factor
NFIB strongly promotes global chromatin accessibility via the
histone modulator EZH2 and is in the same way directly in-
versely related to MITF [82]. It is therefore not surprising that
EZH2 and NFIB overexpression is associated with invasion
and adverse prognosis in melanoma, as EZH2 silences multi-
ple tumor suppressor genes [82, 83]. Conversely, biallelic loss
of the tumor suppressor CDKN2A (often lost in melanoma)
dramatically increases BRN2 expression [84]. In accordance
with the phenotype switching model, the BRN2/NFIB/EZH2-
axis increases invasion but decreases proliferation [82]. This
epigenetic mechanism is persuasive as it is dictated by micro-
environmental cues and has the potential of reversibility that
defines transdifferentiation, in a background of already fixed
genetic driver mutations [6].

Again, reversion of the switch towards the “anti-invasive”
but proliferative BRN2lowMITFhigh state allows a MET-like
transit ion and metastat ic outgrowth [80]. Yet , a
biphenotypical switch is oversimplistic, as intermediate states
also exist and contribute to intratumoral heterogeneity [85].
Based on relative expression of transcription factors like
MITF and SOX10, six interconvertible distinct states were
discovered recently: undifferentiated, NC stem cell (NCSC),
intermediate, starved melanoma cell (SMC), melanocytic-like
and the hyperdifferentiated/pigmented state [86] (Fig. 1). The
six states were discovered by combined multiplex immuno-
histochemistry and single cell RNA sequencing and some of

these indeed are invasive (undifferentiated and NCSC states),
proliferative (melanocytic state) or both (intermediate and
SMC states). The hyperdifferentiated state, a specifically
drug-induced state, is an exception to the conventional
biphenotypic switch as it does not retain proliferative nor in-
vasive properties. Hyperdifferentiation following drug expo-
sure is a known phenomenon in other tumors, e.g., in embry-
onal rhabdomyosarcoma where therapy effect induces selec-
tion of differentiated rhabdomyoblasts [87]. Alternatively, in a
recent study it has been proposed that it might be more appro-
priate to view melanoma cells in a continuous spectrum of
transcriptional states rather than distinct artificial categories
[27] (Fig. 1).

3 Tumor microenvironment remodeling
and adhesion molecule alterations are
involved in melanoma cell fate, motility,
and migration

Differentiated melanocytes adhere to basal keratinocytes and
the basal lamina via cell-cell and cell-matrix adhesion mole-
cules like E-cadherin [88] (Fig. 2a). In contrast, transformed
melanocytes undergo a cascade of changes that downregulate
specific adhesion receptors and upregulate novel receptors,
not found on melanocytes under normal conditions [88, 89].
Furthermore novel interactions between melanoma-
melanoma cells, melanoma-fibroblast cells and melanoma-
endothelial cells provide a gain in motility and migration,
but also determine melanoma cell fate (Fig. 2b). Important
interactions in melanoma are mediated by different laminin
and integrin isoforms as well as several chemokine receptors
[90, 92–95]. Integrins are a class of cell adhesion molecules
that enable adhesion to other cells or the extracellular matrix
[11, 89]. They are heterodimers composed of non-covalently
linked α- and β-subunits. Some of these novel interactions
ultimately predict organ specific tropism [93, 96]. Melanoma
cells themselves can express melanocyte adhesion molecule
(MCAM)/MUC18, L1-CAM, α4β1-integrin and αvβ3-
integrin that promote transendothelial migration.
Consequently, the association with metastatic disease is not
surprising [97–99]. The onset of expression of MCAM/
MUC18 and especially the β3-integrin subunit of αvβ3-
integrin predicts progression from radial to vertical growth
phase which elicits the metastatic potential in melanoma [89,
99]. In fact, the Breslow thickness remains the most signifi-
cant prognostic stratifier of malignant melanoma today. At the
same time, αvβ3-integrin is involved in extracellular matrix
(ECM) degradation and immune evasion through pro-
grammed death ligand 1 (PD-L1) expression regulation
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[100, 101]. The switch of these adhesion molecules is once
again mediated by EMT-TFs [69].

As already stated the five key steps of the metastatic cascade
include invasion, intravasation, circulation, extravasation, and
colonization at secondary sites [6]. Of these, it is known that
metastatic colonization is the farmost inefficient step.
Additionally, single disseminating cells are less successful than
clusters (implying some sort of cohesion) [102]. Cohesion be-
tween melanoma cells is mediated by N-cadherin, αvβ3-
integrin, L1-CAM, AL-CAM and MCAM/MUC18 that are not
expressed on melanocytes [10, 88, 89, 98] (Fig. 2b).

