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Abstract

Despite treatment advances, radioresistance and metastasis markedly impair the benefits of radiotherapy to patients with malig-
nancies. Functioning as molecular switches, Rho guanosine triphosphatases (GTPases) have well-recognized roles in regulating
various downstream signaling pathways in a wide range of cancers. In recent years, accumulating evidence indicates the
involvement of Rho GTPases in cancer radiotherapeutic efficacy and metastasis, as well as radiation-induced metastasis. The
functions of Rho GTPases in radiotherapeutic efficacy are divergent and context-dependent; thereby, a comprehensive integra-
tion of their roles and correlated mechanisms is urgently needed. This review integrates current evidence supporting the roles of
Rho GTPases in mediating radiotherapeutic efficacy and the underlying mechanisms. In addition, their correlations with metas-
tasis and radiation-induced metastasis are discussed. Under the prudent application of Rho GTPase inhibitors based on critical
evaluations of biological contexts, targeting Rho GTPases can be a promising strategy in overcoming radioresistance and
simultaneously reducing the metastatic potential of tumor cells.

Keywords Rho GTPase - Racl - Radioresistance - Radiotherapy - Metastasis

1 Introduction

The Rho family of small guanosine triphosphatases
(GTPases), which is one of the major branches of the Ras
superfamily, consists of 8 subfamilies, among which the Rac
(Racl, Rac2, Rac3, RhoG), Rho (RhoA, RhoB, RhoC), and
Cdc42 (Cdc42, RhoQ, Rhol) subfamilies are best character-
ized [1, 2]. In recent decades, numerous studies on Rho
GTPases have unveiled their critical roles in modulating the
development of various diseases including cancer.
Functioning as molecular switches, Rho GTPases cycle
between guanosine diphosphate (GDP)-bound state
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(inactive) and guanosine triphosphate (GTP)-bound state (ac-
tive), and the GDP/GTP cycling is regulated mainly by three
types of regulators: guanine nucleotide exchange factors
(GEFs), GTPase-activating proteins (GAPs) and guanine nu-
cleotide dissociation inhibitors (GDIs) [3]. GEFs catalyze
GTP binding via removing the GDP from its binding site
and therefore activate Rho GTPases for their interaction with
various downstream effectors [2]. In contrast, GAPs acceler-
ate the hydrolysis of GTP, converting the active state into the
inactivate conformation [4, 5]. In addition, GDIs protect Rho
GTPases from GDP dissociation and inhibit their activation
by disturbing their interaction with GEFs [5].

Deregulations of Rho GTPase expression have been iden-
tified in different cancer types, indicating that they exert di-
verse effects to cancer development and progression (Table 1)
[6]. Within tumor cells, Rho GTPases are involved in regulat-
ing a wide range of cellular events, such as actin cytoskeleton
rearrangements, cell cycle progression, and repair to cellular
damage [7-9]. Therefore, deregulations of Rho GTPases can
alter the behavior of tumor cells, and the elucidation of how
Rho GTPases participate in tumorigenesis and evasion to ther-
apeutics is far-reaching in the development of anti-cancer
treatment modalities.

In this review, the roles and underlying mechanisms of Rho
GTPases in regulating radiotherapeutic efficacy and metasta-
sis are investigated. Our review predominantly aims to
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integrate current findings on Rho GTPases referring to
radioresistance and metastasis, and to provide insights into
their correlations, which might inspire the development and
application of novel strategies for cancer treatment.

2 Cancer radiotherapy and metastasis
2.1 Radiotherapy for cancer

For decades, radiotherapy has been a standard and effective
treatment as monotherapy or in combination with surgery,
chemotherapy, or targeted therapy for malignancies [10, 11].
The primarily used modalities of ionizing radiation (IR) in-
clude photon, electron, and particle radiations [12]. Photon
radiation is most widely used in radiotherapy [13]. Electron
radiation, which is beneficial in the treatment for superficial
targets because of its highly centralized radiation doses and
the sharp decline of doses with depth, is principally combined
with other types of radiation in radiotherapy to improve dose
distribution and therapeutic benefits [14, 15]. Compared to
electron radiation, particle beam penetrates deeper with a rap-
id dose falloff, steeply depositing at the end of the particle
range, and induces less damage to the outer surface [16].
Current research on radioresistance mainly focuses on photon
(gamma) radiation.

The effect of IR on tumor cells is determined by various
factors. At cellular levels, the lethal effect of IR on cancer cells
is mainly achieved through the production of reactive oxygen
species (ROS), also known as free radicals, and the induction
of double-strand breaks (DSBs) of DNA [17]. If DSBs remain
unrepaired, genome instability and cell death eventually occur
[17, 18]. Therefore, cancer cells protect themselves from cel-
lular damage by activating survival signals and pathways cor-
related with genome stability.

In clinical practice, the sensitivity of malignancies to IR
determines the treatment responsiveness and efficacy.
However, a large number of patients develop radioresistance,
leading to impaired benefits and even treatment failure.
Resistance to radiotherapy remains an enormous challenge
and endeavors have been made to explore the underlying
mechanisms.

2.2 Metastasis of cancer

Cancer metastasis indicates the spread of cells to locations
distant from their original sites and the consequential adapta-
tion to other tissues and environments [19]. The process of
metastasis can be mainly divided into three steps including
invasion, intravasation, and extravasation, and all of these
steps involve cellular movements [20]. Actin cytoskeleton,
which is required for cell motility, plays an important role in
metastasis [21]. The rearrangement of actin cytoskeleton

@ Springer

offers the structure and driving force essential for cell move-
ments [21, 22]. A variety of molecules are involved in con-
trolling the process of actin cytoskeleton rearrangement,
among which Rho GTPases are notable for regulating this
process [23].

