
CLINICAL

Pancreatic adenocarcinoma: molecular drivers and the role
of targeted therapy

Bayan Al-Share1 & Nour Hammad2
& Maria Diab3

Received: 2 September 2020 /Accepted: 15 December 2020
# The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Prognosis from pancreatic ductal adenocarcinoma (PDAC) continues to be poor despite the many efforts channeled to improve its
management. Although the mainstay treatment is still traditional chemotherapy, recent advances highlighted a promising poten-
tial for targeted therapy in the management of this disease. Those advances emphasize the significance of timely genomic
profiling of tumor tissue as well as germline testing of patients to identify potential markers of targeted therapy. While targeted
therapy is reserved for a relatively small subset of patients with PDAC, ongoing research is uncovering additional markers, and
targeted agents, that will hopefully translate to better outcomes for patients.
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) comprises 85% of
pancreatic malignancies [1]. The three precursor lesions are
pancreatic intraepithelial neoplasia (PanIN), mucinous cystic
neoplasm (MCN), and intraductal papillary mucinous neo-
plasms (IPMN) [2]. Progression to adenocarcinoma is driven
by genetic mutations and alterations of the surrounding stroma
including the extracellular matrix, immune cells, stromal cells,
and cytokines [3–5]. Treatment of pancreatic adenocarcinoma
has been a challenge. The poor prognosis of advanced/
metastatic disease with conventional chemotherapy triggered
the research onmolecular pathogenesis and targeted therapies.

This review describes these molecular drivers, the develop-
ment of specific targeted therapy, and the ongoing research.

A number of drivers govern the development of pancreatic
ductal adenocarcinoma and act by different mechanisms: (1)
activation of signal transduction leading to cell proliferation
by inducing function of oncogenes or their receptors and ac-
tivation of downstream pathways, (2) inducing angiogenesis,
(3) inhibition of tumor suppressors, (4) inactivation of mis-
match repair genes, (5) JAK/STAT pathway, (6) changes in
embryonal pathways, (7) telomerase shortening, (8) an altered
immune cell activity, and (9) stromal reaction. This article
reviews the highlights of molecular targets and potential ther-
apies of drivers inside the cell from cell membrane down to
the nucleus.

At the cell membrane, multiple receptors play a role in
PDAC including epidermal growth factor receptor (EGFR),
insulin-like growth factor receptor (IGFR), vascular endothe-
lial growth factor receptor (VEGFR), human epidermal
growth factor receptor-2 (Her-2), cytokine receptor/JAK-
STAT, and the embryonic pathway receptors. Each of these
receptors, when activated, acts through a signal transduction
pathway controlling aspects of cell function, proliferation, and
survival.

Intracellular signal transduction pathways are composed of
sequence of multiple proteins that transmit the signal from the
cell membrane proteins down to the nucleus. These include
RAS/RAF/MEK/ERK pathway, PI3K/Akt/mTOR pathway,
JAK/STAT pathway, and TGF-B/SMAD4 pathway.

Areas covered
This review covers the molecular drivers in the cell and the cell
membrane involved in the development and progression of PDAC and
novel therapeutic agents targeting them.
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Inside the nucleus, multiple molecular drivers are identified
in PDAC. Loss of function of tumor suppressor genes, such as
P53 and P16, mismatch repair genes, or Fanconi anemia fam-
ily DNA repair, can be molecular drivers for development of
PDAC. Figure 1 shows the molecular drivers in the develop-
ment pancreatic ductal adenocarcinoma.

2 At the cell membrane

2.1 Epidermal growth factor receptor

Epidermal growth factor receptor (EGFR) is a transmembrane
glycoprotein with tyrosine kinase component that belongs to the
ErbB family. Ligands, including EGF and transforming growth
factor-alpha, activate it and trigger intracellular signaling path-
ways includingRAS/PI3K/Akt andRAS/RAF/MAPK/ERK that
regulate cell proliferation and survival [6]. EGFR-activating mu-
tations, ligand overexpression, or increased receptor density on
the cellular membrane lead to over-activation of its pathway.
EGFR is encoded by c-ERBB-1 proto-oncogene located on the
short arm of chromosome 7. It is overexpressed in almost 85%of
PDAC and was found to correlate with aggression, metastasis,
and recurrence [7–10]. Targeting the EGFR receptor and its
pathway has been extensively studied.

In 2007, the FDA approved the EGFR inhibitor erlotinib as
first-line treatment of locally advanced, unresectable or meta-
static PDAC in combination with gemcitabine based on the
results of the phase III trial that showed a prolonged overall
survival (OS) with the combination of erlotinib/gemcitabine
compared to gemcitabine alone. Median OS (mOS) was
6.24 months vs. 5.91 months [11]. Although statistically sig-
nificant, this benefit was not clinically relevant and not prac-
tice changing. We do not use this combination in our practice.
Other EGFR targeting agents were evaluated in PDAC with-
out benefit. Table 1 demonstrates a summary of clinical trials
targeting EGFR.

