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Abstract
Cancer remains one of the most challenging diseases despite significant advances of early diagnosis and therapeutic treatments.
Cancerous tumors are composed of various cell types including cancer stem cells capable of self-renewal, proliferation, differ-
entiation, and invasion of distal tumor sites. Most notably, these cells can enter a dormant cellular state that is resistant to
conventional therapies. Thereby, cancer stem cells have the intrinsic potential for tumor initiation, tumor growth, metastasis,
and tumor relapse after therapy. Both genetic and epigenetic alterations are attributed to the formation of multiple tumor types.
This review is focused on how epigenetic dynamics involving DNA methylation and DNA oxidations are implicated in breast
cancer and glioblastoma multiforme. The emergence and progression of these cancer types rely on cancer stem cells with the
capacity to enter quiescence also known as a dormant cellular state, which dictates the distinct tumorigenic aggressiveness
between breast cancer and glioblastomas.
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1 Introduction

Epigenetic dynamics are essential for normal tissue homeosta-
sis, and their disruption may lead to changes in gene expres-
sion networks associated with various types of cancer. This
review focuses on epigenetic alterations associated with breast
cancer (BC) and glioblastoma multiforme (GBM). BC is the
most frequent cancer type among women and remains the
leading cause of cancer-related death worldwide. This is in
line with an increased trend for BC over the last decade, es-
pecially in younger women. In the USA, BC represents over
one-fifth of all cancers, with over 268,000 new cases in 2019,
according to the national cancer institute [1]. GBM is the
sixteenth most common cancer with over 23,000 new cases
in 2019, accounting of approximately ~ 50% of primary brain

tumors and poor survival rate of 6 to 12 months [2, 3]. Here,
we discuss the current literature on BC and GBM with em-
phasis on the epigenetic changes related to DNA methylation
and DNA oxidations that could act as roadblocks for cancer
treatments [1–6]. We will discuss how these epigenetic dy-
namics facilitating tumorigenesis could be interrogated to de-
velop new treatment strategies.

A major issue for cancer relapse is the ability of the tumor
cells to survive during dormancy state. Tumor dormancy can
exist for decades in a pre-diagnostic cancer phase before the
cancer becomes clinically discernible [7]. Additionally, tumor
dormancy exists during remission and these cells could be the
source of tumor recurrence. Dormant cancer cells are
equipped to survive therapeutic treatment, thereby increasing
the risk of tumor relapse. The dormant cancer cells have in-
trinsic stem cell–like properties such as pervasive self-renew-
al, multipotent capacity, and the ability to exit the cell cycle to
enter prolonged periods of quiescence, which they used as a
therapeutic resistant strategy [8]. Cancer stem cells (CSCs)
possess all the aforementioned properties and are currently
defined as initiating tumor cells with the capacity to promote
neoplastic growth, facilitate metastatic spreading, and escape
apoptotic programs [8]. This level of cellular plasticity cannot
always be explained by irreversible genetic alterations.
Reversible epigenetic modifications may partly explain ma-
lignancy by allowing the activation of specific transcriptional
networks underlying the various cellular states of CSCs. A
plethora of epigenetic dynamics, including DNA methylation
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and histone modifications, has been attributed to various
stages of carcinogenesis [9]. For instance, aberrant expression
of epigenetic regulatory factors can reprogram the epigenetic
landscape allowing for the activation and repression of onco-
genes and tumor suppressors, respectively. Interestingly, mul-
tiple epigenetic reprogramming events implicated in tumori-
genesis and cancer progression are reminiscent of the ones
occurring during embryonic development and cellular
reprogramming towards stem cell–like states [10, 11]. For
instance, the reprogramming factors Oct4, Sox2, Klf4, and
Nanog involved in early stages of embryonic development
as well as the formation of induced pluripotent stem cells
(iPSCs) are upregulated in various types of cancers and there-
by viewed as oncogenes [11–15]. These reprogramming
genes are considered pioneer transcription factors capable of
recruiting DNA and histone modifying enzymes to remodel
the epigenome [16]. The identification of gene expression
patterns driven by specific epigenetic programs that are
unique to CSCs, and different from normal stem cells, remains
largely unclear and thereby an active area of research. Thus, a
deeper understanding of the epigenetic regulatory programs
that can selectively facilitate the transition to tumor dormancy
and the underlying molecular events that culminate in cancer
relapse will undoubtedly benefit the development of new can-
cer therapies. In this review, we focus on two distinct CSC-
driven tumors exhibiting cellular dormancy, BC, and glioblas-
toma. The existence of BC in a dormant cellular state has been
studied, but such knowledge is relatively limited for GBM,
partly because of the aggressiveness of this cancer type and its
poor prognosis. Thereby, dormant cellular states have been
challenging to investigate in GBM as compared to BC where
dormant cancer cells can survive for decades [17]. However,
as new drugs are being developed for GBM, patients will be
likely placed into remission. Thus, it is of great importance to
discern epigenetic-mediated mechanisms underlying dorman-
cy to develop new therapeutic strategies aiming to prevent
tumor recurrence.