Once the confined tumor metastasizes, it becomes nearly
incurable by radiation due to dissemination, and radiotherapy
for metastatic tumor can only represent an alternative for pal-
liation with much fewer advantages compared to that for con-
fined tumors [24-26]. In consequence, the majority of cancer
deaths are caused by metastasis [27]. Based on the pernicious
outcomes caused by cancer metastasis, the effectiveness of
cancer therapy, including radiotherapy, largely depends on
controlling the process of metastasis.

Unfortunately, researchers have identified that radiothera-
py can promote the metastatic ability of tumor cells, which
might counteract the benefits brought by radiotherapy.
Therefore, the clarification of the complex regulatory path-
ways for radioresistance and metastasis is essential to inspire
the development of novel strategies for optimizing therapeutic
effects.

3 Rho GTPases in radiotherapy

Since Rho GTPases have established roles in tumorigenesis,
recent studies emphasize on exploring the correlation between
Rho GTPases and chemo- or radioresistance, aiming to pro-
vide evidence for improving treatment effectiveness by ma-
nipulating the activity and expression of Rho GTPases.
Among the members of Rho GTPases, Racl, RhoA, and
RhoB are best characterized for their functions in radiotherapy
(Table 2). Although Rho GTPases have been observed to be
upregulated or hyper-activated in many tumor types, to date, it
remains controversial whether Rho GTPases promote
radioresistance in tumor cells.

3.1 Role of Rho GTPases in radiotherapy
3.1.1 Rac1 and radiotherapeutic efficacy

Racl is the best characterized member of Rac subfamily for its
wide participation in tumorigenesis. The expression of Racl is
generally upregulated in irradiated tumor cells compared to
non-irradiated tumor cells or normal cells. For example, in
comparison with parental cells, breast cancer cells under IR
demonstrate an increase in Rac1 protein expression [33]. Racl
is also upregulated in radioresistant head and neck squamous
cell carcinoma (HNSCC) cells according to proteome-based
data [50, 51]. Racl is not only upregulated but also hyper-
activated in irradiated tumor cells. Under treatment with radi-
ation, Racl activation levels and the binding of Racl with
p21-activated kinases (PAKSs) in non-small cell lung cancer
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(NSCLC) cells are dramatically increased, which indicates
that radiation can activate Racl and induce the downstream
pathways [31, 36]. In addition, marked activation of Racl is
detected in IR-exposed breast cancer cells, cervical carcinoma
cells, and breast cancer cells [29, 32, 33]. In human nasopha-
ryngeal carcinoma cells, Racl is detected more abundantly in
the active GTP-bound form and with translocation to cell
membrane under the treatment with IR [38]. Intriguingly, the
activation of Racl under radiotherapy can be regarded as a
protective mechanism that increases radioresistance, or con-
versely the downstream signaling of IR-mediated apoptotic
pathways which enhances radiation-induced cytotoxicity.
The details of these discrepant effects are further discussed
in our review.

Rac1 has been reported as a promoter of radioresistance in
pancreatic cancer cells [30], glioma cells [34], HNSCC cells
[31], cervical carcinoma cells [28, 32], and breast cancer cells
[29, 33]. In pancreatic cancer cells, glioma cells, and HNSCC
cells, the inhibition of Racl by inhibitors sensitizes cells to
radiotherapy, indicating that Racl promotes radioresistance
[30, 31, 34]. In addition, the dominant-negative form of
Racl that is constitutively inactive, Rac1-N17, is used for
investigation and it is demonstrated that cervical carcinoma
cells and breast cancer cells with Rac1-N17 are more sensitive
to radiotherapy, showing susceptibility to DNA damage, de-
layed DNA repair, and increased apoptosis [28, 29, 32, 33]. In
contrast, reduced damage by DNA is detected in the
dominant-positive Rac1-V12 clones of cervical carcinoma
cells with higher Racl activation [32].

On the contrary, Racl has also been identified as an en-
hancer of radiosensitivity in nasopharyngeal carcinoma cells
[38, 39] and NSCLC cells [36, 37]. In nasopharyngeal carci-
noma cells, the enhanced activity of Racl is correlated with
increased radiosensitivity [38, 39]. In addition, Rac1-N17 sup-
presses radiation-induced apoptosis in NSCLC cells [36]. The
downregulation of GDI and subsequent Rac1 activation result
in apoptosis and sensitization to radiotherapy in NSCLC cells
[37]. When compared to the results from Skvortsov et al., it
implies that pathways directly regulated by GDI and indepen-
dent of Racl may exist, and these pathways can dominant the
effect of Rac1 to radiotherapy in NSCLC cells [31, 37]. The
use of different NSCLC cell lines also accounts for the dis-
crepancies of the results [31, 36, 37].

Patient specimens are also used to validate the roles of Racl
in radioresistance. Researchers identified that the expression of
Racl is upregulated in radioresistant NSCLC patients [35].
Conversely, HNSCC patients with early response to chemo-
radiotherapy are characterized by a lower expression of Racl
in tumors [31]. Although the lack of clinical data or currently
available database in terms of radiotherapy limits the amount of
evidence, these data from patients more convincingly support
the role of Racl in modulating radiotherapeutic efficacy and
open new opportunities for future therapeutics.