Recent research has shown that CAFs that also express
αvβ3-integrin can promote invasion through integrin-β3-
dependent fibronectin assembly [103]. The various cells that
shape the TME like CAFs, endothelial cells, macrophages and
other leukocytes secrete cytokines and growth factors
(TGF-β, IFN-y, TNF-α, VEGF, HGF, and others) that enable
tumoral transformation in melanoma cells [12, 104–106]. The
ECM remodeling molecule fibronectin-1 (FN1) is

increasingly expressed not only on melanoma cells compared
to benign nevi but also on metastatic versus primary melano-
ma [107, 108]. Furthermore, melanoma cells with FN1 ex-
pression are strongly associated with a pro-survival MITFlow

state, upregulation of ZEB1 and hypoxia [109, 110]. Striking
similarities are found in glypican-6, a heparan sulfate proteo-
glycan. Glypican-6 is recently proposed as a new putative
biomarker of progression in melanoma [111]. Just as FN1,
glypican-6 is upregulated in melanoma cells versus melano-
cytes and in metastatic versus primary melanoma [111].
Similarly, glypican-6 expression exhibited highest correlation
with ZEB1 and is regulated byHypoxia-inducible factor alpha
(HIF1α)-signaling [111]. Hypoxia and acidity trigger inva-
sion and dedifferentiation by HIF1α-mediated downregula-
tion of MITF and consequent upregulation of ZEB1, SNAIL
and the matrix metalloproteinases MMP2 and MMP9 [106,
112, 113]. As such, the dedifferentiation is in line with the
observation that hypoxic melanoma cells are more often
amelanotic [106]. In summary, the different conditions and

Fig. 2 Cell-cell and cell-matrix adhesion of keratinocytes and melano-
cytes in normal skin versus melanoma. A) Intercellular contacts in epi-
dermis with Ai) epithelial-epithelial and epithelial-basal membrane con-
nections of keratinocytes (orange) and Aii) contacts of epidermal mela-
nocytes (purple) with keratinocytes and basal membrane. Normal epider-
mal melanocytes interact with adjacent keratinocytes through E-cadherin,
desmoglein 1, and gap junctions, which are formed by two connexons. B)
Alterated adhesion pathways in melanoma with gain of motility during
invasion. The first step in melanoma development is loss of connections
betweenmelanocytes with keratinocytes and basal membrane.Melanoma
cells escape keratinocyte control and instead interact with Bi) fibroblasts
(brown), Bii) other melanoma cells (purple), or Biii) endothelial cells
(red), mainly during vertical growth phase that elicits the metastatic po-
tential. Desmoglein 1 and other connections are disrupted while new
adhesive and communication properties are conferred. Melanoma cells
can express FN1 and the intermediate filament vimentin. They interact

with fibroblasts Bi) through N-cadherin, FN1, gap junctions, and with
other melanoma cells Bii) through αvβ3-integrin, L1-CAM, MUC18/
MCAM, L1-CAM, gap junctions and N-cadherin. Transendothelial mi-
gration is mediated by adhesion of melanoma cells with endothelial cells
Biii) through N-cadherin, MUC18/MCAM, MCAM ligand, α4β1-
integrin, VCAM, αvβ3-integrin, and L1-CAM. Adopted from [88–91].
Abbreviations: BM, basement membrane; BRN2 = POU3F2, POU do-
main, class 3, transcription factor 2; CAF, cancer-associated fibroblast,
FN1, fibronectin 1; L1-CAM, L1-cell adhesion molecule; MCAM, me-
lanocyte cell adhesion molecule; OXPHOS, oxidative phosphorylation;
SNAIL, Snail family transcriptional repressor 1; SLUG: Snail family
transcriptional repressor 2; TWIST1 = TWIST, Twist family bHLH tran-
scription factor 1; VCAM, vascular cell adhesion molecule; ZEB1, zinc
finger E-box binding homeobox 1; ZEB2, zinc finger E-box binding
homeobox 2
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components of the TME play principal roles in tumor progres-
sion in melanoma, but knowledge remains incomplete.

3.1 The tumor microenvironment of Spitzoid
melanocytic neoplasms might explain their unique
behavior

Tissue stiffness and physical forces stemming from the ECM
have an important impact on gene regulation and melanoma
cell fate [114, 115]. Melanoma patients with increasing age
have an adverse prognosis but paradoxically present less fre-
quently with lymph node metastasis compared to younger
patients [116]. This is in part due to age-related ECM remod-
eling that results in impaired lymphatic vasculature. This in
turn might favor spread via the hematogenous route [117].
Notably, Spitzoid melanocytic neoplasms display this para-
dox to an even greater extent as they typically occur in youn-
ger patients and often present with locoregional disease but
only very seldom with visceral metastases [118, 119].
Spitzoid neoplasms form a spectrum from strictly benign
Spitz nevi to (exceptionally rare) malignant Spitz tumors
[120]. Patients diagnosed with the intermediate category
(atypical Spitz tumor) have an excellent prognosis, as visceral
metastases are exceptionally rare. This is in line with the 5-
year overall survival of 99% [119]. Remarkably, this stands in
great contrast with the high rate (39%) of sentinel node posi-
tivity [119]. The mechanism behind this paradoxical behavior
is unknown. Interestingly, Spitzoid neoplasms share a peculiar
hypervascular TME, reminiscent of wound healing. The
Spitzoid TME is therefore more than an epiphenomenon, but
rather an important behavioral modificator [121]. Future re-
search thus might be key to understand this uncoupling of
lymphatic and hematogenous dissemination. Some authors
even state that lymph node metastases are a bystander effect
and nothing more than dead ends [122, 123]. Decades ago,
Blake Cady already hypothesized this metaphorically: “…
lymph node metastases are the speedometers of the oncologic
vehicle, not the engine. Indicators, not governors” (cited from
[124]). Also, multiple meta-analyses of randomized controlled
trials show no survival benefit of lymph node dissection com-
pared to observation in melanoma [125, 126]. This not only
raises serious questions about today’s patient management,
but also about our—lack of—understanding tumor biology.

