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Abstract

Mucins are high-molecular-weight glycoproteins dysregulated in aggressive cancers. The role of mucins in disease progression,
tumor proliferation, and chemotherapy resistance has been studied extensively. This article provides a comprehensive review of
mucin’s function as a physical barrier and the implication of mucin overexpression in impeded drug delivery to solid tumors.
Mucins regulate the epithelial to mesenchymal transition (EMT) of cancer cells via several canonical and non-canonical onco-
genic signaling pathways. Furthermore, mucins play an extensive role in enriching and maintaining the cancer stem cell (CSC)
population, thereby sustaining the self-renewing and chemoresistant cellular pool in the bulk tumor. It has recently been
demonstrated that mucins regulate the metabolic reprogramming during oncogenesis and cancer progression, which account
for tumor cell survival, proliferation, and drug-resistance. This review article focuses on delineating mucin’s role in oncogenic
signaling and aberrant regulation of gene expressions, culminating in CSC maintenance, metabolic rewiring, and development of
chemoresistance, tumor progression, and metastasis.
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1 Background

Body cavities like the gastrointestinal tract and respiratory
tract are lined by mucosal surfaces that protect them against
pathogens and prevent dehydration. The mucosa is lined by
epithelial cells, which express a class of highly glycosylated
proteins called mucins. These gel-forming mucins are pro-
duced by goblet cells and constitute a viscous mucus layer
that covers mucosal surfaces and protects the mucosa from
bacterial penetration [1]. Mucins are also expressed by
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epithelial cells of the pancreas, gall bladder, liver, eyes, kid-
ney, salivary glands, and lacrimal glands [2]. The mucin fam-
ily of glycoproteins is responsible for mucoadhesiveness, hy-
drophobicity, and viscoelasticity of mucus, which allows the
mucus to protect the epithelium from chemical, enzymatic,
and mechanical damage. Mucins are comprised of amino
(N) and carboxy-terminal protein regions with tandem repeats
of identical sequences rich in proline, threonine, and serine
residues with O-linked or N-linked oligosaccharides [3, 4].
The mucoadhesive quality of mucins aids them in adhering
to other substances via hydrogen bonds, hydrophobic bonds,
and electrostatic interactions, which lead to the creation of gel
aggregates [5, 6].

The mucin family can be broadly classified into two cate-
gories, based on their structural characteristics and domain
organization: transmembrane mucins and secreted mucins.
Transmembrane mucins consist of several members that vary
in molecular size and composition of cytosolic signal-
transducing and membrane-tethered domains. The following
transmembrane mucins have been identified in humans:
MUCI1, MUC3A, MUC3B, MUC4, MUC12, MUC13,
MUCI14, MUC15, MUC16, MUC17, MUC20, MUC21, and
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MUC22. Secreted mucins are categorized into gel-forming
mucins MUC2, MUC5AC, MUC5B, MUC6, and MUC19)
and non-gel-forming mucins (MUC7, MUCS8, and MUCD9).
While the non-gel-forming mucins are noticed as monomers
and cannot oligomerize [5], gel-forming mucins, characteris-
tically secreted by goblet cells, form a viscoelastic mucus
layer over most mucosal surfaces and hence contribute to the
lubricating property of mucus [5, 7].

Tumor cells harness the physiological properties of these
highly glycosylated huge glycoproteins to create rheologic
barriers and dynamic interactome of the cancer epithelia dur-
ing oncogenesis, cancer progression, and metastasis [7]. Over
the past two decades, it has been increasingly recognized that
mucins are associated with the pathogenesis of multiple can-
cers [3, 8—10]. Specifically, deregulated expression of mucins
not only provides an essential bridge between inflammation
and cancer [11] but have also been observed to contribute
towards the carcinogenesis and metastatic cascade of carcino-
ma cells of epithelial origin, as observed in the case of breast,
prostate, lung, ovarian, and pancreas [1, 11]. Under the ex-
tended tandem-repeats of transmembrane mucins and poly-
meric gel of secreted mucins, epithelial cells can transduce
extracellular signals from the environment. This renders mu-
cins capable of functioning as cell-surface receptors and sen-
sors to conduct oncogenic signals and coordinate cellular re-
sponses against external biochemical stimuli, thereby facilitat-
ing enhanced tumorigenicity, invasiveness, metastasis, im-
mune modulation, metabolic shift, and drug resistance [3].

In promoting discussion of the crucial involvement of mu-
cins and the associated aberrant glycosylation in regulating
epithelial to mesenchymal transition, CSC maintenance,
chemoresistance, and metabolic reprogramming in cancer
cells, we have further emphasized the impact of mucin inhi-
bition in blocking tumor progression and metastasis.

2 Mucins promote extrinsic and intrinsic
resistance of cancer cells to therapeutics

2.1 Mucins form a physical barrier on epithelial
surfaces

It was previously believed that the primary function of mucins
was protection and lubrication of epithelial surfaces. Lately,
several studies have associated it with other functions like
growth, fetal development, epithelial renewal, differentiation,
oncogenesis, immune system evasion, metastasis, and chemo-
therapeutic resistance [12, 13]. The treatment of mucin-
expressing cancer cells with drugs is difficult because of the
resistance mechanism [12]. One of the major reasons for
chemoresistance and poor prognosis is the mucus barrier [14].