3.1.2 RhoA and radiotherapeutic efficacy

RhoA is a canonical member of Rho subfamily that regulates
cancer development and progression. Originally, RhoA was
identified to be irrelevant to radioresistance [42]. However,
later research reveals their correlations. The expression of
RhoA in glioblastoma cells can be induced by IR exposure
[41]. In addition, RhoA overexpression confers the sensitivity
to radiation in glioblastoma cells, and therefore RhoA might
be involved in the cytotoxic effects under radiotherapy [41].
Nevertheless, the majority of studies referring to RhoA and
radioresistance show opposite results. In cervical carcinoma
cells [52], melanoma cells [52], and glioblastoma cells [40],
RhoA is identified to promote radioresistance. Cervical carci-
noma cells utilize the upregulation of RhoA as a defense
mechanism against DNA damage induced by radiation [52].
In cervical carcinoma cells and melanoma cells, the RhoA-
V14 clones with constitutively activated RhoA demonstrate
increased survival and proliferation under radiation compared
to RhoA-N14 clones [52]. In contrast to RhoA activation, the
inhibition of RhoA-mediated pathways overcomes the
radioresistance of glioblastoma cells, indicating that RhoA
promotes resistance to radiotherapy [40]. Compared to the
radiosensitizing effect of RhoA identified by Mclaughlin
et al., it might be contributed by the different glioblastoma cell
lines used in the studies [40, 41].

3.1.3 RhoB and radiotherapeutic efficacy

RhoB is another member of Rho subfamily sharing over 85%
similarity with RhoA in amino acid sequence identity, where-
as RhoB possesses specific post-translational modification
mechanisms and localizations, which are responsible for its
distinct functions in regulating cellular events [53]. The role of
RhoB in radioresistance can also be dualistic.

Ionizing radiation can alter the activation of RhoB. In gli-
oma cells, the activation of RhoB is demonstrated to be en-
hanced after exposure to IR [45]. The activated RhoB further
contributes to the alterations in radioresistance. For example,
the resistance of cervical cancer cells [42], glioblastoma cells
[45], colorectal cancer cells [46], and glioma cells [44] to
radiotherapy is promoted by RhoB. The dominant-negative
form of RhoB, RhoB-N19, induces sensitivity to radiation in
cervical cancer cells [42]. The transfection with RhoB-N19
also reduces the survival of glioma cells under irradiation,
indicating that RhoB can be targeted to produce the
radiosensitizing effect [44]. In addition to in vivo studies, with
the use of in vivo xenograft models of glioma cells, RhoB-N17
is identified to sensitize the tumor cells to irradiation [43].
RhoB overexpression is correlated with resistance to radia-
tion, and the depletion of RhoB restores radiosensitivity in
colorectal cancer cells and zebrafish models [46]. Patient
specimens with clinical data are further utilized to validate

@ Springer
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Table 2 (continued)

Reference

Main findings

Pathway

Correlation with
radiotherapy

Cell lines

Models

Rho

GTPase

[43]

RhoB inhibition induces a significant decrease of cell survival in xenografts

Increases radioresistance

U-87

Human glioblastoma

after irradiation.
RhoB inhibition dramatically reduces cell survival after irradiation.

xenografts
Human glioma cells

[44]

Increases radioresistance

SF-763
U-87

[45]

RhoB activation is induced by the exposure of cells to IR.

Increases radioresistance

SF-763
U-87

Human glioma cells

RhoB pathway modulates cell radiosensitivity by mediating radiation-induced

mitotic cell death.
RhoB knockout increases radiosensitivity and impairs radiation-enhanced

[46]

Increases radioresistance RhoB-Akt, FOXM1

SW480

Human colorectal cancer

cells
Zebrafish models

metastatic potential in vitro and in zebrafish models.
RhoB regulates radioresistance through the Akt-FOXM1 pathway.

Patient specimens

Human lung

[47]

RhoB contributes to the survival advantage of irradiation.

Increases radioresistance

A549

adenocarcinoma cells

Neoplastically

(48]

RhoB is pivotal in the apoptotic response of cancer cells to DNA damage by

Increases radiosensitivity

radiation.

transformed mouse

embryonic fibroblasts

Xenograft models

[49]

RhoB, which can be increased by JNK activation, contributes to the early

Increases radiosensitivity

Jurkat

Human leukemia cells

apoptotic response to radiation.

the role of RhoB in the radioresistance of colorectal cancer
patients. In colorectal cancer patients treated with radiothera-
py, higher expression of RhoB contributes to advanced TNM
stages, recurrence, and poorer survival [46].

In contrast, RhoB can protect neoplastically transformed
mouse embryonic fibroblasts and leukemia cells from IR.
RhoB is pivotal in the apoptotic response of neoplastically
transformed mouse embryonic fibroblasts and xenograft
models to radiotherapy, while targeting RhoB renders resis-
tance to irradiation [48]. In addition, the downregulation of
RhoB restores the growth and survival of leukemia cells and
lung adenocarcinoma cells after irradiation [47, 49].