4 Melanoma oncometabolism and metabolic
symbiosis with the stromal neighborhood

Under physiological conditions, cellular energy in most cells is
predominantly provided via oxidative phosphorylation
(OXPHOS) in the mitochondria with generation of 36 mol aden-
osine triphosphate (ATP) per mol glucose [127] (Fig. 3a). An
alternative, less efficient pathway is anaerobic glycolysis that

generates lactate under hypoxic conditions with only 2 mol
ATP per mol glucose (Fig. 3a). Metabolism of highly prolifera-
tive cells like proliferating lymphocytes or melanoma cells is
dominated by aerobic glycolysis, i.e., preferred glycolysis with
lactate production even under normoxic circumstances [129]
(Fig. 3b). This is however more pronounced in malignancy and
is known as the Warburg effect, already described in 1924 by
Otto Warburg [130]. At first sight, the switch from OXPHOS to
less ATP generating glycolysis appears paradoxical. However,
aerobic glycolysis deliversATPon top of recyclable intermediate
metabolites for macromolecule biosynthesis [131] (Fig. 3c).
Moreover, the generated lactate is more than a waste product as
it is a valuable energy source, restores NAD+/NADH ratios and
prevents conversion of cytosolic pyruvate to mitochondrial
acetyl-coenzyme A (Ac-CoA) by pyruvate dehydrogenase
(PDH). The Warburg effect pro-actively mitigates uncontrolled
mitochondrial entry of metabolic intermediates that would gen-
erate excessive oxidative stress during OXPHOS [132, 133]. On
the other hand, the inefficient ATP production during glycolysis
compared to OXPHOS is (over)compensated in multiple ways.
For example, HIF1α fuels Warburg effect by upregulation of
glucose transporter-1 (GLUT-1), glycolytic enzymes, pyruvate
dehydrogenase kinase (PDK) and lactate dehydrogenase A
(LDHA) [129, 134, 135] (Fig. 3c). This results in accelerated
glucose uptake, glycolytic flux, and decreasedmitochondrial res-
piration [129].

Constitutive RAS/MAPK/ERK signaling—a hallmark of
melanoma—stabilizes HIF1α [106, 136]. The effects of HIF1α
in other cancers are well known and one of the avenues towards
successful neo-angiogenesis, but also oncometabolism, EMT
and metastasis. This is in part due to increased expression of
EMT-TFs such as TWIST [137, 138] (see Section 1).
Oncometabolism in melanoma is also controlled by micro-
RNAs (miRs), which are small non-coding RNA sequences that
regulate gene expression through mRNA target degradation or
inhibition of mRNA translation. To date, miR-210 is one of the
most prominent upregulated miRs in hypoxic melanoma cells
[139]. Overexpression of miR-210 in melanoma induces bypass
of hypoxia-induced cell cycle arrest together with a MYC-like
transcriptional response [139]. MYC is a master transcription
factor that boosts metabolism and proliferation in various ways.

On the other hand miR-150-5p is a tumor suppressive miR
that dampens glucose uptake and glycolysis [140]. In parallel
with the latter, miR-211 destabilizes HIF1α and is often
downregulated in melanoma [141]. Importantly, an additional
effect of miR-211 is inhibition of the isoenzyme pyruvate
dehydrogenase kinase 4 (PDK4) [141]. This enzyme prevents
mitochondrial respiration in favor of glycolysis via inhibition
of PDH (Fig. 3c). Other PDK isoforms—PDK1 and PDK3—
inhibit PDH as well, fueling Warburg effect in melanoma
[133, 142]. Therefore, the tumor suppressive miR-211 is a
central metabolic switch that attenuates Warburg effect.
Ergo, when miR-211 and miR-150-5p are downregulated,
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glycolytic intermediates and lactate accumulate and are avail-
able for biomass incorporation. Interestingly, miR-211 also
inhibits BRN2 [80]. This transcription factor induces pheno-
type switching in melanoma [80–82] (see Section 2). In this
respect, miR-211 couples a metabolic switch with phenotype

switching. The rapidly growing list of miRs in melanoma is
further reviewed elsewhere [143]. Another essential element
of Warburg effect in melanoma is reactivation of
transketolase-like 1 (TKL-1). This gene is silenced under
physiological conditions but is reactivated through promoter

a

c

b

Fig. 3 Metabolic reprogramming and the Warburg effect in melanoma.
A) Metabolism in normal melanocyte with depiction of glycolysis, TCA
cycle and OXPHOS. Glucose enters the cytoplasm via GLUT-1 and
undergoes glycolysis to pyruvate. After entering the mitochondrium,
the enzyme PDH converts pyruvate to Ac-CoA, which is metabolized
and burnt in the TCA-cycle and during OXPHOS. Anaerobic glycolysis
results in less efficient ATP generation along with lactate production
during hypoxia. Lactate can leave the cytoplasm via MCTs. B) The
Warburg effect refers to the metabolic switch in highly proliferating cells.
Somewhat counterintuitive, these cells prefer less efficient ATP generat-
ing glycolysis as main metabolic pathway despite the presence of oxygen