Membrane-bound mucins (MUC1, MUC4, and MUC16)
and secreted mucins (MUC2, MUCS5AC, and MUC5B) form
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an outstanding web, depending on the mucus network poros-
ity. Diseases like chronic inflammatory cystic fibrosis, chronic
obstructive pulmonary disease, chronic respiratory disease,
and cancer usually have dense mucus [15, 16]. Based on the
porosity of the mucus network, they function as size filters and
hydrophobic or electrostatic forces. Mucins limit the effective-
ness of cytotoxic drugs by restricting the accessibility of drugs
to plasma-membrane and by hampering the intracellular up-
take [17-20]. These reduce the drug efficacy of antibody-
based therapies and chemotherapies, leading to drug-
resistance [18, 21]. The high density of mucin present at the
membrane surface creates a structural mesh, which restricts
the interaction of tumor cell epitopes to immune cells [22, 23].
It also limits the cytotoxic response generated by antibody-
based therapy and the immune cell-mediated killing of tumor
cells [21, 24, 25]. Though several studies have shown the
chemoresistance activity of mucins via the extrinsic route of
forming physical barriers, mucins are also implicated in mod-
ulating a plethora of intrinsic resistance mechanisms, includ-
ing cell survival, resistance to apoptosis, drug metabolism,
enrichment of stemness, and EMT.

2.2 Mucins reprogram cell-survival and resistance to
apoptosis

The primary objective of cytotoxic therapy is to induce cell
apoptosis. A major reason for chemoresistance is the ability of
cancer cells to surpass programmed cell death, wherein mucin
expression reduces their susceptibility to genotoxic drugs by
decreasing the DNA damage or endowing survival mecha-
nisms to overpower the physiological stress [21]. Most cancer
cells harbor dysregulated apoptotic pathways, because of
which anticancer treatments are rendered ineffective. It has
been demonstrated that cancer cells avoid cell death with mu-
cins that block intrinsic apoptotic pathway activation [26]. In
human pancreatic cancer, an elevated amount of MUCI1 cor-
relates to enhanced resistance to chemotherapeutic drugs
(gemcitabine and etoposide) compared to the low MUCI-
expressing cells. In pancreatic cancer cells, MUC1
upregulates MRP1 through the PI3K/Akt pathway [27].
MUCI-CT stimulates the PI3K/Akt pathway, which in turn
increases MUCI expression. The MUC1 CT translocates to
the nucleus and binds to the promoter of the Abccl gene, thus
operates as a part of the transcriptional complex to stimulate
the expression of multidrug resistance (MDR) genes, includ-
ing ABCC1, ABCC3, ABCCS5, and ABCB1 [27].

In various cancer types like breast, it has been reported that
the expression of MUCI plays a role in therapy resistance
[28]. In cancer cells that achieve chemoresistance after
prolonged Paclitaxel (PTX) treatment, the expression of
MUCT is significantly upregulated. Chemotherapeutic drugs
activate the expression of MUCT in cancer cells, which leads
to the activation and nuclear distribution of EGFR. EGFR and
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MUCI1 work together to upregulate ABCB1 transcriptionally
and results in the attainment of chemoresistance [29]. MUC1-
CT plays a vital role in the induction of stemness and PTX
resistance in human NSCLC A549 cells. Along with MUCI1-
CT, oncoproteins such as PI3K/Akt and {3-catenin were also
found to be considerably high in A549/PTX cells [30], sug-
gesting that MUC1-CT, PI3K/AKT, and [3-catenin may work
through the same pathway to generate drug resistance in lung
cancer cells. Further, stemness-related factors such as Nanog,
Oct4, Sox2, CXCR4, and ALDH1 were also shown to be
overexpressed in PTX-resistant A549 cells [30] (Fig. 1).
MUCH4 negatively regulates hCNT1 transporter expression
through the NF-kB pathway, helping pancreatic cancer cells
gain resistance against gemcitabine [31]. It is already known

that the NF-kB pathway is highly activated in PC when com-
pared to the normal pancreas [32]. The NF-kB pathway is
associated with chemoresistance to gemcitabine, regulation
of apoptosis, proliferation, and angiogenesis [33]. MUC4 pro-
tects pancreatic cancer cells from gemcitabine-induced apo-
ptosis through HER2/ERK-dependent phosphorylation and
inactivation of the pro-apoptotic protein Bad [11]. Skrypek
et al. have illustrated the involvement of MUC4-dependent
drug-resistance development, where MUC4 either reduces
the hCNTI1 nucleoside transporter expression through the
NF-«B pathway or modulates the Bax/Bcl ratio by upregulat-
ing Bcl and downregulating Bax expression [34]. The activa-
tion of ErbB2 (HER2) by MUCH4 is achieved by stimulating
Her2 dimerization with other ErbB receptors [35, 36]. The
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Fig. 1 Schematic diagram showing the mucins role in cancer stemness
and chemoresistance. MUC1-C promotes the activation of PI3K/Akt
phosphorylation and the regulation of stemness genes such as Nanog,
Oct3/4, Sox2, CXCR, and ALDHI1, which are responsible for
chemoresistance in lung cancer cells. This leads to MUC1-C mediated
PTX resistance. The nuclear translocation of MUCI stimulates chemo-
therapy resistance via the upregulation of ABCBI in an EGFR-dependent
manner. MUCI provides the resistance to drugs (PTX) by directly regu-
lating ABCC1, ABCB1 gene expression, dependent on the PI3K/Akt
pathway. Moreover, the stimulation of PI3K/Akt pathway by MUCI-
Cter, in turn, increases the expression of MUCI1. The MUC4/NF-«kB
pathway downregulates the expression of the hCNT1 transporter and
regulates the apoptotic proteins Bax and Bcl-xL; thus, it aids the pancre-
atic cancer cells in resisting gemcitabine. Similarly, MUC4 also activates
NF-kB through the ERK1/2 and JNK pathways. MUC4 alters the stabil-
ity of Her2 protein, and auranofin downregulates the Her2 protein. When
the expression of MUC4 is attenuated, it aids auranofin in promoting
FOXO3 translocation from the cytoplasm into the nucleus to regulate
the pro-apoptotic and anti-apoptotic proteins. The upregulation of the
secretory mucin MUCSAC provides resistance to 5-FU via up-