3.2 Mechanisms underlying the regulation of Rho
GTPase-mediated radiotherapeutic efficacy

3.2.1 Mechanisms of Rac1 in regulating radiotherapeutic
efficacy (Fig. 1)

Radiation-induced DSB is the major mechanism by which
radiotherapy leads to cell death [54]. DSBs are predominantly
repaired by the signaling pathways induced by ataxia-
telangiectasia mutated (ATM)-associated protein kinases,
which mainly include ATM and ataxia-telangiectasia and
Rad3-related (ATR). ATM and ATR phosphorylate various
downstream effectors for DSB repair, such as H2A histone
family member X (H2AX), checkpoint kinase (Chk)1, and
Chk2 [55]. Racl inhibition suppresses the activation of ATR
and ATM signaling in breast cancer cells, indicating that Racl
is involved in enhancing ATR and ATM levels to resist DSBs
[29]. In pancreatic cancer cells, Racl plays a similar role as the
promoter of radioresistance by activating ATR/Chk1 and
ATM/Chk2 kinases, which involve in antagonizing
radiation-induced apoptosis [30]. In human cervical carcino-
ma cells, the expression of pH2AX and pChkl is significantly
downregulated in dominant-negative Rac1-N17 clones, which
indicates reduced DNA repair and increased apoptosis [32].
Moreover, Racl overexpression is correlated with enhanced
activities of extracellular signal-regulated protein kinases 1
and 2 (ERK1/2) and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB), and both of them lead
to the expression of proteins against apoptosis, including my-
eloid cell leukemia-1 (Mcl-1), a B cell lymphoma 2 (Bcl-2)
family member, and B cell lymphoma-extra large (Bcl-xL) in
breast cancer cells [33]. The activation of ERK1/2 and NF-«kB
signaling has been widely recognized in cell survival and
radioresistance [56, 57]. Cofilin (CFL)-1 is well-known as
an actin cytoskeleton regulator, but it is also upregulated in
irradiated glioma cells and contributes to the enhance DNA
repair capacity [58, 59]. More specifically, in glioma cells,
Racl promotes radioresistance through the activation of
Rac1-Wiskott-Aldrich syndrome protein family member 2

@ Springer
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(WAVE2)-actin-related proteins 2/3 (Arp2/3) signaling path-
way, and the subsequent increase in CFL-1 [34].

The balance between DNA repair and cell cycle arrest also
determines the survival of irradiated cells, because the arrest in
cell cycle provides critical time for DNA repair prior to repli-
cation [60]. Inhibition of Racl abrogates the phosphorylation
of ERK1/2 and mitogen-activated protein kinase kinase 1/2
(MEK1/2) and further attenuates the IR-induced cell cycle
arrest in breast cancer cells, while this effect is not detected
in normal mammary epithelial cells [29]. However, unlike that
in breast cancer cells, the involvement of ERK1/2 is not de-
tected in pancreatic cancer cells, indicating the diversity of
Rac1-regulated pathways in different cell lines [29, 30].

Several studies have demonstrated an opposite role of Racl
in regulating radioresistance, and the mechanisms are illustrat-
ed as follows. In response to stress signals including IR, apo-
ptotic cell death occurs by the activation of Bcl-2-associated X
(Bax) and Bcl-2 homologous antagonist killer (Bak), and p38
mitogen-activated protein kinase (MAPK) is also positively
regulated in the induction of apoptosis [61]. It is shown that
the expression of Rac1-N17 decreases p38 MAPK as well as
Bak and Bax activation, and further inhibits apoptosis induced
by radiotherapy in NSCLC cells [36, 62]. Compared to the
Racl-p38 MAPK-mediated radiosensitizing effects in
NSCLC cells, in cervical carcinoma cells, Racl increases
p38 MAPK activation, which further activates protein kinase
B (PKB/Akt) and protects the cells from IR [28]. Therefore,
the Racl-p38 MAPK pathway can signal different down-
stream effectors, which lead to opposite responses to radio-
therapy in different cell lines. In nasopharyngeal carcinoma
cells, Racl activation induces nicotinamide adenine dinucle-
otide phosphate (NADPH)-mediated ROS generation, which
further increases tumor susceptibility to radiotherapy [38].
Moreover, the Racl-induced production of ROS also in-
creases the activation of c-Jun N-terminal kinases (JNK) and
activator protein 1 (AP1), which promotes the apoptosis of
nasopharyngeal carcinoma cells [39].

3.2.2 Mechanisms of RhoA in regulating radiotherapeutic
efficacy

Similar to Rac1, RhoA activation increases the levels of DNA
damage repair via the activation of Chk1/Chk2 protein kinases
and further phosphorylation of Chk1/Chk2 in cervical cancer
cells [52]. In glioma cells, RhoA is related to the activation of
Rho-associated protein kinase 2 (ROCK2) and CFL-1, which
are essential for actin dynamics and promoting radioresistance
[40]. The RhoA GEF, neuroepithelial cell transforming gene
1A (NetlA), is required for the activation of ATM and the
further phosphorylation of H2AX, which repairs DNA dam-
age induced by radiotherapy [63]. However, the Netl A-
mediated signaling pathway is RhoA-independent, indicating
that the GEFs of RhoA might also have essential roles in
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independently regulating radiotherapeutic efficacy [63]. In
contrast, the mechanisms that RhoA suppresses
radioresistance remain largely unclear.

3.2.3 Mechanisms of RhoB in regulating radiotherapeutic
efficacy

With the use of clustered regularly interspaced short palin-
dromic repeats (CRISPR), complete depletion of RhoB is
achieved in colorectal cells, which allows a more convincible
result on the role of RhoB in regulating radioresistance [46].
RhoB depletion enhances the resistance to radiotherapy via
activating Akt and forkhead box protein M1 (FOXM1), which
are vital in promoting cell survival [46]. The mechanisms by
which RhoB regulates radioresistance also include the upreg-
ulation of hypoxia-inducible factor (HIF)-1«, which increases
the ability of DNA repair and inhibits apoptosis [64, 65].