(i.e., aerobic glycolysis). C) Warburg effect is exploited by rapidly pro-
liferating melanoma cells when nutrients are abundant. This is mediated
by multiple mechanisms that result in increased glucose uptake, acceler-
ated glycolytic flux and decreased mitochondrial respiration. Glycolytic
intermediate metabolites can be recycled and synthesized into macromol-
ecules for synthesis of DNA, lipids and cellular proteins that are needed
for proliferation. Adopted from [128]. Abbreviations: Ac-CoA, acetyl
coenzyme A; ATP, adenosine triphosphate; GLUT, glucose transporter;
HIF1α, hypoxia-inducible factor alpha; MCT, monocarboxylate trans-
porter; PDH, pyruvate dehydrogenase; PDK; PDH kinase; ROS, reactive
oxygen species; TCA, tricarboxylic acid
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hypomethylation in melanoma [144]. The enzyme TKL-1
shuttles intermediate metabolites from (aerobic) glycolysis to
the pentose-phosphate pathway (PPP). The latter not only
generates NADPH, an essential cofactor for synthesis of var-
ious biomolecules like lipids, but also induces the oxygen-
independent conversion of glucose to ribose-5P, an essential
biomolecule for nucleic acid synthesis [144] (Fig. 3c).

The metastatic suppressor gene KISS1 exerts its role meta-
bolically as it enhances mitochondrial biogenesis and respira-
tion and simultaneously decreases Warburg effect [145].
Initially Otto Warburg blamed defective mitochondrial respi-
ration for enhanced aerobic glycolysis [146]. Nonetheless,
recent research suggests a critical role of highly functioning
mitochondria in metastatic disease and therapy resistance
[147–149]. These observations are supported by an increase
in mitochondrial mass, DNA content, and reactive oxygen
species (ROS) production [150, 151]. In cell cultured melano-
ma cells that are depleted of mitochondrial DNA, formation of
new tumors is only possible after obtaining mitochondrial
DNA from host cells [152]. Additionally, retrograde signaling
from mitochondria to the nucleus can induce posttranslational
modifications together with modified transcriptional regula-
tion [153]. Mutations in enzymes of the tricarboxylic acid
(TCA) cycle lead to accumulation of oncometabolites that
facilitate malignant transformation and metastasis [154,
155]. For instance, mutations of isocitrate dehydrogenase
(IDH) are well known in certain malignancies and generate
the oncometabolite D-2-hydroxyglutarate (D-2HG) [156,
157]. About 10% of melanomas harbor IDH1 or IDH2 muta-
tions that contribute to transformation by global epigenetic
reprogramming [131, 158–160].

Of note, the dominant metabolic phenotype does not have
to be uniform spatiotemporally [14, 15, 161, 162]. Similar as
in phenotype switching, melanomas can adapt their metabo-
lism and oxygen use by shifting from one pathway to another
or by acquiring intermediate metabolic states depending on
microenvironmental alterations [13, 15, 128]. Slow-cycling
melanoma populations exhibit elevated mitochondrial mass
and OXPHOS [14, 148]. This hybrid metabolic signature con-
tributes to tumor plasticity and provides multiple advantages
[163]. First of all, melanoma cells in different microenviron-
ments gain flexibility by balancing the maximal proliferative
capacity when nutrients are abundant against the minimal re-
quired ATP production that allows survival under marginal
conditions. This is mediated through Warburg metabolism in
rapidly proliferating cells versus OXPHOS in starving or dor-
mant melanoma cells [14, 129, 164]. This is known as the
proliferation/survival trade-off [23]. Secondly, the hybridmet-
abolic phenotype balances ROS at steady level. This balance
avoids an excessively high toxic ROS production but still
generates enough ROS to create a mutation prone milieu.
Finally, the hybrid state increases phenotypic tumor heteroge-
neity [149, 165, 166]. For example, functional differences of

the lactate transporter monocarboxylate transporter-1 (MCT1)
enhance metastatic potential by contributing to metabolic het-
erogeneity in melanoma [15]. In this manner, subclones ben-
efit from increased tolerability of oxidative stress that peaks
during dissemination [106, 132]. Concurrently, phenotypic
heterogeneity facilitates metabolic symbiosis between hypox-
ic and aerobic melanoma cells [15, 164] (Fig. 4). Aerobic
tumor cells prefer lactate over glucose as an energy source.
As a result, glucose is spared for hypoxic tumor cells, which in
turn produce lactate on a larger scale [18, 132].

Importantly, cooperation of melanoma cells with the CAFs
that shape the TME is key in metabolic plasticity [167].
Metabolic symbiosis and reprogramming is in fact not limited
to cancer cells: CAFs are exploited by cancer cells to undergo
aerobic glycolysis themselves in a host-parasite relationship.
This synergistic effect is also known as the reverse Warburg
effect [19] (Fig. 4). TGF-β, ROS and exosomes stimulate
aerobic glycolysis in CAFs [20, 168, 169]. They thereby am-
plify glucose uptake and generate lactate, pyruvate and other
energetic metabolites that can be unidirectionally transferred
to cancer cells. Both the classicWarburg affect and the reverse
Warburg effect likely co-occur [19, 170–172].