regulation of 3-catenin, CD44, and Lgr5 and downregulation of p53
and p21 in colorectal cancer. MUC13/NFkB signaling pathway promotes
drug resistance and prevents apoptosis by stimulating the anti-apoptotic
proteins, Bel-xL, survivin in sorafenib, or sunitinib-treated renal cancer
cells. MUC16/JAK2/STAT3/TSPYLS5 signaling axis downregulates p53,
which leads to chemoresistance (cisplatin and gemcitabine) in lung cancer
cells. Ectopic expression of MUC16-Cter confers CSC phenotype via the
Activation of JAK2, which phosphorylates histone-3 and upregulates
stemness-specific genes like LMO2, NANOG, and ALDH activity in
pancreatic cancer cells. Abbreviations of mucin-mediated signaling path-
ways, their downstream target genes associated with chemoresistance,
and anti-apoptosis upregulated genes are indicated in red-colored arrow
and downregulated genes using the green colored arrow. ALDH, alde-
hyde dehydrogenase; ABCBI1, ATP-binding cassette subfamily
B member 1; ABCC1, ATP-binding cassette subfamily C member
1; EGFR, epidermal growth factor receptor; FOXO3, forkhead box O-
3; hCNTI, human concentrative nucleoside transporter; Lgr5, leucine-
rich repeat-containing G protein-coupled receptor 5; LIMO2, LIM do-
main only 2; LRP6, low-density lipoprotein receptor protein 6; PTX,
paclitaxel; SFU, 5-Fluorouracil
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MUC4/HER2 complex in several tumors and cancer cell lines
has been identified in various studies [37, 38]. These studies
have revealed that silencing of MUC4 expression leads to the
proteasomal degradation of HER2, reducing HER2 stability
and expression. Next, it has been demonstrated that knock-
down of MUC4 with concurrent auranofin treatment in
SKOV3 cells increased the proteasomal degradation of
HER2. Auranofin is an FDA-approved drug for the treatment
of rheumatoid arthritis, and it induces apoptosis in SKOV3
cells through the regulation of the IKK/FOXO3 pathway
[39]. The coordinated anticancer activity of the combination
is achieved by the downregulation of Her2 expression and
phosphorylation of Akt, thus translocating FOXO3 from the
cytosol to nucleus and initiating the transcriptional activity of
FOXO3, which induces caspase-3-mediated apoptosis and ex-
pression of Bcl-2 interacting mediator of cell death
(BimEL)[40].

Ramesh et al. showed that MUCSAC and CDA44 levels are
elevated when colorectal cancer cells were treated with 5-FU.
This upregulation of MUCSAC provided resistance to 5-FU
by the downregulation of p53 and its target gene p21 and
upregulation of 3-catenin and its target genes CD44 and
Lgr5. The findings of this study prove that MUCSAC pro-
motes 5-FU resistance via the (3-catenin/p53/p21 axis in colo-
rectal cancer [41]. An increased expression of MUCI3 is
strongly associated with increased tumor grade and poor prog-
nosis in renal cell carcinoma (RCC) [42, 43]. Moreover,
prolonged exposure to sunitinib or sorafenib facilitates cell
growth in RCC and drug resistance development, which is
related to higher expression of MUC13. MUCI13 promotes
the activation of the NF-kB signaling, which plays a vital role
in the behavior of cancer cells in various types of adenocarci-
noma and RCC. The activation of several target genes like
cyclin D1, Bcl-xL, and survivin by NF-kB leads to epithelial
cancer cell growth and survival, thus facilitating proliferation
and blocking apoptosis [42]. The silencing of MUCI13 solely
or when combined with sorafenib or sunitinib reduces the
expression of phosphorylated NF-kB p65 and Bcl-xL.
Additionally, ABCBI1 protein, an efflux pump responsible
for multidrug resistance, was upregulated by chronic sorafenib
and sunitinib treatments, dependent on MUC13 expression.
The findings of these studies indicate that MUC13 is a crucial
mediator of drug resistance through the NFkB signaling path-
way [42].