3.3 Other Rho GTPases in regulating radiotherapeutic
efficacy

Rac2, which is a member of the Rac subfamily GTPases, also
involves in the regulation of radiotherapeutic efficacy. The
high expression of Rac2 contributes to the enhanced activity
of NADPH oxidase, resulting in the generation of ROS under
IR [66]. Rac2 also interacts with p38 MAPK and forms a
negative feedback loop, which controls the activity of
NADPH oxidase for the induction of DNA DSBs [66].
RhoC is a member of the Rho subfamily GTPases. RhoC
overexpression confers the protection against radiotherapy
for human cervical cancer cells, while RhoC inhibition leads
to the sensitization of cells to irradiation [67]. In addition,
RhoC activates ROCK?2, which results in the increased ex-
pression of pH2AX and MRE11-RAD50-NBS1 (MRN)
complex for DNA damage repair [67]. The roles and mecha-
nisms of other Rho GTPases in regulating radioresistance re-
main largely unexplored. Therefore, they are not the focus of
this commentary, and future studies should further investigate
their involvement in radiotherapeutic resistance.

3.4 Other proposed mechanisms of Rho GTPases in
regulating radiotherapeutic efficacy

As illustrated above, the mechanisms directly connecting Rho
GTPases to radioresistance are identified by researchers.
Except the currently unveiled molecular pathways, proposed
mechanisms are also essential for the understanding of Rho
GTPase-mediated radiotherapeutic efficacy, since Rho
GTPases are involved in regulating a wide spectrum of cellu-
lar processes. Radioresistance can be affected by the existence
of cancer stem cells (CSCs), and the response to radiation-
induced oxidative stress and the alteration in metabolism.
Emerging evidence has indicated their connections with Rho
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GTPases. The epigenetic regulation of Rho GTPases also con-
tributes to their involvement in radioresistance.

3.4.1 Rho GTPases and cancer stem cells

The existence of CSCs and their status can determine the
radiotherapeutic effects. CSCs are cancer cells possessing
characteristics similar to normal stem cells, with the ability
to generate tumors via self-renewal and differentiation into
multiple cell types [68]. Their prompt activation of DNA re-
pair pathway, enhanced ROS scavenging system, quiescence,
and stemness are crucial to resist radiotherapy [69-71]. In
addition, the microenvironment, more specifically the niche
occupying hypoxic, perivascular, and invasive tumor areas,
provides protection against radiation-induced damage [72,
73]. Hence, the failure to eradicate CSCs can contribute to
the development of radioresistance. Rac1 promotes the expan-
sion of liver CSCs [74]. In addition, Racl increases the fre-
quency of hematopoietic cells in quiescent state and partici-
pates in leukemia initiation and maintenance [75]. Racl inhi-
bition using shRNA or inhibitor decreases the expression of
self-renewal transcription factor and prevents the acquisition
of CSC states in gastric adenocarcinoma cells [76]. Yoon et al.
identify that the inhibition of Racl suppresses the stemness of
glioma stem cells and sensitizes the cells to radiation [77].
RhoA promotes stem cell phenotypes in gastric adenocarcino-
ma cells [78]. Moreover, Cdc42 enhances the activity of breast
cancer stem cells and contributes to cell metastasis [79]. The
Cdc42 signaling pathway is also involved in the tumorigenesis
of cervical cancer by activating CSCs [80]. In conclusion, Rho
GTPases are closely connected to CSCs and thereby enhance
the resistance to radiotherapy.

3.4.2 Rho GTPases and radiation-induced oxidative stress
response

Radiation-induced oxidative stress is mainly attributed to the
production of ROS, and the response to radiation-induced oxi-
dative stress affects cell survival under radiotherapy. As
discussed above, Racl has been proved to increase radiosensi-
tivity by increasing NADPH oxidase activity and ROS produc-
tion in nasopharyngeal carcinoma cells [37, 38]. Other studies
have also discovered the association of Racl and ROS, although
there is no directly proved connection to radioresistance. Racl
promotes ROS generation in pancreatic cancer cells, osteosarco-
ma cells, and hepatocellular carcinoma cells [81, 82]. For other
members of Rho GTPases, very few reports have described their
effects on simulating ROS production, and even one study sug-
gests that Cdc42 is unable to stimulate ROS formation by
NADPH oxidase [83]. In contrast, a number of studies identify
that ROS directly or indirectly activates Rho GTPases, for ex-
ample, RhoA and RhoB [84-88]. These studies suggest that
interactions may exist between Rho GTPases and ROS, and

further exploring the mechanisms can uncover the role of Rho
GTPases on radiation-induced oxidative stress response and
radioresistance.

3.4.3 Rho GTPases and cell metabolism

Deregulated metabolism is one of the hallmarks of tumor cells
[89]. Aerobic glycolysis (the Warburg effect) is the best-
known metabolic alteration of tumor cells [89]. Aerobic gly-
colysis provides survival advantages under resource limitation
and is crucial for supporting cancer cells to evade apoptosis
under stressful conditions [90]. Recent studies have identified
that radioresistance is closely connected to aerobic glycolysis
and the glycolytic enzymes within this process. For example,
the AKT-mediated enhancement of aerobic glycolysis confers
radioresistance to tumor cells [91]. In addition, the expression
of glycolytic enzymes pyruvate kinase M2 isoform (PKM2)
and hexokinase 2 (HK2) enhances aerobic glycolysis and in-
duces radioresistance [92, 93]. Enhanced aerobic glycolysis
provides nucleotide pools for DNA repair under irradiation
[94, 95]. ROS production is also decreased by enhanced gly-
colysis due to the less reliance of cancer cells on mitochondri-
al oxidative phosphorylation [96]. The main product of aero-
bic glycolysis, lactic acid, inhibits the activation of immune
cells [97]. Researchers have pointed out that Rho GTPases are
associated with aerobic glycolysis. Racl activates AKT path-
way and induces the expression of glycolytic enzymes [98,
99]. RhoA promotes glucose transporter translocation and
stimulates aerobic glycolysis [100]. Therefore, targeting Rho
GTPases and Rho GTPase-mediated altered metabolism is a
feasible strategy for overcoming radioresistance.