5 Dormancy—the state of cellular deep sleep
impacting the onset of metastatic outgrowth
and therapy response

The relation and difference between cancer stem cells (CSCs),
quiescent and dormant cells is not always clear as these terms
are often used interchangeably in the context of malignancy.
Quiescence (G0) is—in contrast to senescence—a state of re-
versible cell cycle arrest [173]. During tumor cell quiescence,
cell cycle is paused in order to repair damage or to sustain
elevated stressors like nutrient scarcity or therapy effects
[174]. Dormant tumor cells might be compared to a special
kind of stem cells in a quiescent state [173]. These cells can
remain silent for weeks, years or decades and are ultimately
the reason for delayed metastatic disease [175, 176]. A rela-
tively small but continuously growing number of metastatic
suppressor genes is arising. These genes repress metastasis
without effect on the primary tumor. In melanoma the most
important genes include GAS1, BRMS1, nm23, KISS1, KAI1
(CD82), SSeCKS, SMAD7, and Gelsolin [145, 177–183]. As
one can expect, some of these genes (e.g., Gelsolin, SMAD7,
KISS1, nm23) are implied in dormancy [145, 182, 184]. A
vital question is what awakes dormant tumor cells. On a mo-
lecular level, the stress-activated protein kinase (SAPK) p38
induces dormancy and is anticorrelated with ERK [185]. As a
result, a low ERK/p38 ratio induces dormancy in most tumors
[185]. In contrast to carcinomas, a high p38 activity does not
have to lead to dormancy or decreased ERK signaling in mel-
anomas per se [185, 186]. Typical driver mutations in
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melanoma such asBRAF,NRAS, andKIT result in constitutive
MEK-ERK-signaling. The underlying molecular signaling
cascades involving dormancy are beyond the scope of this
review and are discussed elsewhere [22, 187–189].

Three non-mutually exclusive dormancymodels have been
proposed [173, 187] (Fig. 4). There is (i) cellular dormancy, in
which single cells enter quiescence, meaning that there is no
significant proliferation (low/absent Ki-67 expression). The
two other model components are processes where the fate of
a tumor mass is balanced between cell proliferation or cell
death, caused by (ii) insufficient vascularization (angiogenic
dormancy) and/or (iii) immune-mediated melanoma cell lysis
(immunogenic dormancy). Conversely, dormancy escape due
to intrinsic or extrinsic signals is featured by proliferation,
neoangiogenesis, and/or immune evasion.

The observation that (immune compromised) organ recip-
ients develop melanoma if donors had a history of
melanoma—but were disease “free” for years at time of
transplantation—strongly underlines the role of immunogenic
dormancy in melanoma [190, 191]. Rather than NK or CD8+
cytotoxic T-cell mediated tumor cell killing, an immune me-
diated cytostatic effect likely trumps cytotoxic cell killing in
immunogenic dormancy [192]. Additionally, helper T-cells,
cytotoxic T-cells and NK cells secrete IFN-y and TNF-α that
are antiproliferative and drive immunogenic dormancy [193].
Moreover helper T-cells secrete anti-angiogenic chemokines
and prevent αvβ3-integrin expression on melanoma cells [91,
194]. Apart from the immunogenic nature of melanomas, the
composition, distribution, density and activation status of tu-
mor infiltrating leukocytes defines the immunoreactivity of
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Fig. 4 Metabolic symbiosis as a result of nutrient trade-off between dif-
ferent melanoma cell subsets and adjacent CAFs. Stromal symbiosis is
the result of (unidirectional) nutrient trade-off by CAFs and melanoma
cells (reverse Warburg effect). This is mediated by aerobic glycolysis in
adjacent CAFs that produce metabolites like lactate, pyruvate and ketone
bodies. These metabolites are shuttled throughMCTs to sustain the anab-
olism of adjacent melanoma cells. An additional effect of the exploited
lactate shuttling is the symbiosis between better and worse oxygenated
melanoma cells. Hypoxic melanoma cells produce more lactate that is

preferentially taken up and metabolized by better oxygenated melanoma
cells. The latter in turn spare the glucose for hypoxic melanoma cells.
Adopted from [15, 19]. Abbreviations: Ac-CoA, acetyl coenzyme A;
ATP, adenosine triphosphate; CAF, cancer-associated fibroblast;
GLUT, glucose transporter; HIF1α, hypoxia-inducible factor 1 alpha;
MCT, monocarboxylate transporter; PDH, pyruvate dehydrogenase;
PDK, PDH kinase; ROS, reactive oxygen species, TCA, tricarboxylic
acid
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melanocytic lesions. Therefore tumor infiltrating leukocytes
are prognostically relevant, modify behavior and are exploit-
able in immunotherapy [195, 196].