Overexpression of MUC16 was observed in human lung
adenocarcinoma and lung cancer tissues of genetically
engineered mice [44]. Furthermore, the knockdown of
MUCI16 in human and mouse tumor cells led to increased
sensitivity to cisplatin and gemcitabine, wherein cells that
overexpressed MUC16-Cter showed higher resistance to che-
motherapy. This study further illustrated that MUC16
upregulates TSPYLS via JAK2/STAT3/GR axis and sup-
presses p53 activity in lung cancer [44]. MUC16-Cter
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overexpressed pancreatic cancer cells increased resistance to
apoptosis and proliferative potential [45], and another study
has shown that ectopically expressed MUC16-Cter in SKOV3
cells increases cisplatin resistance in ovarian cancer cells [46]

(Fig. 1).

3 Mucins in stem cells, glycosylation,
and EMT-programing

Stem cells are undifferentiated cells that can transform into
differentiated and specialized cell types. Pluripotency and
self-renewal are the most significant features of stem cells
[47]. The expression of specific markers, which may be cell
surface or intracellular proteins, transcription factors, en-
zymes, etc., are used to identify and sort stem cells [48].
Besides, glycosylation has been found to play a significant
role in embryonic development. Yan et al. demonstrated that
the O-fucosylation of Notch receptors controls blood lineage
commitment [49]. Another study has shown that core O-
fucosylation of apolipoprotein B is necessary for proper mid-
line patterning in zebrafish development by modulating the
sonic hedgehog signaling [50]. These studies demonstrate
the importance of glycosylation in mediating stem cell main-
tenance and fate determination during the embryonic devel-
opment process.

3.1 Mucins bolster cancer stem cell maintenance

Cancer stem cells (CSC) are a small subset of the stem cell
population within tumors and are characterized by an exten-
sive self-renewing capacity. Many studies have indicated that
CSCs represent the chemoresistant pool of cells in the bulk
tumor, and they mostly account for tumor relapse post-therapy
[51]. Chemotherapy and various other anticancer therapies
provide a strong selection for CSC survival and proliferation
[52].

MUCI1-CT has been shown to upregulate breast cancer
stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1)
through ERK1 and C/EBPS} by engaging in a transcriptional
activating complex on the ALDH1A1 gene promoter [53].
MUCIL is expressed by a majority of side population (SP)
cells, which are maintained in MUC1+ tumors in vivo.
MUCI, in SP cells, is hypoglycosylated and strongly
sialylated [54].

MUCI expression has also been identified in CD34+/
CD38- acute myeloid leukemia (AML) cells, associated with
leukemia stem cells (LSC), suggesting that MUCI is a poten-
tial marker in the AML stem cell population [55]. MUCI is
one of the cell surface antigens in colorectal cancer stem cells
(CCSQ). In the CT26 mouse model, mice that were vaccinated
with MUCI1 knockin CCSC displayed anti-colorectal cancer
immunity, demonstrated by enhanced innate and adaptive



Cancer Metastasis Rev (2021) 40:575-588

579

immune responses and immune memory. The anti-tumor ef-
fect of the CCSC vaccine decreased partially when the anti-
body against MUC1 was neutralized; this potentiates MUC1
as the major antigen for the CCSC vaccine. CCSC vaccine
with high expression of MUCI is a novel prophylactic vaccine
for CRC [56, 57]. A study identified the expression and role of
MUCI in pancreatic cancer stem cells. MUCI levels were
present in two populations of CSC, namely CD44 + CD24 +
EpCAM+ (Triple+ cells) and CD133+ cells, detecting greater
than 95% of CSC population. In this study, an anti MUCI1
antibody was used to detect the shed MUCI1 fragment in the
serum of pancreatic cancer patients and speculate the disease
stage progression [58].

MUC4 overexpression causes an increase in CD133+ pos-
itive cancer stem cells in ovarian cancer [59]. In a small sub-
population of pancreatic epithelial cells, stem cell-like marker
CD133 has been observed along with MUC4 expression in
the basal compartment of non-malignant pancreatic tissue
specimens [60]. Mimeault et al. have proposed that MUC4
downregulation may partly reverse the CD133 + -associated
resistance property of the cancer-initiating cells after
gemcitabine treatment [60]. This is particularly significant
since gemcitabine treatment of pancreatic tumor xenografts
promotes the selective enrichment of subpopulations of cells
expressing stem cell markers such as ALDH, CD24, and ef-
flux pumps such as ABCB1, ABCG2 [61, 62]. Thus, targeting
MUC4 oncoprotein may present a promising therapeutic strat-
egy to reduce the cancer stem cell population in a tumor,
thereby preventing disease relapse [60].

A significant decline in side population cells was detect-
ed upon MUCS5AC knockout in CRC cells. MUC5AC and
CD44 were overexpressed in the isolated stem cell popula-
tion [41]. High throughput RNA-sequencing analysis of
pancreatic tissues from an autochthonous murine model of
pancreatic cancer demonstrated that MucS5ac-knock out
mice had a substantial reduction in cancer stem cell markers
Aldhlal, Klf4, EpCAM, and CD133. Biochemical experi-
ments in this study delineated that MUCS5AC/integrin av35
interaction results in pSrc (Y416)/ pSTAT3 (Y705) signal-
ing axis, which further upregulates KIf4 expression,
resulting in the enrichment of the self-renewing CSC pop-
ulation in pancreatic cancer [63] (Fig. 1).