With receptor inhibition, feedback activation of different
pathways can lead to treatment resistance. Blocking different
pathways for synergism has also been studied. Possible syn-
ergy between EGFR inhibitors and inhibitors of the STAT3
pathway has been studied. Preclinical studies using Rhein, a
lipophilic anthraquinone extracted from multiple herbs, sug-
gested sensitizing the PDAC cells to EGFR inhibitors by
blocking the STAT3 pathway [15]. Another study demon-
strated that blocking the STAT3 pathway by simultaneous
inhibition of EGFR with erlotinib and Src-kinase inhibition
helps overcome resistance to gemcitabine by remodeling tu-
mor stroma and enhancing gemcitabine delivery to the cells
[16]. Most recently, a preclinical mice study confirmed this
finding and demonstrated decreased stromal fibrosis and

Fig. 1 Molecular drivers of pancreatic ductal adenocarcinoma
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prolonged survival in mice with PDAC using the Src inhibitor
dasatinib and the EGFR inhibitor erlotinib [17].

Cetuximab was extensively studied in PDAC. A recently
published systematic review and meta-analysis screened 568
publications, included a total of four randomized controlled
trials with 924 patients [18–21], and revealed no improvement
in OS, PFS, or objective response by adding cetuximab to
standard therapy of PDAC [22].

2.2 Vascular endothelial growth factor

Vascular endothelial growth factor (VEGF) belongs to the
platelet-derived growth factor family. It plays a pivotal role
in the regulation of pathologic vascular and endothelial cell
growth and enhancing vascular permeability [33]. The goal of
targeting it is to control tumor angiogenesis and progression.
Multiple trials evaluated that the role of VEGF and VEGF
receptor inhibitors were not successful in demonstrating a
clinical benefit. Table 2 summarizes these clinical trials.

In 2005, a phase II study evaluated the use of bevacizumab,
an anti-VEGF monoclonal antibody, in combination with
gemcitabine in previously untreated advanced pancreatic can-
cer. mOS was 8.8 months, and the median progression-free
survival (mPFS) was 5.4 months [34]. Unfortunately, a ran-
domized phase III trial did not show improved survival [35].

2.3 Human epidermal receptor 2

HER2, also called erbB-2, is encoded by the ERBB2 gene
[42]. It is different from other HER receptors due to lack of
a specific ligand. It is activated by homo- or hetero-
dimerization with other HER receptors or insulin-like growth
factor receptor (IGFR) leading to auto-phosphorylation of the
tyrosine kinase cytoplasmic portion. HER2 overexpression is
identified variably in PDAC, detected in 21–80% of cases by
IHC [43–46].

A number of attempts have been made to target HER2.
Lapatinib, a small molecule inhibitor of HER2, was evaluated
in a phase II trial combined with gemcitabine in the treatment
of metastatic disease. No benefit was demonstrated [47].
Another phase II trial added lapatinib to capecitabine for
gemcitabine-refractory metastatic PDAC in a small sample
of patients. The study was not completed due to change in
clinical practice and difficulty enrolling patients. However, a
subset of patients responded to treatment with a median OS of
8.3 months and PFS 4 months. This was believed to be due to
dual EGFR and HER2 inhibition [32]. Trastuzumab is a
monoclonal antibody targeting HER2. It was added to cape-
citabine in metastatic PDAC in a phase II trial, but the results
were disappointing [48]. The phase I/II THERAPY trial uti-
lized the dual inhibition of EGFR and HER2 receptors with

Table 1 Key trials targeting EGFR

Treatment Phase OS (mo) N. Conclusion/impact of study

Small molecules
Erlotinib + gemcitabine vs.

gemcitabine [11]
III 6.24 vs. 5.91 569 FDA approved in the first-line setting.

Trivial OS benefit
Cixutumumab + gemcitabine + elortinib vs.

erlotinib + gemcitabine [23]
Ib/II 7.0 vs. 6.7 116 Negative trial

Erlotinib + gemcitabine vs.
gemcitabine/adjuvant [24]

III 24.5 vs. 26.5 436 Negative trial

Sorafenib + erlotinib [25] II – 36 Negative trial
Selumetinib + erlotinib [26] II 7.3 46 Negative trial

Tumors with high E-cadherin level
are more likely to be sensitive

Gemcitabine + MK-0640 vs. gemcitabine
+ erlotinib + MK-0646 vs. gemcitabine + erlotinib [27]

II 53 A sustained partial response observed
with gemcitabine + MK-0646

OS was not significantly different
between the three arms

Vandetanib + gemcitabine vs.
gemcitabine + placebo [28]

II 8.83 vs. 8.95 142 Negative trial

Anti-EGFR monoclonal antibodies
Panitumumab + erlotinib + gemcitabine vs.

erlotinib + gemcitabine [29]
II 8.3 vs. 4.2 92 Improvement in OS but caused

significant toxicity
Note: control arm OS was worse

than reported in the literature
Other EGFR inhibitors
Gefitinib + gemcitabine [30] II 7.3 23 Promising response and disease

stabilization
Gefitinib + docetaxel [31] II 4.5 41 Negative trial in second line
Lapatinib + capecitabine [32] II 5.2 17 Promising but needs testing on a

larger population
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trastuzumab and cetuximab. There was no observed objective
response in addition to a high toxicity profile [49].