Escape from angiogenic dormancy also occurs when the
balance of pro- and anti-angiogenic factors is disrupted,
allowing nutrition and oxygen levels to sustain not merely
survival but also proliferation. TME stressors like ROS and
hypoxia promote an angiogenic switch through stromal pro-
duction of VEGF, IL-8 and FGF whereas thrombospondin-1
(TSP-1) keeps melanoma cells in a dormant state [197, 198].
Research has shown that the angiostatic factor TSP-1 prevents
outgrowth of dormant micrometastases in human melanoma
xenografts [199, 200]. Additionally, real-time imaging of hu-
man melanoma xenografts in murine brains showed peri/
extravascular migration (EVM) of human melanoma dissem-
inated tumor cells (DTCs). This occurred via pre-existing vas-
cular networks, in contrast to de novo vessel formation in
neoangiogenesis [201]. In this process of vessel co-option,
melanoma cells reside preferentially in a perivascular niche
where nutrients and oxygen are abundant. Furthermore, a
preferential reservoir and niche formation of dormant melano-
ma cells is also apparent in lung and bone marrow
perivascular regions as well as the atrophied thymus [188,
202]. At the same time, recent work provides proof for dor-
mant intravascular niches at (pre)metastatic sites in melanoma
[203]. Here, in vivo lineage tracing showed that subpopula-
tions of melanoma DTCs can lose melanocytic markers and
acquire the endothelial marker CD31. These subpopulations
can undergo endothelial transition (EndT) and enter dorman-
cy. Interestingly, these transdifferentiated melanoma cells are
disguised and inert to immune surveillance, but can reawaken
to escape dormancy by endothelial mesenchymal transition
(EndMT) [203] (Fig. 5).

In contrast to vascular co-option and endothelial
transdifferentiation, vasculogenic mimicry occurs within the
cancerous tissue and has gained interest due to its potential
role as a therapeutic target [204]. Vasculogenic mimicry is
defined as the neoformation of fluid-conducting vascular-like
channels. This alternative mechanism of tumor perfusion was
first described in melanoma cell lines [205]. The vascular
networks in vasculogenic mimicry are not lined by traditional
endothel ia l ce l ls but ins tead are formed by the
dediffererentiated aggressive melanoma subpopulations
[205, 206]. Interestingly, these melanoma subpopulations
share a plastic partial transendothelial phenotype as they gain
the endothelial adhesion molecule vascular endothelial (VE)-
cadherin [206].

DTCs are measurable in the blood as circulating tumor
cells (CTCs) or cell free circulating tumor DNA (ctDNA).
These are already measurable very early in tumorigenesis,
probably even before clinical detection of the primary tumor.
This stands in stark contrast with late occurring metastatic
disease, sometimes observed in melanoma [207]. However,

the blood compartment is a notoriously stressful environment
for CTCs, considering that < 0.1 % of CTCs in melanoma
animal models metastasize [21]. As invasive melanoma cells
enter the blood, phenotype switching leads to a gain in mes-
enchymal traits [16]. Their new liquid microenvironment
lacks the supportive stroma of the primary tumor including
metabolic fueling by the reverse Warburg effect. If melanoma
CTCs enter dormancy, this is accompanied by a virtually non-
proliferative MITFlow phenotype [12, 75] (see Section 2).
None to only a small fraction of circulating melanoma cells
retain proliferative capacity resulting in early metastatic dis-
ease. Notably AXL upregulation is associated with MITFlow

state in NRAS- and BRAF-mutated melanomas leading to in-
creased survival, therapy resistance and dormancy [208, 209].
Consequently, this emphasizes the connection between dor-
mancy and melanoma cell plasticity.

Apart from the tumor specific dormant niches, metastatic
suppressor genes and the three non-mutually exclusive dor-
mancy subtypes, an accumulating amount of data suggests
that secondary metastatic sites are not passive receivers of
DTCs. In the next section we will discuss the role of primary
melanoma-derived exosomes that induce preconditioning of
secondary sites to foster colonization.

6 Melanoma-derived extracellular vesicles
and premetastatic niche formation

Pioneering findings in melanoma research illustrated the rele-
vance of premetastatic niche formation in metastatic disease
[25]. Premetastatic niches result from the distant effects of
tumor secreted soluble factors and extracellular vesicles of
which exosomes are the most relevant ones [210]. Exosomes
measure 30–150 nm and can be horizontally transferred to
recipient cells. In melanoma these extracellular vesicles con-
tain bioactive molecules consisting ofmetabolites, (glyco)pro-
teins, and genetic material including DNA as well as coding
and non-coding RNAs [25, 211, 212]. Exosomes secreted by
melanoma cells recruit and consequently educate non-resident
cells, such as bone marrow-derived cells (BMDCs) to the
premetastatic niches at distant organs [25, 210]. These
BMDCs secrete soluble factors like MMP-9 that reshape the
premetastatic niche and facilitate colonization of CTCs [213,
214]. Eventually this cascade leads to vascular leakage and
inflammation at the premetastatic niche. Nevertheless, not all
premetastatic niches are immediately compatible with meta-
static growth. Some rather promote dormancy of colonizing
DTCs and are so called “sleepy niches” [210].