Zhang et al. demonstrated that while CA125-positive cells
could form tumors upon orthotopic implantation into the ova-
ry, a similar number of CA 125-negative cells failed to develop
any cancer. It was also observed that the primary cause of
tumor recurrence in ovarian cancer is CA125-positive cells,
which were ovarian cancer stem cells [64]. MUC16-Cter
enriched ALDH+ cancer stem cells in pancreatic cancer cells,
thereby contributing to gemcitabine and cisplatin resistance.
MUCI16-Cter initiates the nuclear translocation of JAK2 and
upregulates stemness-specific genes such as LMO2 and
NANOG [45] (Fig. 1).

3.2 Mucins induce the epithelial-mesenchymal tran-
sition (EMT) for metastasis of cancer

Epithelial-mesenchymal transition (EMT) is a reversible path-
ophysiological process associated with loss of cell polarity,
decreased surface expression of epithelial markers, and in-
creased expression of mesenchymal markers. EMT inducers
include transcription factors like Snail, Slug, and Twistl/2.
EMT is a crucial step contributing towards metastatic tumor
progression; promotion of drug resistance, selective mainte-
nance of cancer stem cells, and ultimately disease recurrence
[65, 66]. Several studies have demonstrated the molecular
events of EMT, triggered by MUC1, MUC4, MUCSAC,
and MUC16 [67-70] [71].

MUCI! promotes EMT by increasing the expression of
Vimentin and Slug and downregulating E-cadherin expres-
sion to stimulate the invasion and metastasis [69]. Studies
have shown that in triple-negative breast cancer cells, the on-
cogenic MUCI cytoplasmic tail protein is expressed aberrant-
ly. Furthermore, MUC1-CT stimulates the phosphorylation of
STAT3 and upregulates the TWIST1 gene. Moreover,
MUCI1-CT binds directly to TWISTI, and this MUC1-CT/
TWIST1 complex is adequate for stimulating the ZEB1 gene
expression in TNBC [72]. Besides occupying the ZEB1 pro-
moter with NF-kB/p65, MUC1-CT promotes ZEB1 transcrip-
tion in breast cancer [73]. Tumor progression and metastasis
are promoted by MUCI signaling via its cytoplasmic tail
(MUCI1-CT) and interaction with other oncogenic signaling
molecules. The induction of EMT independent of SMAD4 is
regulated through the interaction of MUCI-CT with the
TGF-f3 signaling pathway. The overexpression of MUCI1 in
pancreatic cancer cells induces EMT transition, leading to
increased invasiveness in response to exogenous TGF-[3 [74].

In ovarian cancer, MUC4 stimulates the activation of FAK
directly or by interacting with HER2, which leads to the activa-
tion of MKK?7, JNK1/2, and c-Jun signaling, resulting in the
upregulation of N-cadherin. The over-expression of MUC4 re-
sults in decreased expression of epithelial markers and induction
of mesenchymal markers, such as Twist1, Twist2, and Snail [70].
A study has shown that MUC4 mediates N-cadherin upregula-
tion in part through the Akt pathway and partly by the INK1/2
pathway in pancreatic cancer cells. Silencing of MUC4 has been
shown to downregulate pAkt, Twist, Slug, and Zeb1 in PC cells,
namely Capanl and BXPC3 [75].

The overexpression of MUCSAC in lung cancer patient
tissues was associated with poor survival [71]. The interaction
of MUCSAC with integrin 34 resulted in activation of FAK at
Y397; this contributed to lung cancer cell migration. In this
study, Lakshmanan et al. showed that MUCS5AC knockdown
resulted in considerably less migratory capacity. Moreover, in
MUCSAC knockdown cells, mesenchymal cell markers N-
cadherin and Vimentin were decreased, whereas epithelial
marker Cytokeratin 18 and E-cadherin were increased. [71].
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The interaction of MUC16 with FAK resulted in the acti-
vation of Akt and ERK/MAPK signaling, which further facil-
itated tumorigenesis and metastasis of PC cells. The loss of
MUCI16 reduced FAK activation, downregulated mesenchy-
mal cell markers such as N-cadherin, and ZEB-1 and upregu-
lated epithelial-specific markers such as E-cadherin and
Cytokeratin 18. Therefore, this study demonstrated that
MUCI16-FAK interaction promotes the EMT process via
Akt and ERK/MAPK signaling axis in PC [76] (Fig. 2).

4 Mucins rewire metabolic pathways of cancer
cells

Altered metabolism is one of the pivotal hallmarks of onco-
genesis and tumor progression. The cancer cells exhibit aber-
rant expression of various genes, including glucose, amino

acid, or nucleotide transporters, and harness a plethora of dys-
regulated signaling pathways for enhanced utilization of the
limited nutrient reserve [77, 78]. This is particularly true for
solid tumors where the tumor cores are highly hypoxic and
less transfused with blood vessels. The tumor cells are often
involved in the metabolic crosstalk with other tumor microen-
vironment cells and often exploit the host system acting as
“metabolic parasites” [79].