2.4 Insulin-like growth factor receptor and axis

Insulin growth factor (IGF) axis in PDAC has been a
special interest due to the association with new-onset di-
abetes [50]. IGF axis is a group of biomarkers consisting
of ligands (IGF-1 and IGF-2), receptors (IGF1R and
IGF2R), and binding proteins (6 IGFBPs and 9 IGFBP).
Activation of IGF1R results in downstream activation of
anti-apoptotic pathways and drug resistance, while activa-
tion of IGF2R by its ligands, IGF2 and mannose 6 phos-
phate (M6P), has tumor suppressor function [50].
Therefore, cell death and apoptosis are inhibited by the
loss of IGF2R [50–53]. IGF-1 levels were found to be
elevated in cancers like breast, colon, and prostate cancers
[54–56]. There is no established relationship with PDAC
so far, but the research is ongoing [57, 58]. The proposed
association between IGF-1 level and early detection of
PDAC will be revolutionary if proved true. Increased
IGF-1/IGFBP-3 M ratio is thought to be a risk factor of
PDAC, studied in a nested case control study of patients
with prostate, lung, ovarian, and colorectal cancers who
developed PDAC [59].

A phase I/II trial added the IGF1R antibody dalotuzumab
(MK-0646) to gemcitabine and erlotinib in advanced PDAC.
There was improved OS with the gemcitabine and MK-0646
combination but no difference in PFS, and there was no ben-
efit in dual receptor blockade by adding erlotinib.
Additionally, there was no association between IGF-1 levels
and clinical outcomes [60]. Another antibody, ganitumab, was
tested in the phase III GAMMA trial. In combination with
gemcitabine, it failed to improve clinical outcomes [61].

2.5 JAK-STAT

The JAK-STAT pathway is a signal transduction pathway
involved in cell proliferation. JAK is a transmembrane protein
with intracellular tyrosine kinase portion activated by cyto-
kines, mainly IL-6 that is produced in inflammatory condi-
tions like pancreatitis [62, 63]. Gene expression analysis re-
vealed increased expression of protein members of this path-
way in PDAC [64].

Ruxolitinib is a JAK1/2 inhibitor that has been evaluated in
PDAC. Unfortunately, combining ruxolitinib to capecitabine
in gemcitabine-refractory disease did not improve outcomes
[65]. Similarly, another phase III trial was terminated based on
lack of efficacy (Clinical trial: NCT02119663). Trials testing
other JAK inhibitor in PDACwere terminated due to a lack of
efficacy as well [66, 67].

2.6 Embryonic pathways

2.6.1 Hedgehog pathway

Hedgehog signaling pathway (Hh) plays an essential role in
embryonic cell growth and differentiation [68]. Anomalous
activation impacts tumor progression and response to therapy
[68]. It normally acts through downstream signaling initiated
by binding of its three ligands: sonic hedgehog (SHH), Indian
hedgehog (IHH), and desert hedgehog (DHH). Seventy-five
percent of PDACs have alterations in the Hh ligand ex-
pression [69]. The most studied among the three ligands
in PDAC is SHH that is highly upregulated in this disease
[70–73]. Hh pathway also causes desmoplasia and stromal
reaction [74, 75].

The blockade of the Hh pathway has been investigated in
PDAC as a potential target [76]. Studies suggested the role of
statins in inhibiting carcinogenesis of PDAC through affecting

Table 2 Key trials targeting VEGF/VEGF receptor

Treatment Phase OS (mo) N. Conclusion/impact of the study

Anti-VEGF monoclonal antibodies
Bevacizumab + gemcitabine vs. gemcitabine + placebo [35] III

CALGB 80303
5.8 vs. 5.9 602 Negative trial

Bevacizumab + erlotinib [36] II 102 days (3.4) 36 Negative trial
Bevacizumab + erlotinib

+ gemcitabine + capecitabine [37]
I/II 12.6 44 Encouraging efficacy in patients

with good performance status
Small molecules
Axitinib + gemcitabine vs. gemcitabine alone [38] II 6.9 vs. 5.6 103 A small non-statistically significant

OS benefit
Axitinib + gemcitabine vs. gemcitabine alone [39] III 8.5 vs. 8.3 632 Negative trial
Sorafenib + gemcitabine [40] II 4 17 Negative trial
Vatalanib as monotherapy [41] II – 67 Favorable 6-month survival rate as

second-line therapy in patients
with metastatic disease

Vandetanib + gemcitabine vs. gemcitabine + placebo [28] II 8.83 vs. 8.95 142 Negative trial
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SHH signaling and post translational modification of Hh pro-
tein [77–80]. However, there is no definitive evidence yet to
include statins in the treatment of PDAC.

2.6.2 Notch signaling pathway

Notch pathway affects cell growth in different ways based on
the cellular context and is activated by ligands such as delta-
like 4 (DLL-4). Notch can be both pro-oncogenic and tumor
suppressant [81]. It is highly expressed in PDAC and has a
role in chemo-resistance [82, 83]. Possible reversal of chemo-
resistance was described in preclinical studies by Notch inhi-
bition with the anti-DLL4 antibodies tarextumab and
demcizumab in combination with gemcitabine [84].
However, clinical trials have so far been negative [85]. A
suggested inhibition of tumor growth and invasion upon inhi-
bition of gamma-secretase, a cleavage enzyme in notch cas-
cade, was tested with different inhibitors [86, 87]. A phase II
trial tested the gamma-secretase inhibitor RO4929097 in pre-
viously treated PDAC. Enrollment in this study was stopped,
and the drug production was discontinued due to the absence
of tumor response and limited activity [88]. An interesting
concept that is the use of natural products such as curcumin,
sulforaphane, and genistein as inhibitors of Notch-1 signaling
in PDAC has been studied. Genistein suppressed cell growth,
but there is no supportive clinical evidence of benefit to date
[89–92].