3.4.4 Rho GTPases and epigenetic regulation

Epigenetic regulations contribute to the changes in the expres-
sion of Rho GTPases without alterations in DNA sequences,
leading to the activation or inactivation of pathways involved
in radioresistance [101]. DNA methylation, histone modifica-
tion, and microRNA (miRNA) expression are the three main
patterns of epigenetic regulations [102]. Racl promoter meth-
ylation is identified in glioblastoma cells and responsible for its
transcription, while the removal of methylation represses Racl
expression [103]. In contrast, Dopeso et al. find that the pro-
moter hypermethylation of RhoA is not significantly correlated
with RhoA expression variations in colorectal tumors [104].
Similar to RhoA, RhoB promoter methylation does not signif-
icantly regulate its expression in lung cancer cell lines [105].
There are by far no reports on the promoter methylation of
Cdc42 in cancer cells. Interestingly, Cdc4?2 is reported to in-
duce the methylation of the promoter of tumor suppressor
genes in colorectal cancer cells [106]. The methylation status
of Rho GTPase regulators also contributes to the activity of
Rho GTPases. For example, the promoter region of Rac-GEF
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PREX1 is hypermethylated in luminal breast cancer, while
hypomethylated in normal breast epithelium [107].
Hypermethylation of ARHGAP28 increases RhoA activity
and promotes the metastasis of colon cancer cells [108].
Histone acetylation of Rho GTPase promoters can also regu-
late the expression of Rho GTPases. RhoB expression levels
are upregulated under the histone acetylation of RhoB promot-
er in a wide spectrum of human cancer cells [109]. miRNAs
are small, non-coding RNAs that target mRNAs for degrada-
tion or inhibition of translation [110]. miR-124 binds to the 3'-
UTR of Rac1 and decreases the mRNA and protein expression
of Racl in pancreatic cancer [111]. miR-31 inhibits the inva-
sion and metastasis of gastric cancer by targeting RhoA [112].
miR-19a/19b targets RhoB and promotes the development of
clear cell renal cell carcinoma [113]. miR-224 suppresses the
migration of colorectal cancer cells by targeting Cdc42 [114].
The studies on Rho GTPases with methylation, histone acety-
lation, and miRNAs offer new insights into the epigenetic reg-
ulation of Rho GTPases, and novel drugs for mediating these
epigenetic changes can be developed.

4 Rho GTPases and metastasis

Tumor metastasis is one of the hallmarks for cancer and con-
tributes to the unfavorable prognosis of patients. The metastasis
of tumor cells depends largely on cellular motility and involves
invasion, intravasation, and extravasation. Throughout the pro-
cess of metastasis, the formation and organization of actin cy-
toskeleton are the key components for cellular movements. The
metastasis of cancer cells is largely dependent on cell migration,
and the movement of tumor cells can be divided into two types,
including individual and collective movement. Based on the
majority of current studies, individual cell movement exhibits
two behaviors, namely mesenchymal and amoeboid, which are
interconvertible between each other.

Rho GTPases are deemed to be associated with metastasis
due to their crucial roles in regulating actin structures. Rho
GTPases are also critical in controlling the modes of tumor
cell movements, and different subfamilies of Rho GTPases
can exert diverse effects on certain movement types. For ex-
ample, tumor cells utilize Rac-dependent mesenchymal move-
ment in two-dimensional migration and resort to Rho-
dependent amoeboid movement in three-dimensional migra-
tion [115, 116]. Racl, Cdc42, and RhoA are the best charac-
terized members of Rho GTPases in terms of metastasis.
Herein, we mainly discuss the dominating pathways involved
in modulating metastasis.

Epithelial-to-mesenchymal transition (EMT) is regarded as an
important step of individual cell migration, by which tumor cells
acquire mesenchymal mobility and are allowed to invade the
surrounding tissues [117]. Racl activates its downstream effec-
tors, WAVE and Arp2/3 complex, which bind to nucleating
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promoting factors and help produce the filament networks,
namely lamellipodia, at the leading edge [118, 119]. Among
the members of WAVE family proteins, WAVE2 is the most
critical one in directing Racl-regulated actin polymerization
and lamellipodia formation [119, 120]. The downstream effec-
tor PAK, which is essential for kinase activation, is activated by
Racl and contributes to EMT to enhance invasion and metas-
tasis [121]. To be specific, the Racl-PAK pathway modulates
the phosphorylation of LIM kinase (LIMK), which further
phosphorylates CFL and regulates actin dynamics as well as
cell movement [122]. Racl also promotes EMT through simul-
taneously activating the MEK1/2 and Src signaling pathways
[123]. The hallmarks of EMT include the loss of adhesion
molecule E-cadherin and the increase of mesenchymal marker
N-cadherin and vimentin. Signal transducer and activator of
transcription 3 (STAT3) is identified to be involved in EMT
by decreasing E-cadherin expression and increasing vimentin
and N-cadherin expression [124]. By contrast, the EMT process
can be disrupted by Racl inhibition which subsequently atten-
uates STAT3 phosphorylation, indicating the importance of
Racl-STAT3 pathway in metastasis [125]. The activation of
Racl also enhances the MAPK pathway effectors ERK1/2
and JNK, which regulate cell metastasis [126, 127].