4.1 Mucins in altered carbohydrate metabolism

One of the critical traits that enable cancer cell survival and
proliferation is altered glucose metabolism. The cytoplasmic
tail of MUCI, which is overexpressed in various carcinomas,
including PC, triggers multiple signaling pathways through
interaction with several transcription factors/co-regulators at
the promoter elements of various genes. The study by Nina
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Fig. 2 Mucin’s role in epithelial to mesenchymal transition (EMT).
Mucins regulate the EMT, a reversible pathophysiological process like
loss of cell polarity, decreased surface expression of epithelial markers,
and increased expression of mesenchymal markers. MUCI
phosphorylates STAT3, which regulates TWIST1, also MUC1 directly
regulates the expression of Slug, Vimentin, and E-cadherin proteins in
TNBC. Moreover, MUCI1 promotes the transcription of ZEB1 via the
activation/nuclear translocation of NF-kB p65. MUCI1 promotes the in-
duction of EMT independent of SMAD4, and it is regulated by the inter-
action of MUCI-CT with the TGF-{3 signaling pathway in pancreatic
cancer. MUC4 activates FAK directly or by interacting with HER2.
This leads to the activation of MKK7, JNK1/2, and Akt pathways and
decreased expression of epithelial markers and induction of mesenchymal
markers. MUCSAC/integrin-FAK dependent signaling pathway
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upregulates Vimentin and N-Cadherin and downregulates the epithelial
markers Cytokeratin 18 and E-cadherin in lung cancer. MUC16-FAK
interaction induces the EMT process through the Akt and ERK/MAPK
signaling axis in PDAC. EMT markers upregulated genes are indicated in
red-colored arrow and downregulated genes using the green colored ar-
row. MUC1, MUC4, MUCSAC, and MUCI16 mediated signaling path-
ways and their downstream target genes associated with EMT markers.
FAK, focal adhesion kinase; HER2, human epidermal growth factor re-
ceptor 2; JNK1/2, c-Jun N-terminal kinases 1/2; MKK7, mitogen-
activated protein kinase kinases 7; NFkB, nuclear factor kB; STAT3,
signal transducer and activator of transcription 3; TGFf3, transforming
growth factor-beta; TGF 3R I/, transforming growth factor-beta receptor
I/II; TNBC, triple-negative breast cancer; ZEBI, zinc finger E-box-
binding homeobox 1
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et al. demonstrated that MUCI functions as a modulator of the
hypoxic response in PC cells by regulating the expression,
stability, and activity of hypoxia-inducible factor-la (HIF-
l1x). In PC, MUCI physically interacts with HIF-1« and
p300 and controls several metabolite intermediates such as
HK2, PFKFB2, ENO1, PGK1, PGM2, and LDHA [80].

Several studies show that the overexpression of the MUC1
oncoprotein in 3Y1 fibroblasts results in glycolysis regulation
and the activation of the PI3K/Akt pathway [81, §2]. MUCI
controls the glycolytic flux by triggering various signaling
pathways like PI3K/Akt/mTOR, p53, and HIF-1«, which reg-
ulate the transcription of glycolytic genes [83]. Furthermore,
MUCI interacts with Receptor Tyrosine Kinases (RTKs) to
enhance their stability on the membranes, which further aids
the downstream signaling of RTKSs to promote PKM?2 activity
and the transcriptional activation of glycolytic genes [83].
Chaika et al. showed that MUCI1 enhances glucose uptake
and glycolysis via HIF-1o modulation, and the cytoplasmic
tail of MUCT is recruited at the promoters of several glyco-
lytic genes in PC. The expression of MUCI also enhances the
expression of specific glycolytic genes like PFKFB2 in a hyp-
oxia/HIF-1«-independent manner. Even in normoxic condi-
tions, MUCI1 occupies ENOI and PGM? glycolytic gene pro-
moters and triggers their expression [83].

Breast cancer type 1 susceptibility gene (BRCA1) is a
breast cancer suppressor gene, which has a vital role in
DNA double-strand break repair [84]. Also, BRCAT restricts
glycolysis by downregulating glycolytic enzymes in breast
and ovarian cancer [85, 86]. A study has shown that the
mRNA and protein levels of BRCA1 increase considerably
in MUC1 KO cells, which implies that MUCI1 inhibits the
transcription of the BRCAI gene. Also, increased BRCAL
level results in decreased glycolysis in MUC1 KO cells. On
the other hand, MUC1 KO CFPAC-1 cells displayed en-
hanced glucose uptake and lactate release post BRCA1 inhib-
itor treatment [87]. In comparison to WT cells, MUC1 KO
cells showed reduced expression of metabolic intermediates
such as SLC2A1, HK2, PFKFB2, PGI, LDHA, ENOI,
PGKI1, and PKM. This study demonstrates that MUCI1 pro-
motes glycolysis by preventing BRCA1 expression [87].

The cytoplasmic domain of MUC1-C harbors a CQC mo-
tif, essential for its homodimerization and function [88, 89].
Therefore, to prevent the activation of various MUC1-C-
mediated pathways, cell-penetrating peptides GO-203 have
been developed to target the MUC1-C CQC motif [90]. In
immunohistochemistry results, it shows that targeting
MUCI1-C with GO-203 resulted in the downregulation of
TP53-induced glycolysis and apoptosis regulator (TIGAR)
expression in xenograft tissue; this confirms the relationship
between MUC1-C and TIGAR in human ESCC [91].