2.6.3 Wnt/ β-catenin signaling

TheWnt pathway is involved in epithelial-mesenchymal tran-
sition, regulation of cell cycle, apoptosis, and microenviron-
ment leading to PDAC progression, invasion, and chemo-
resistance [93–97]. Wnt acts through a canonical pathway that
isβ-catenin dependent and a non-canonical pathway that isβ-
catenin independent [98]. Several trials highlighted this poten-
tial target for the treatment of PDAC. Attempts to inhibit the
Wnt pathway focused on the various aspects of this pathway
including porcupine, the enzyme involved in secretion of Wnt
ligands, Wnt proteins, and the binding of Wnt ligands to their
receptors [99, 100].

Table 3 summarizes several agents that reached clinical
studies in PDAC. Unfortunately, however, targeting Wnt/
β-Catenin signaling pathway has not demonstrated a clinical-
ly meaningful benefit.

3 Inside the cell

3.1 RAS

RAS is a subfamily of proteins among a large family of small
GTPases [105]. They include HRAS, NRAS, and KRAS and

control cell proliferation. Their genes share near-identical
structures, but they harbor mutations at different frequencies
in cancers. KRAS is the most frequently mutated gene [106].
It is located on chromosome 12 and is mutated in more than
90% of PDAC and early forms of pancreatic neoplasia
[107–109]. The most characterized signaling pathway that
activates the wild-type (WT) KRAS is the EGFR receptor
signaling [105]. KRAS acts as an on-off switch of cell prolif-
eration by binding to GDP/GTP through both guanine nucle-
otide exchange factors (GEFs) that moderate exchange of
GDP for GTP and GTPase-activating proteins (GAPs) that
inactivate KRAS by hydrolyzing GTP to GDP [110–112].
Once mutated, KRAS is in the active form sending the “on”
signal which leads to continuous cellular proliferation. KRAS
mutations are frequently detected at the G12 position, and
G12D is the most common, which is sufficient to lead to early
forms of metaplasia and pancreatic intraepithelial neoplasia
that will subsequently progress to PDAC [113].

Targeting mutant KRAS has been a priority in PDAC since
it is the most commonly mutated gene. However, it has so far
proven to be an elusive target, partially due to its protein
structure and partially due to its high affinity to GTP.
Therefore, research on KRAS drug development focused on
disruption of regulator/effector interaction and inhibition of
downstream effectors such as PI3K/AKT and MAPK/ERK
pathways, as well as membrane association, synthetic interac-
tion, and metabolism [114]. More recently, several agents
targeting G12C have shown promising results in both lung
and colon cancers [115]. However, this mutation is rather
uncommon in PDAC that it would be difficult to design a
clinical trial evaluating its role in this subset of patients. The
more common KRAS mutations in PDAC are G12D and
G12V [109]. These two variants have proven to be elusive
to target.

KRAC G12C is a variant of mutated KRAS that is
more common in lung cancer (13%) and colon cancer
(1–3%) but is present in < 2% of PDAC. Sotorasib
(AMG 510) is a small molecule that binds selectively
and irreversibly to KRAS G12C [116]. It was adminis-
tered as single agent in a phase I trial for heavily
pretreated patients with advanced solid tumors with a
KRAS G12C mutation and showed encouraging antitu-
mor activity [116]. The trial included one patient with
PDAC who achieved a partial response [116].

Another promising agent for KRAC G12C is the novel
pan-KRAS inhibitor BI 1701963 (add reference from next
line). This is a small molecule inhibitor of protein-protein
interaction that binds son of sevenless homologue 1 (SOS1),
which leads to KRAS inhibition [117]. A phase I trial
(ClinicalTrials.gov: NCT04111458) is currently ongoing to
evaluate the maximum tolerated dose for BI 1701963 as
monotherapy and in combination with the MEK inhibitor,
Trametinib [117].
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Since G12D and G12V variants of mutant KRAS are more
common in PDAC, studies for PDAC are testing treatment by
targeting these variants. Administration of peripheral blood
lymphocytes transduced with murine T cell receptor to recog-
nize these variants is being evaluated in two separate phase I/II
trials (ClinicalTrials.gov: NCT03745326) (ClinicalTrials.gov:
NCT03190941).

3.1.1 KRAS wild-type tumors

KRASwild-type tumors deserve mentioning as they represent
a distinct group of PDAC. Collectively, they compose ~ 6–8%
of PDAC cases and are rich with molecular aberrations such
as NGR1 rearrangement, NTRK fusion, as well as rearrange-
ment of ALK and ROS [118].

Rearrangements in NRG1 confer susceptibility to targeting
the ErbB family, including anti-EGFR therapy, unlike what
was observed with KRAS mutant PDAC (mentioned above)
[13]. For example, the combination of erlotinib and
gemcitabine was associated with a survival benefit of
7.9 months compared to 5.7 months with single agent
gemcitabine [12, 13]. Promising results were also observed
with treatment with afatinib, a tyrosine kinase inhibitor of
EGFR, Her2, and Her4 [119]. Zenocutuzumab is a bispecific
Her2 and Her3 antibody that is currently subject of a phase I/II
trial for advanced solid tumors with NRG1 fusions, including
PDAC (ClinicalTrials.gov: NCT02912949).

Nimotuzumab is a monoclonal antibody that binds with
high affinity to the extracellular region of EGFR and prevents
ligand binding and receptor activation [14]. In a randomized
phase IIb study, patients with wild-type KRAS also showed
significantly improved OS compared to patients with mutated
KRAS, when treated with a combination of nimotuzumab and
gemcitabine (11.6 versus 5.6 months, P = 0.03) [14].