Tumor metastasis also involves the process of proteolysis,
and matrix metallopeptidases (MMPs) are essential in this
process for mediating extracellular matrix degradation and
promoting the traverse through tissue barriers. Racl is identi-
fied to induce the expression of MMPs to promote metastasis
[126]. In contrast, the disruption of Racl-GTP significantly
decreases MMP expression [125]. Through increasing the for-
mation of lamellipodia, which provide the force of forward
movement, and the production of MMPs for extracellular ma-
trix degradation, Racl promotes the mesenchymal movement
and metastasis of tumor cells.

Similar to Rac1, Cdc42 promotes mesenchymal cell move-
ment by the formation of actin-rich protrusions, namely
invadopodia, which provide focused regions for extracellular
matrix (ECM) degradation by MMPs. Cdc42 regulates the
expression of MMP9 expression, which contributes to the
Cdc42-mediated ECM remodeling [128]. Cdc42 is also im-
portant for generating the actomyosin contractility, which is a
hallmark of amoeboid tumor cell movement [129]. Under
Cdc42 activation, myotonic dystrophy kinase-related Cdc42-
binding kinase (MRCK) is activated and subsequently myosin
light chain 2 (MLC2) is phosphorylated, which promotes actin
contractility [130].

As illustrated above, Rac and Cdc42 induce the formation
of membrane protrusions at the leading edge. In comparison,
Rho stimulates tail retraction at the leading edge of migrating
cells [131]. The amoeboid movement of tumor cells is asso-
ciated with RhoA-mediated activation of ROCK, which is the
best-characterized downstream effector of RhoA [132]. The
activated ROCK stimulates actin cytoskeleton formation and
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Fig. 1 Racl-mediated signaling pathways in regulating radiotherapeutic
efficacy. Racl cycles between the inactive (GDP-bound) and active
(GTP-bound) states. GEFs transform the inactive Racl into its active
state, which further contributes to the activation of downstream

generates the contractile force of actomyosin [132]. For the
two ROCK isoforms ROCK1 and ROCK2, the expression of
ROCK?2 is higher in rounded cells, suggesting that ROCK?2 is
preferentially involved in amoeboid movement [133].
Moreover, ROCK phosphorylates downstream targets includ-
ing LIMK and CFL, thereby inducing cellular contractility
and actin polymerization [133, 134].

Overall, Rho GTPases have well-established roles in pro-
moting cancer cell metastasis, and the overlapping pathways
involved in controlling both radioresistance and metastasis
indicate that interactions exist between the two processes.

5 Rho GTPases in radiation-induced
metastasis

Radiotherapy prolongs the survival of patients suffering from
cancer with restricting the size of primary tumors. However,
an increasing number of studies have identified that radiother-
apy can unexpectedly enhance cancer metastasis, leading to
cancer progression and deaths.

One of the earliest studies that connect radiotherapy with
metastasis was performed in rat glioma cells, in which the
irradiation-induced metastasis can be further enhanced by
the expression of dominant-negative Rac-N17 [135]. It seems
counterintuitive that although Racl generally promotes

! Radioresistance

effectors. Racl plays a dual role in regulating radioresistance via
activating pro-apoptotic or anti-apoptotic signaling pathways depending
on different biological contexts

metastasis, in glioma cells, Rac-N17 expression enhances
radiation-induced metastasis, and this effect might be contrib-
uted by the simultaneous inhibition of Rac2 and Rac3, or can
be cell type-dependent. By contrast, most of the later studies
demonstrate the increased expression of Rho GTPases under
radiotherapy, which promotes metastasis.

In radioresistant HNSCC cells, Racl is upregulated with
enhanced migratory ability compared to radiosensitive cells
[51]. Under IR exposure, the adhesion between tumor cells
and endothelial cells is strengthened, which favors subsequent
extravasation and metastasis, while the use of Racl inhibitors
can reduce this adhesion [136]. In addition to the above in vitro
studies, in mice model, total body radiation enhances the ex-
travasation and lung metastasis of tumor cells [136].
Interestingly, the administration of lovastatin can suppress
the radiation-enhanced metastasis, suggesting that the use of
lipid-lowering drugs during radiotherapy might restrict cancer
metastasis and benefit the patients [136].

Treatment with irradiation also enhances cell motility by ac-
tivating RhoA and ROCK/MLC?2 signaling pathways [137]. In
irradiated glioblastoma cells, both Racl and RhoA are activated
by phosphoinositide 3-kinases (PI3K), and subsequently ROCK
activity is enhanced to induce the metastatic transformation of
cells, suggesting that PI3K-mediated Rho signaling activation
under irradiation is required for radiation-induced metastasis
[138]. Osaki et al. extend the above results via RhoA-N19,
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Fig. 2 Overview of the correlation among Rho GTPases, cancer
radioresistance, and metastasis. Irradiation contributes to the activation
of Rho GTPases. In general, Rho GTPases have a well-established role in
promoting cell motility and serve as important mediators in radiation-

which decreases the migration of cervical carcinoma cells fol-
lowing irradiation, and this effect is also observed in melanoma
cells [52]. In addition, the carbon-ion irradiation of pancreatic
carcinoma PANC-1 cells also promotes nitric oxide production,
which activates the PI3K-Akt pathway [139]. The PI3K-Akt
signaling pathway subsequently activates RhoA and promotes
actomyosin contraction as well as cell invasion [139].
Intriguingly, Fujita et al. identify that in pancreatic carcinoma
MIAPaCa-2 cells, carbon-ion irradiation inhibits the metastasis
by degrading activated Racl and RhoA [139, 140].