In pancreatic tumors, overexpression of MUC13 leads to
tumor progression through the regulation of HER2 receptor
tyrosine kinase activity [92]. Sonam et al. showed that the

expression of MUCI3 resulted in the activation/nuclear trans-
location of NF-kB/p65 and phosphorylation of IkB, which in-
creases the expression of genes associated with glucose metab-
olisms like Glut-1, HIF-1«x, and c-Myc. MUC13 interacts with
and stabilizes Glut-1, which is accountable for the increased
glucose uptake in PC cells. The glucose uptake and lactate
secretion in PC cells were regulated by altering the expression
of MUC13 and the associated molecular mechanisms [92].

The primary tumor and metastatic lesions exhibit high ex-
pression of MUC16 in PC patients [93]. A recent study shows
that the PC cells in which MUC16 has been knocked down
display decreased glucose uptake and lactate efflux, with a
concurrent decrease in migration and invasion potential [94].
MUC16 knockdown also reduced GLUT1 and HK2, reduced
phosphorylation of Akt and mTORCI1 target proteins p70S6K
and 4EBP1, and lowered the expression of its downstream
target c-Myc, which in turn is a key player in cellular growth,
proliferation, and metabolism [94]. Interestingly, various as-
pects of cancer cells, including survival, proliferation, cell
cycle, motility, and cellular metabolism regulation, are regu-
lated by the PI3K-Akt-mTOR pathway [95, 96]. These studies
hence illustrate that MUC16 bolsters the glycolytic propensity
of PC cells (Fig. 3).

4.2 Mucins in altered lipid metabolism

Energy metabolism and lipid metabolism are quite interrelat-
ed. Therefore, changes in one of these will alter the course of
other pathways. Altered lipid metabolism is implicated in the
pathogenesis of cancer [97]. Many studies have shown that
most tumors increase de novo fatty acid synthesis, regardless
of available lipid resources [98]. This helps tumors expand
their cells rapidly by providing them with more building
blocks, crucial signaling molecules, and valuable energy
sources in response to limited glucose availability.
Consequently, besides synthesis, the beta-oxidation pathway
is modified to manage the changes in cellular energetics of
cancer cells [99].

Most tumors overexpress enzymes and factors involved in
lipid biosynthesis, such as acetyl-CoA carboxylase (ACC),
ATP citrate lyase (ACL), fatty acid synthase (FAS),
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and
sterol regulatory element-binding protein 1 (SREBPI1)
[100-102]. As expected, these enzymes are downstream to
many tumor suppresser genes and oncogenes, including
PI3K, MAPK, p53, c-Myc, and EGFR [103], which, as men-
tioned above, are modulated by various mucins.

A study by Pitroda et al. reported that the genes associated
with MUC1-induced tumorigenesis are also involved in lipid
metabolism regulation. This study established that MUC] in-
duces a set of lipid metabolic genes, named MUC1-induced
lipid metabolism signature (MLMS), in breast cancer cells
[28]. MLMS consists of a set of 38 genes, which come under
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<« Fig. 3 Schematic diagram showing the role of mucins in cancer
metabolism. Mucins regulate metabolism through the activation of
multiple signaling pathways. MUCI1 physically interacts with HIF-1x
and p300 and controls several metabolite intermediates in pancreatic can-
cer cells. BRCAL1 prevents glycolysis by downregulating glycolytic en-
zymes in cancer. MUC1 promotes glycolysis by inhibiting the expression
of BRCALI in pancreatic cancer. MUCI regulates PI3K/AKT/mTOR,
p53, TIGAR, and HIF-1«, which regulate the transcription of glycolytic
genes. MUCT interacts with RTKs and increases the stability of the RTK
membrane. As a result, the MUCI/RTK complex promotes glycolytic
genes. MUCI13 activates the phosphorylation of IkB and activation/
nuclear translocation of NF-kB/p65. This, in turn, leads to increased
expression of genes linked with glucose metabolism. MUC16 regulates
glycolysis by activating the PI3K-AKT-mTOR/c-Myc pathway in pan-
creatic cancer. Metabolic pathways upregulated by mucins are written in
red color. Abbreviations of metabolic genes regulated by mucins: Acetyl-
CoA, acetyl-coenzyme A; ENOI, enolase 1; G-1-P, glucose -1- phos-
phate; GLUT], glucose transporterl; GLU, glutamate; GSL1, glutamin-
ase 1; GLN, glutamine; GF, growth factor; HK2, hexokinase 2; HIF-1¢x,
hypoxia-inducible factor 1, alpha; LDHA, lactate dehydrogenase A;
mTORC1, mammalian target of rapamycin complex 1; PFK PFKFB2,
phosphofructokinases; PGI, phosphoglucoisomerase; PGM, phosphoglu-
comutase; PGK 1, phosphoglycerate kinase 1; PDH, pyruvate dehydroge-
nase; PDK1, pyruvate dehydrogenase kinase 1; PKM2, pyruvate kinase
isozyme M2; RTK, receptor tyrosine kinase; S6K 1, ribosomal protein S6
kinase 1; SLC1AS, solute carrier family 1 member 5; TIGAR, TP53-
induced glycolysis and apoptosis regulator; TCA cycle, tricarboxylic acid
cycle; «-KG, a-Ketoglutarate