Fusions in the TRK-coding genes occur in < 1% of PDAC
cases [120]. Larotrectinib and entrectinib are FDA approved
for the treatment of advanced solid tumors with NTRK

fusions, and both have activity in PDAC [121]. The original
phase I/II trial included one patient with PDAC [121]. The
overall response rate was 75%, and the median duration of
response was not reached at the time of publication [121].
Two patients with PDAC with NTRK fusion received
entrectinib on the phase 2 STARTRK-2 basket study; both
had a partial response with normalization of CA 19-9
(ClinicalTrials.gov: NCT02568267) [122].

ALK rearrangements are observed in ~ 0.16% of PDAC
[123]. While these gene rearrangements are more established
in the management of non-small cell lung cancer, ALK inhib-
itors have activity in PDAC with ALK rearrangements [123].
In one case series, crizotinib was given as the first choice of
ALK-targeting therapy; duration of survival from diagnosis
ranged from 5 to 52 months [123]. Another case report shows
a partial response with crizotinib following progression on
first-line chemotherapy in a patient with locally advanced
PDAC [124]. This was associated with improvement of the
patient’s clinical status, and he was being evaluated for surgi-
cal resection.

3.2 BRAF

BRAF is a protein kinase that is a part of RAS/RAF/MEK/
ERK signaling transduction cascade [125]. It is encoded by
proto-oncogene B-Raf that acts as driver oncogene when mu-
tated in different cancers. Somatic BRAF mutations are iden-
tified in 3% of PDAC cases [118, 126]. Targeted therapy
proved benefit in cancers that harbor BRAF-specific muta-
tions, such as melanoma [127, 128]. Oncogenic BRAF muta-
tions are mutually exclusive with KRAS mutations. Ninety
percent of BRAF driver mutations in cancer is BRAF
V600E mutation, which is found in only 3% of advanced
PDACs. Non-V600E BRAF aberrations are identified in 1%
of PDACs [128]. In patients with identified BRAF driver mu-
tations, BRAF targeted therapy can be considered, but re-
sponses are short lived due to development of resistance to

Table 3 Key trials targeting the Wnt/β-Catenin signaling pathway

Treatment/combination Trial Mechanism of action N. Status/results

OMP-18R5 (vantictumab) + nab-paclitaxel
+ gemcitabine [101]

Ib Blocks binding of Wnt ligands to frizzled receptors 19 Median PFS 7.2 months

OMP-54 F28 (ipafricept) + nab-paclitaxel
+ gemcitabine [102]

Ib Blocks binding of Wnt ligands to frizzled receptors 6 Median PFS 3.9 months

OMP-54 F28 (ipafricept) + nab-paclitaxel
+ gemcitabine [103]

Ib Blocks binding of Wnt ligands to frizzled receptors 26 Median PFS 5.9 months

PRI-724 + gemcitabine (second line after
FOLFOX or FOLFORINOX first line) [104]

Ib Inhibits interaction between β-catenin
and CBP

10 Median PFS 2 months

LKG974
(NCT01351103)

l Porcupine inhibitor Ongoing

ETC-1922159
(NCT02521844)

I Porcupine inhibitor Ongoing
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BRAF inhibitors [129, 130]. Off-label use of MAPK inhibi-
tion in patients with in-frame BRAF insertions or deletions
showed response to MAPK inhibition. However, similar to
anti-BRAF therapy, responses were not sustained [131,
132], and the answer could be in combining BRAF and
MEK inhibition, with combinations such as dabrafenib and
trametinib [126, 133].

3.3 PI3K/AKT/mTOR pathway

Phosphoinositide 3-kinase (PI3K) is a crucial protein activated
by receptor tyrosine kinases, and it in turn activates AKT
which is a key signaling protein kinase involved in
PI3K/AKT/mTOR and other pathways [134, 135]. There are
three isoforms of Akt. Akt2, which normally plays a role in the
insulin signaling pathway, is overexpressed in PDAC [136,
137]. The mammalian target of rapamycin (mTOR) is a pro-
tein kinase that belongs to a family of kinases called
phosphoinositide 3-kinase-related kinases (PI3K) [138].

Rigosertib, an inhibitor of multiple signaling pathways, in-
cluding PI3K, and also a RAS mimetic, did not demonstrate a
clinical benefit in a phase II/III trial when added to gemcitabine
compared to gemcitabine alone in previously untreated PDAC
[139]. The pan-PI3K inhibitor, buparlisib (BKM120), was
evaluated in advanced solid tumors alone and in combination
with other agents to inhibit other protein functions like mTOR
and MEK [140, 141], but no specific trials in PDAC. A phase
Ib study combined buparlisib and trametinib for treatment of
advanced solid tumors, including PDAC. The combination
leads to minimal activity in PDAC [140]. An ongoing phase
II single-arm trial (ClinicalTrials.gov: NCT01028495) is eval-
uating the safety and efficacy of an Akt inhibitor (RX-0201) in
combination with gemcitabine in metastatic pancreatic
adenocarcinoma.

Benefit of everolimus has not been established in this dis-
ease. Results of two phases II single-arm studies did not reveal
a clinically relevant antitumor activity of everolimus with er-
lotinib in one study, and temsirolimus in another study, in
PDAC [142]. The addition of everolimus to capecitabine
showed moderate activity with an acceptable toxicity profile.
The median overall survival was 8.9 months (95% CI 4.6–
13.1) [143]. This result seemed to be promising compared to
other studies of capecitabine alone.