Stromal cells at distant sites that have taken up exosomes
become metabolically reprogrammed [20]. Their metabolism
will shift towards aerobic glycolysis, comparable with the
metabolic rewiring of CAFs at the primary melanoma and
the reverse Warburg effect [20]. Of importance, fibroblasts
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as well as endothelial cells at the premetastatic niche remodel
the ECM by fibronectin deposition [213]. The hallmark study
of Kaplan et al. served first proof for a lung premetastatic
niche formation in melanoma, which is made possible by
BMDCs that—just as melanomas—express VLA-4 (α4β1-
integrin), a known fibronectin ligand [210, 215]. Moreover,

melanoma-derived exosomes express integrins (α4β1-
integrin and αvβ3-integrin) as well. These are ligands of fi-
bronectin, VCAM, and L1-CAM among others [25, 88, 96,
103] (see Section 3). Melanoma-derived exosomes also con-
tain the receptor tyrosine kinases (RTKs) ALK and MET
which are horizontally transferred to other target cells like

Fig. 5 The role of dormancy in melanoma. The majority of disseminated
melanoma cells die (A); however, a fraction possesses the potential to
adapt to various new environments, followed either by early recurrence
(B) with metastasis or induction of dormancy (C), which can yield in late
recurrence (D) of metastatic disease. At the primary tumor aggressive
subclones can dedifferentiate to mimic vascular channels, delined by
melanoma cells that express VE-cadherin in a process named
vasculogenic mimicry. After dissemination, invasive melanoma cells
can migrate intra- or perivascularly and as single cells or cell clusters.
The vascular niche comprises the non-mutually exclusive extravascular
and intravascular niche. The former involves the migration of melanoma
cells via the abluminal side of pre-existing vascular structures via extra-
vascular migration (EVM). Eventually this leads to metastatic outgrowth
at secondary sites through extravascular migratory metastasis (EVMM).
Dormancy can be subdivided in cellular dormancy and tumor mass dor-
mancy due to angiostasis (angiogenic dormancy) or immuno surveillance
(immunogenic dormancy). Dormant melanoma cells can reside for years
at their dormant niches and potentially transdifferentiate to endothelial

cells by endothelial transition (EndT), where melanocytic markers are lost
and the endothelial marker CD31 is gained. Intrinsic and/or extrinsic
factors ultimately induce an outbreak from dormancy, thereby promoting
a clinically visible and/or symptomaticmetastasic state of the disease. The
essential prerequisite for metastasis is that the surrounding new TME
allows the adapted or adaptive melanoma cells to survive. Shedded
exosomes help to create a cancer-friendly secondary TME which ulti-
mately leads to organotropism. Escape from dormancy is the result of
immune evasion, angiogenic switch and/or EndMT and will ultimately
lead to a metastatic state of the disease. Finally, in the (macro)metastatic
state, metabolic alterations of melanoma cells and their TME such as the
(reverse) Warburg effect become significant. Abbreviations: CAF,
cancer-associated fibroblast; CTC, circulation tumor cells; ECM, extra-
cellular matrix; DTC, disseminated tumor cells; EVM, extravascular mi-
gration; EVMM, extravascular migratory metastasis; EndT, endothelial
transition; EndMT, endothelial mesenchymal transition, VE-cadherin,
vascular-endothelial cadherin
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BMDCs [25, 216]. The effects mediated by exosomes are not
only organotropic, enabling specific visceral metastasis, but
also drive early lymph node metastasis [24, 215, 217]. Last
but not least exosomes can also induce phenotype switching in
melanoma [218]. In summary, exosomes play a crucial role in
melanoma and metastasis formation by induction of pheno-
type switching [218, 219] (Section 2), metabolic rewiring [20]
(Section 4), dormancy [210] (Section 5) and TME remodeling
including cell adhesion molecule alterations at the primary
tumor (Section 3) as well as at secondary sites [20, 96, 213].
The latter is facilitated by premetastatic niche formation as
discussed in this section (Section 6). This further consolidates
the concept of obligate concurrence of the abovementioned
sections of this review.

7 Summary and future research objectives

This review dissected and at the same time integrated the
cardinal driving forces of melanomagenesis and metastasis
formation. First, this includes phenotype switching that gives
rise to various differentiation states that enable tumorigenesis,
invasion, survival in the circulation and metastatic outgrowth.
Secondly, we discussed melanoma cellular adhesion path-
ways that provide motility and metastatic potential. Thirdly,
we discussed the hybrid metabolic signature that comprises
highly proliferative melanoma cells exploiting the Warburg
effect, balanced with slow-cycling melanoma cells that reuti-
lize OXPHOS. Apart from metabolic reprogramming in mel-
anoma cells, there is synergy with the stroma as well as
interphenotypic nutrient trade-off. Finally, we discussed dor-
mancy and its reverted state—dormancy escape—in conjunc-
tion with premetastatic niche formation by melanoma cell
shedded exosomes.

The interconnection of the aforementioned biological con-
cepts is illustrated by the fact that phenotype switching also
leads to a metabolic switch. For instance hypoxia and nutrient
scarcity are less compatible with a proliferative MITFhigh

state, thereby skewing cellular machinery towards a metabolic
restrictive but survival compatible MITFlow state. Another ex-
ample is the already mentioned metastatic suppressor KISS1
that mitigates Warburg metabolism in melanoma [145].
BiallelicKISS1 loss also leads to awakening of dormant tumor
cells and by consequence couples metabolic rewiring with
dormancy (escape) and metastatic outgrowth [184].
Cohesion between melanoma cells is mediated by various
surface molecules. At first sight this seems counterintuitive
since the exact opposite—discohesion—is essential for inva-
sion. Nevertheless cohesion between melanoma cells enables
better survival in the blood and at distant organs, but also
enables intercellular communication and metabolic symbiosis
[15, 16, 128]. Hence, this demonstrates the earlier mentioned
time and context-dependent aspects during melanomagenesis.