lipid-metabolizing enzymes and transporters. Notably, the list
contains the most commonly upregulated genes in various
malignancies and transformed phenotypes, such as ACL,
FASN, and SERBF1 (sterol regulatory element-binding tran-
scription factor 1). ACL helps synthesize acetyl-CoA, a pre-
cursor for fatty acid and cholesterol synthesis. SREBP1 con-
trols the genes involved in fatty acid, cholesterol, and triglyc-
eride synthesis. This process also includes FAS, which cata-
lyzes the synthesis of palmitate from acetyl-CoA and malonyl-
CoA in the presence of NADPH. MLMS, which represents
the alterations in MUC 1 -induced lipid metabolism, predicts
cancer recurrence and metastasis in tamoxifen-treated breast
cancer patients [28]. Moreover, MUC1-mediated HIF-1c
stabilization/activation can promote transcription of FASN
and SREBP, while excessive lactate secretion-induced acido-
sis can promote FAS induction through epigenetic mecha-
nisms, as reported in breast cancer cells [104].

5 Conclusions and future perspectives
on therapeutic strategies

The membrane-bound and secretory mucins MUC1, MUC4,
MUC16, and MUCSAC are promising diagnostic and thera-
peutic targets because of their differential expression and
functional involvement in pathogenesis. Currently, methods
to exploit the overexpression and glycosylation of MUCI in
various carcinomas and the probability of MUC1-based im-
munotherapy is being explored [105]. In the development of

MUC1-based immunotherapy, a major point to be considered
is MUCI-N (highly glycosylated), and MUC1-C components
role in immune evasion by cancer cells. Recently, Govind
et al. generated mAb 3D1 against the non-shed oncogenic
MUCI1 C-terminal subunit. mAb 3D1 binds to the surface of
multiple non-small cell lung cancer and breast cancer cell
lines. Human Ab-3D1 monomethyl auristatin E (MMAE)
antibody-drug conjugate (ADC)-mediated killing of cancer
cells could be effective in reversing the suppressive immune
microenvironment of tumors, thus enhancing the activity of
other immuno-therapeutic agents, including antibodies used
for the blockade of the PD-1/PD-L1 axis [106]. The MUC4-
ErbB2 interaction at the biophysical level proves that the pres-
ence of three EGF domains of MUC4 is adequate to provide
effective interaction. Future work may help if directed towards
identifying small-molecule inhibitors to decrease the binding
affinities of the MUC4-ErbB2 complex for drug discovery
development in cancer [107]. Emerging evidence confirms
that MUC4 can be a potential immunotherapy target [10].
Therapeutic strategies can use MUC4-specific antitumor im-
mune response using vaccines or chemotherapeutic agents
with anti-MUC4 antibodies in combination. The cleavage of
MUCI16-Cter takes place in the juxta-membrane ectodomain
stretch of twelve amino acids that create approximately
17 kDa cleaved product [108]. A functional cleaved MUC16
provides tumorigenic, metastatic, and drug-resistant proper-
ties to pancreatic cancer cells in part by enriching ALDH+
CSCs, which depends on nuclear JAK2 mediated upregula-
tion of stemness specific genes LMO2 and NANOG.
Therefore, therapeutic strategies targeted against MUC16-
Cter will be crucial in treating MUC16-expressing pancreatic
cancer patients. The study has shown that when a rapid and
reversible block in the secretory pathway is induced by
brefeldin A (BFA), it prevents the cleavage of MUC16 [45].
One of the major barriers to effectively target MUC16-
expressing cancers is cleavage and shedding of the extracel-
lular domain of MUC16. Hence coordinated targeting of the
non-cleaved cell surface retained portion of MUC16 may be
beneficial. This can be achieved by using antibody-based ther-
apeutics against the carboxyl-terminal of MUC16. A recent
study demonstrated a panel of monoclonal antibodies against
the carboxy-terminal (CT) portion of MUCI16 [109].
MUCSAC, a polymeric secreted mucin, has been shown to
harbor a protumorigenic role in several malignancies, includ-
ing pancreatic [63], colon[41], and lung [71] tumors. While
the expression of MUCSAC significantly correlates with the
poor prognosis of cancer patients, the biochemical isoforms of
this mucin and their mechanistic involvement in disease pa-
thologies are still less understood. Our group has delineated
that MUCS5AC promotes the enrichment of CSCs and drives
chemoresistance. Recently, MUCS5AC has been demonstrated
to harbor therapeutic utility. The monoclonal antibody NEO-
102 (NPC-1C, ensitumab) targets a cancer-associated variant
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of MUCSAC that is specific to CRC [110]. The mechanism of
action of NEO-102 is via antibody-dependent cellular cyto-
toxicity (ADCC). Understanding the pathologies of cancer-
specific molecular variants of MUC5AC will pave the way
for better diagnosis, patient stratification, and designing a ther-
apeutic regimen for cancer patients.
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