Data from preclinical research is developing on targeting
this pathway [144–146]. Quercetin, a flavonoid abundant in
certain types of foods like apples, onions, grapes, and red
raspberries is studied in the human PDAC cell line and report-
ed to facilitate sensitivity to gemcitabine through PI3K/Akt/
mTOR pathway suppression [147]. Data on metformin in the
PDAC cell line demonstrated enhanced sensitivity of PDAC
cells to gemcitabine with metformin through suppression of
this pathway [148].

3.4 MAPK/ERK pathway

The MAPK/ERK pathway is an essential signal transduction
pathway that mediates the function of Ras oncogene. Targeting
proteins of this pathway causes cell cycle arrest at the G1 phase.
ERK 1 and 2 also affect apoptosis by the regulation of anti-
apoptotic proteins. The MEK inhibitor selumetinib was com-
pared against gemcitabine in the second-line setting of treat-
ment of PDAC but did not show a statistically significant dif-
ference in OS [149]. It was also evaluated in the second-line
setting in a phase II trial in addition to erlotinib (add reference
from next line). It showed a modest antitumor effect. A subset
of patients appeared to benefit [150]. Trametinib, the MEK1/2
inhibitor, failed to improve survival when combined with
gemcitabine compared to gemcitabine alone [151]. In vitro cell
line studies and studies on patient-derived xenografts suggest
that inhibition of MEK 1/2 affects a key regulatory axis of
autophagy, LKB1→AMPK→ULK1, and combined inhibition
of MEK 1/2 and autophagy creates a synergistic effect that
prevents PDAC cell proliferation [152, 153]. Autophagy inhi-
bition is also reported with hydroxychloroquine [154, 155].
The inhibitory effect of hydroxychloroquine on cell autophagy
is being evaluated in clinical trials, combined with different
agents (ClinicalTrials.gov: NCT04386057, ClinicalTrials.gov:
NCT04132505, and ClinicalTrials.gov: NCT04145297).
Studies suggest a possible synergistic effect of MEK 1/2 inhib-
itors and hydroxychloroquine [156]. The combination seems to
promote regression of RAS/RAF/MEK/ERK-driven cancers in
preclinical models and showed promising activity in patient
with refractory PDAC [156]. An ongoing phase I trial is testing
combinat ion trametinib and hydroxychloroquine
(ClinicalTrials.gov: NCT03825289). Another promising com-
bination is targeting Her or PI3K and MEK [157].

3.5 TGF-B/SMAD4 pathway

SMAD4 is a protein that acts as a mediator of transforming
growth factor-beta (TGF B), works as a checkpoint at G1/S,
and induces cell cycle arrest and apoptosis. Therefore, it is
considered a tumor suppressor pathway [158, 159].
Inactivation of SMAD4 is a common genetic aberration de-
scribed in PDAC and is thought to affect patient survival and
prognosis [160, 161]. The tumor suppressor function of this
pathway brought an interest in research to develop targeted
therapy [162, 163]. The complexity in targeting TGF-B is due
to its dual effect on PDAC pathogenesis, as it also has a tumor-
promoting function in other TGF B/SMAD4-independent
pathways [163]. Understanding the different effects through
different pathways has an impact on molecular targets that
should focus on maintaining the tumor suppressor function
and suppressing the tumor promotor function. Many preclin-
ical and clinical trials focusing on targeting the TGF-B/
SMAD4 pathway are ongoing, and results are pending
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[164–167]. Table 4 summarizes the current clinical trials
targeting this pathway.

4 Inside the nucleus

4.1 Tumor suppressor genes

4.1.1 CKDN2A

CDKN2A is a tumor suppressor gene encoding P16/INK4A
protein. It inhibits cyclin D-CDK4 and cyclin D-CDK6 com-
plexes which eventually inhibits G1/S transition and arrest of
the cell cycle in the G1 phase [168, 169]. CKDN2A mutation
or promoter hypermethylation is found in 90% of PDAC,
which leads to uncontrolled cell proliferation and tumor
growth [170]. Targeting CDK4 and CDK6 is established in
the treatment of hormone-sensitive breast cancer [171–173].
Inhibition of these proteins would compensate for the loss of
p16 tumor suppressor function observed in some cancers in-
cluding PDAC. Preclinical evidence showed a promising ef-
fect of the CDK4/6 inhibitor abemaciclib in PDAC [174], and
there is an ongoing phase I trial (ClinicalTrials.gov:
NCT03454035) evaluating the combination of the ERK inhib-
itor ulixertinib (BVD-523) with the CDK4/6 inhibitor
palbociclib in patients with PDAC among other solid tumors.
Another ongoing phase I trial is evaluating the role of the
CDK4/6 inhibitor palbociclib in combination with the PI3K/
mTOR inhibi tor gedatol is ib (ClinicalTrials .gov:
NCT03065062).