Functioning as an important member in mediating
radioresistance, RhoB also involves in radiation-induced me-
tastasis. Zebrafish models provide robust, rapid, and inexpen-
sive means to evaluate the metastatic potential of human can-
cer cells [141]. Complete RhoB depletion using CRISPR in
zebrafish models impairs radiation-induced metastasis of co-
lorectal cancer cells [46].

On the basis of these significant findings, Rho GTPases
serve as essential mediators between irradiation and metastasis,
contributing to the metastasis induced by radiotherapy. In con-
sequence, radiotherapy should be performed with a better strat-
egy, due to the evidence that radiotherapy promotes cell metas-
tasis by altering the expression of Rho GTPases. For optimizing
the therapeutic benefits of radiotherapy, inhibitors of Rho
GTPases are promising to suppress radiation-induced metasta-
sis, especially when radioresistance can simultaneously be de-
creased through interrupting Rho GTPase activity (Fig. 2).

6 Conclusions and future directions
Radiotherapy is a standard treatment for controlling tumor pro-
gression in a wide range of cancers. In spite of the advances in

radiotherapy, the effectiveness and benefits of radiotherapy to
patients are restricted by the development of radioresistance and
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induced metastasis. Rho GTPases can enhance or suppress
radioresistance depending on different biological contexts, and
therefore, inhibitors of Rho GTPases should be prudently used

metastasis. Regulations of radiotherapeutic resistance involve
various signaling pathways, and Rho GTPases with their down-
stream effectors have been emerging as important regulators of
radioresistance in recent years.

Our review highlights that contradictory results exist for the
roles of Rho GTPases in regulating radioresistance. These varia-
tions can be contributed by several factors: (1) different methods
interfering the expression of Rho GTPases such as siRNA, dom-
inant-negative/positive mutants, and CRISPR; (2) different in vitro
and in vivo models; (3) the types of irradiation; (4) the domination
of downstream signaling pathways activated by Rho GTPases.
Therefore, the effects of Rho GTPases can be biological context-
dependent, and for those conditions where Rho GTPases promote
radioresistance, inhibitors targeting Rho GTPases are promising
in reversing the resistance to radiotherapy.

Unfortunately, an increasing number of studies demon-
strate that radiotherapy increases the metastatic potential of
malignancies. In light of the findings that irradiation activates
Rho GTPases and activated Rho GTPases enhance cell motil-
ity, Rho GTPases serve as potent mediators between radio-
therapy and metastasis. Intriguingly, although the role of Rho
GTPases in radioresistance varies, the whelming majority of
current studies linking radiotherapy with metastasis demon-
strate that Rho GTPases are essentially utilized by cancer cells
to both resist the cytotoxic effects of irradiation and evade
radiotherapy by metastasizing from their original location.
This phenomenon indicates that the use of Rho GTPase inhib-
itors might simultaneously suppress radioresistance and me-
tastasis, which significantly restrains tumor progression and
enhances therapeutic effects. However, for those conditions
where radiosensitivity is enhanced by Rho GTPases, the ben-
efits of inhibitors might be compromised. In consequence,
Rho GTPase inhibitors must be prudently applied in clinical
practice, and individualized treatment regimens with critical
evaluations of therapeutic strategies should be performed.
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Inhibitors of Rho GTPases have been developed as a critical
strategy to target the activation of Rho GTPases both in vivo and
in vitro [142]. However, none of these inhibitors can be applied
in clinical practice. Current Rho GTPase inhibitors remain to be
tested in clinical trials due to their low efficacy and potential
deleterious effects. Rho GTPases are involved in various funda-
mental cellular processes in addition to tumorigenesis
[143-148]. For example, Rho GTPases play critical roles in
early embryogenesis and the development of organ systems
in vivo, while the deletion of Rho GTPase leads to early embry-
onic death [143, 144]. Rho GTPases promote glucose uptake in
adipose tissue, pancreas, and skeletal muscle, indicating that the
inhibition of Rho GTPases may induce severe diabetes of pa-
tients [145-147]. Rho GTPases are involved in immune re-
sponse including the development, activation, differentiation,
and migration of lymphocytes, and therefore, Rho GTPase inhi-
bition can unexpectedly disrupt immune response [148]. Future
studies on Rho GTPase inhibitors should explore the strategy to
optimize the efficacy of inhibition in cancers with minimizing
the disruption of fundamental physiological processes.

Based on our review of the literature, current studies of Rho
GTPases on radioresistance can be improved in the following
aspects. To date, few studies have focused on the mechanisms
by which other Rho GTPases, except Racl, RhoA, and RhoB,
regulate radioresistance. Future studies should explore the
roles and the underlying mechanisms of these Rho GTPases,
for example, the canonical member Cdc42, in mediating
radioresistance. Moreover, most of the studies are limited to
in vivo investigation; thereby, robust in vivo models can be
established and applied for the study of Rho GTPase-
regulated radioresistance. Furthermore, clinical data are re-
quired to confirm the role and evaluate the predictive value
of Rho GTPases in radiotherapeutic efficacy.

In conclusion, the roles of Rho GTPases in radioresistance
are highly dependent on biological contexts, while their roles
in metastasis and radiation-induced metastasis are relatively
more definite. Emerging studies on Rho GTPases provide
exciting opportunities for improving the therapeutic effects
of radiotherapy. The dissection of mechanisms leading to
radioresistance and metastasis will facilitate the development
and application of promising strategies for patient-specific
treatment in clinical practice.
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