As opposed to the exponentially growing knowledge of
tumor biology, durable curative therapies are dramatically lag-
ging behind in the treatment of metastatic melanoma. The
interplay between the tumor microenvironment and
(epi)genetic mutations enables phenotype switching that
drives cellular plasticity and intratumor heterogeneity. In mel-
anoma this appears to occur in great extent and hinders long
lasting clinical response [220]. On the one hand, the increased
intratumor heterogeneity increases the probability of rare mel-
anoma subclones that may be endowed with an intrinsic abil-
ity to metastasize or exhibit therapy resistance. On the other
hand and probably more important, the phenotype switching
model explains the unique adaptive capacity of melanoma
cells that may be able to overcome environmental stressors
like current therapies. Therefore, future research should take
into account that intratumor heterogeneity and cellular plas-
ticity represent the major barriers in targeting metastatic mel-
anoma effectively, realizing that some treatments might in-
duce phenotype switching towards treatment-resistant
subpopulations.

Solely focusing on killing metastatic cells with antimitotic
agents often leads to therapy-resistant MRD, in part because
proliferating cancer cells may enter a dormant state as a self-
defense mechanism [221]. Besides, cancer cells that are al-
ready dormant have higher tolerance to conventional pharma-
ceutical agents. As circulating dormant tumor cells are respon-
sible for eventual metastatic outgrowth, novel therapies might
better focus on either eliminating these cells or on sustainabil-
ity of dormancy to inhibit dormancy escape. For example,
treatment with alkylating drugs like cisplatin and BRAF/
MEK inhibition uniformly leads to enrichment of slow-
cycling melanoma cells that switch metabolically to
OXPHOS [148]. Therefore combination therapies that also
tackle mitochondrial respiration show promising results
[148, 151]. Recently, co-occurrence of four different drug-
tolerant mitotically inactive transcriptional states were discov-
ered by bulk RNA sequencing after BRAF/MEK inhibition
[5]. These include the SMC, NCSC, invasive, and
hyperdifferentiated/pigmented melanoma cell states (Fig. 1).
Further drug exposure leads to selection of the NCSC state
that is responsible for relapse. The NCSC state is largely driv-
en by the nuclear receptor RXRG and therefore RXR-
antagonists might be of valid use to eliminate MRD in mela-
noma [5].

As already described before, the NC gives rise to transient
migratory melanoblasts. In the vertebrate embryo, melano-
blasts can use external surfaces of blood vessels as guidewires
in an angiotropic fashion called extravascular migration
(EVM) [222, 223] (Fig. 5). Recently, it has been shown that
subsets of melanomas can spread by this mechanism, i.e.,
extravascular migratory metastasis (EVMM). EVMM can
thus be viewed as a reversion towards the NC-related embry-
onic migratory phenotype [223, 224]. This idea is in line with
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transcriptome analysis of metastatic melanoma that shows
striking similarities to melanoblasts [225]. Notably, the way
of spread is not intravascular nor lymphatic and is by conse-
quence an alternative mechanism of metastasis formation
[223, 226]. Despite controversy, this mechanism is gaining
interest and is also postulated in Spitzoid melanocytic neo-
plasms [227].

The close interplay and similarities between malignant tu-
mors and embryologic development was already proposed by
Rudolf Virchow in 1859 [228]. In melanoma, this is even
more straightforward as the melanoblast emigrates through
the vertebrate embryo and melanoma cells revive this migra-
tion program to elicit malignancy. Despite the multiple resem-
blances, perhaps the most striking difference between embry-
ology and malignancy is the highly coordinated and determin-
istic integrity of embryological development. This stands in
stark contrast with the highly inefficient and virtually stochas-
tic manner of metastasis formation that takes away a life,
instead of creating one.

8 Conclusion

Metastasis formation is the main determinant of cancer thera-
py failure along with mortality. Despite decades of advanced
research, it remains poorly understood. This is in part due to
the co-occurrence of multiple distinct processes by which an
integrative approach is overlooked. Put differently, when con-
sidering melanomagenesis, phenotype switching, metabolic
reprogramming, stromal symbiosis as well as dormancy are
not mutually exclusive. As a matter of fact the opposite is true
and at the same time, the reason for metastatic success. The
underlying reason is the high level of intratumor heterogeneity
along with tumor cell plasticity that defines the highly dynam-
ic potential to overcome exogenous stressors like current ther-
apies. In this point of view, different strategies to tackle met-
astatic disease are urgently needed.
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decapentaplegic; SMC, starved melanoma cell; SNAIL/SNAI1, Snail
family transcriptional repressor 1 (alias symbols: SNA, SLUGH2,
SNAH, SNAIL1, SNAIL); SOX2, SRY-box 2; TCA, transcarboxylic
acid cycle (= Krebs cycle); TGF-β, transforming growth factor beta;
TKL-1, transketolase-1; TME, tumor microenvironment; TNFα, tumor
necrosis factor alpha; TSP-1, thrombospondin-1; TWIST1 = TWIST,
Twist family bHLH transcription factor 1; TWIST2, Twist family
bHLH transcription factor 2; VCAM, vascular cell adhesion molecule;
VEGF, vascular endothelial growth factor; VE-cadherin, vascular-endo-
thelial cadherin; ZEB1, zinc finger E-box binding homeobox 1; ZEB2,
zinc finger E-box binding homeobox 2
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