4.1.2 P53

P53 is a protein encoded by the TP53 gene and acts as a tumor
suppressor by regulating the cell cycle progression, apoptosis,
and response to DNA damage and oxidative stress. More than
50% of cancers in general and 70% of PDAC harbor muta-
tions in TP53 [175]. Replacing the loss of p53 will be revolu-
tionary if successful. However, it is currently still in the pre-
clinical realm. In vitro studies have achieved a stable expres-
sion of wild-type TP53 by retroviral-mediated gene

transduction in human cancer cells including pancreatic can-
cer. Introduction of wild-type TP53 into PDAC cells increased
cell sensitivity to therapy [175]. In vivo studies have also
shown inhibition of cancer cell line growth by viral-
mediated delivery of wild-type TP53 [176–178].
Dihydrosanguinarine mediated cell cycle arrest by downreg-
ulation of mutant TP53 in PDAC cell line, which is a prom-
ising concept in molecular research [179]. Inhibition of class I
histone deacetylases HDAC1 and HDAC2 is another mecha-
nism of inhibition of the mutant TP53 protein. Preclinical data
led to clinical studies that evaluated many of the HDAC in-
hibitors in different cancers, including PDAC [180–182]. The
HDAC inhibitor CI-994 showed antitumor activity combined
with paclitaxel and carboplatin in a phase I trial in patients
with advanced solid tumors [183]. In a phase II trial, CI-994
added to gemcitabine offered no benefit compared to
gemcitabine alone in PDAC [184]. Vorinostat is another
HDAC inhibitor studied in a phase I trial combined with che-
moradiation with capecitabine in PDAC and showed tolera-
bility and median OS of 1.1 years [185]. Table 5 demonstrates
the active clinical trials of HDAC inhibitors in PDAC. Other
studies have been terminated early due to either slow accrual
or loss of funding.

4.2 Mismatch repair proteins

Deficiency in mismatch repair (dMMR) or loss of function of
the mismatch repair proteins MLH1, MSH2, MSH6, or PMS2
increases mutation burden and microsatellite instability (MSI),
which promotes tumor immunogenicity by activating T cells
and production of pro-inflammatory cytokines [186, 187].
Deficiency in mismatch repair and microsatellite instability
are rarely seen in PDAC (occur in < 1% of cases), and most
cases are associated with Lynch syndrome [188–190]. The use
of the checkpoint inhibitor pembrolizumab in patients with
microsatellite instability or mismatch repair deficiency is asso-
ciated with improved survival [191], but we emphasize on the
fact that such a presentation is rare [192, 193]. A few studies
specifically evaluated the role of immunotherapy in PDAC
treatment outside of dMMR or MSI and failed to improve
outcomes. A phase I trial used nivolumab in combination with

Table 4 Ongoing clinical trials
targeting TGF B-SMAD4
pathway

Treatment/combination Phase Reference

Galunisertib + durvalumab in metastatic pancreatic cancer I ClinicalTrials.gov:
NCT02734160

AP 12009 in adult patients with advanced tumors known to
overproduce TGF-β2

I ClinicalTrials.gov:
NCT00844064

M7824 + gemcitabine in advanced pancreatic cancer I ClinicalTrials.gov:
NCT03451773

TEW-7197 + FOLFOX in patients with metastatic PDAC Ib ClinicalTrials.gov:
NCT03666832
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vaccine therapy for the treatment of patients with advanced
PDAC [194]. It resulted in two partial responses and possible
benefits of PDL-1 inhibition with the dendritic cell vaccine
[194]. A phase Ib/II trial combined gemcitabine, nab-paclitaxel,
and pembrolizumab for metastatic PDAC. There was a slight
improvement in efficacy, but the primary endpoint of more
than 15% complete response was not met [195].

4.3 Fanconi anemia DNA repair pathway

Normally, DNA damage activates the Fanconi anemia (FA)
repair pathway, which contains multiple proteins including
BRCA1, BRCA2, and PALB2 [196]. Mutations in this path-
way are mostly sporadic but can be associated with hereditary
cancer syndromes in 5–10% of PDAC [197, 198]. The hered-
itary breast cancer pathway is one example, associated with
mutations of BRCA1 and BRCA2 [199]. To date, there are
promising results of PARP inhibitor use in patients with
BRCA mutations [200]. Olaparib is now FDA approved as
maintenance treatment of patients with metastatic PDAC with
a germline BRCA1/2 or PALB2 mutations who did not expe-
rience disease progression for at least 16 weeks of platinum-
based chemotherapy [201]. The approval came after results of
the POLO phase III trial that showed 7.4-month mPFS in
patients who received olaparib maintenance compared to
3.8 months in patients who received placebo [202]. The draw-
back of this trial is that olaparib was compared against placebo
and not a form of active maintenance treatment such as cape-
citabine. However, we would still consider olaparib in our
practice for this subset of patients. Rucaparib, another PARP
inhibitor, was recently studied in a phase 2 trial as mainte-
nance therapy in patients with BRCA1/2 or PALB2mutations
whose disease did not progress on platinum-based chemother-
apy, similar to the olaparib study [203]. However, this trial
included patients with both germline and somatic mutations in
the affected genes. Results from the interim analysis show a
mPFS of 9.1 months, with a disease-control rate of 89.5% for
at least 8 weeks [203]. While these data are preliminary, they
are very promising. This is in comparison to the negative
RUCAPANC study, a phase 2 trial that evaluated the role of
rucaparib after progression on 1 or 2 lines of chemotherapy in
patients with PDAC with germline and somatic BRCA 1/2

mutations [204]. Although the majority (78.9%) of patients
was exposed to platinum-based chemotherapy, the trial was
terminated due to lack of response in the first 15 patients
evaluated on the trial, per specifications of the trial protocol.
Those results are in line with the results of prior and following
studies, and this perhaps speaks to the study design and also to
the need of better patient selection and treatment sequencing.

The PARP 1/2 inhibitor veliparib showed a potential OS
benefit in patients with PARP3 and RBX1 transcripts when
given with radiotherapy [205]. It was also evaluated in pa-
tients with locally advanced and metastatic PDAC after pro-
gression on one or more lines of prior therapy, but there was
no confirmed response [206]. An active phase II clinical trial
is currently comparing gemcitabine and cisplatin with and
without veliparib to veliparib alone in previously treated
BRCA1/2- or PALB2-mutant PDAC (ClinicalTrials.gov:
NCT01585805). Veliparib is also being evaluated as second-
line therapy with FOLFIRI in metastatic PDAC, regardless of
BRCA status (ClinicalTrials.gov: NCT02890355). Interesting
future applications of PARP inhibitors in PDAC include combi-
nations with immune checkpoint inhibitors (ClinicalTrials.gov:
NCT03404960) as well as with anti-VEGF therapy (Clinical
Trials: NCT02498613).

Data from the Know Your Tumor Program highlights that
the survival benefit observed in patients with mutations in the
homologous recombination DNA damage response pathway
(HR-DDR) occurs in the setting of exposure to platinum-
based chemotherapy, irrespective of whether those mutations
involve BRCA1/2 or PALB2 versus others, such as ATM,
CHEK1/2, and RAD50/51 [207]. However, the question that
begs itself is whether the same holds true for treatment with
PARP inhibitors, and more studies are needed to answer this
question. In our practice, we reserve treatment with a PARP
inhibitor to those patients with germlinemutations in BRCA1/
2 or PALB2, with a consideration to those with somatic mu-
tations as well. The other important issue to note is the
methods used to identify such genomic derangements. While
comprehensive measures such as whole genome sequencing
are definitely more laborious, simpler means such as simple
gene sequencing and/or methylation assays are sure to miss a
subset of patients who have functional deficiencies in their
HR-DDR pathway in ways yet to be discovered [208, 209].

Table 5 Ongoing clinical trials of
HDAC inhibitors in PDAC Treatment used Phase Reference

Entinostat + nivolumab in previously treated unresectable
or metastatic PDAC or cholangiocarcinoma

II ClinicalTrials.gov:
NCT03250273

Erinostat + FOLFOX in PDAC I ClinicalTrials.gov:
NCT03760614

Neoadjuvant chemotherapy followed by radiation +
gemcitabine/sorafenib/vorinostat in pancreatic cancer

I ClinicalTrials.gov:
NCT02349867
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4.4 Cancer stem cell and telomerase as targets for
PDAC treatment

The human cell genome contains multiple nucleotide se-
quence repeats that protect the end of chromosomes from
DNA breaks, damage, and fusions, called telomeres [210,
211]. Telomerase is the enzyme that protects telomeres. It is
normally produced early in human body development and is
later repressed [212]. Telomerase was found to be highly
expressed in multiple human cancers, including PDAC, which
contributes to cancer cell immortality and survival, a feature
all cancer research is trying to target [213, 214]. Finding
agents that alter telomerase activity can cause a dramatic
change in cancer therapeutics in general and in the treatment
of PDAC that still carries a poor prognosis among cancers.
However, the obstacle with this approach is the expected de-
lay in effect due to the time needed for sufficient loss of telo-
meres that leads to cancer cell death [215, 216].

Inhibition of telomerase is based on the two main subunits
of the enzyme: the human telomerase reverse transcriptase
(hTERT) and human telomerase RNA (hTR) [217]. Studies
that attempted to target hTR used oligonucleotide inhibitors of
telomerase [218–220]. Imetelstat (GRN163L) leads to rapid
shortening of telomerase in PDAC cell lines and maintained
extremely short but stable telomeres. Continuous exposure to
Imetelstat leads to complete loss of cell viability [201].
Another target is the shelterin complex that regulates telome-
rase activity and protects telomere by capping [221, 222].
Shelterin complex is composed of six subunits: TRF1,
TRF2, RAP1, TIN2, TPP1, and POT1, of which TRF1 and
TRF2 are regulated by poly (ADP-ribose) polymerases
(PARPs) [223–226]. This also makes PARP inhibitors a po-
tential treatment targeting this aspect of PDAC. Preclinical
studies reported telomere shortening with prolonged PARP
inhibition [227–229]. There is possible synergy between telo-
merase inhibition with Imetelstat (GRN163L) and PARP in-
hibition to limit the life span of cancer cells when evaluated in
the pancreatic cancer cell line [230]. However, further studied
are needed to confirm this.

5 Conclusion

Understanding the molecular drivers of PDAC has been the
focus of researchers for the development of more efficacious
therapies. Recent advances introduced a role for targeted ther-
apy in the management of PDAC. The biggest challenges that
clinicians continue to face (and patients) in regard to better
utility of targeted therapy include (1) timely molecular profil-
ing that delivers crucial information without delays in patient
care, (2) comprehensive molecular profiling to encompass the
wide range of molecular signatures, and (3) effective use of
data from molecular profiling for improved access of patients

to clinical trials and improved selection of patient enrollment
on those trials. Multiple other molecular targeted therapies for
the treatment of pancreatic cancer are under development,
including miRNA, tumor vaccines, targets of the extracellular
matrix, and immunotherapy. A discussion of these topics is
beyond the scope of this review article that mainly focuses on
pancreatic cancer cell drivers with their targets.
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