Cancer dormancy is a strategic cellular state acquired
through epigenetic reprogramming that causes the activation
of key survival gene expression networks required to escape
cell death and trigger metastatic activating programs.
Although CSCs are essential for tumor initiation, progression,
and metastasis, they represent < 5% of the total number of
cells within various solid tumor types and thereby a challenge
to understand their molecular properties. However, rapidly
advancing single-cell genome-wide technologies may soon
lead to the identification of specific epigenetic-driven tran-
scriptional networks underlying the ability of CSC to acquire
dormancy. In this review, we highlight currently known epi-
genetic programs that are dysregulated in breast cancer and
glioblastomas. We highlight the epigenetic reprogramming
events involving DNA methylation and DNA oxidations that
are relevant to these specific cancer types. Thus, a deeper

understanding of any alterations in these epigenetic pathways
underlying tumor dormancy and tissue microenvironment in-
teractions is needed for developing new therapeutic strategies.

2 Current limitations in cancer research

Cancer remains a clinical dilemma despite early diagnosis and
aggressive treatments including pharmacological inhibitors to
disrupt intracellular signaling, ligand antagonism, use of nano-
particles to target stem-like population, chemotherapy, radia-
tion, immune therapy, and epigenetic reprogramming. Despite
these improvements, there are increases in cancer relapse. The
mechanisms by which current treatments still result in cancer
relapse have been focused on genetic mutational analysis rel-
evant to the microenvironment of the primary and secondary
tumor sites. Emphasis on epigenetic regulatory processes as-
sociated with cancer relapse is currently at an early phase.

BC cells (BCCs) can exist in a dormancy state for decades
before growing into metastatic lesions, which are the main
cause of BC death. Similar to other cancer types, the existence
of CSCs has been reported for BC. However, the mechanisms
underlying the formation of CSCs and their ability to enter a
dormancy state leading to therapeutic resistance, along with
their metastatic potential, are yet to be determined. Epigenetic
modifications such as histone and DNA methylation were
shown to be deregulated in human BC and therefore of clinical
interest to be used as biomarkers for prognosis and therapeutic
treatment. GBM is one of the most lethal solid tumors with
currently no effective targeted therapy. Chemotherapy can
reduce tumor size by targeting rapidly dividing tumor cells,
but brain tumor stem cells (BTSCs) can exit the cell cycle and
remain in a quiescent state, which gives them resistance to
chemotherapy and irradiation treatment leading to tumor re-
lapse. Embryonic stem cell genes such as Sox2 are highly
expressed in BTSCs. However, Sox2 is also expressed in nor-
mal neural progenitor stem cells (NPCs) and thereby not an
ideal therapeutic target. Thus, a better understanding of the
epigenetic and transcriptional programs underlying BTSCs
propagation that are different from normal NPCs will promote
the development of new GBM cancer therapies. Thus, under-
standing how cancer cells restructure their epigenome to be-
come dormant will serve to develop specific therapies to pre-
vent their escape from immune surveillance and resistance to
chemotherapy, thereby diminishing tumor relapse and
metastasis.

3 DNA methylation-demethylation dynamics
in cell fate

Apart from safeguarding the integrity of our genomic DNA
sequence, a plethora of chromatin dynamics constituting the
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epigenome is capable of modulating gene expression in a
highly complex yet organized fashion. One of the main fea-
tures of the epigenome is its high level of responsiveness
towards environmental changes and cellular signaling mech-
anisms. Notably, epigenetic dynamics are not unidirectional
but rather harbor a high degree of plasticity to allow cell fate
changes in response the challenges within diverse cellular mi-
croenvironments. This concept was experimentally confirmed
in one of the most prominent discoveries in modern biology,
which is the ability to change cell fate identity through epige-
netic remodeling triggered by forced expression of pioneer
transcription factors [14]. These pioneer transcription factors,
Oct4, Sox2, Klf4, and c-Myc, drive the reprogramming of so-
matic cells into induced pluripotent stem cells (iPSCs), which,
similarly to embryonic stem cells (ESCs), are capable of self-
renew and differentiate into all the cell types that constitute an
entire organism. Mechanistically, c-MYC associates with his-
tone acetyltransferase complexes allowing OCT4 and SOX2
to recognize their targeted genes, while KLF4 represses the
expression of the tumor suppressor p53, which is a roadblock
for somatic cellular reprogramming into iPSCs and it is often
mutated in multiple cancer types [18–20]. Overall, these
pluripotency factors can reprogram the epigenome of differ-
entiated somatic cells into a stem cell state that hold an infinite
capacity for self-renewal and the ability to differentiate into all
cell types [21].

Among the several epigenetic changes that occur during
somatic cellular reprogramming, DNA demethylation is es-
sential for restructuring the epigenome to promote the expres-
sion of pluripotency genes during formation of iPSCs [22].
Consistently, the ten-eleven translocation enzymes TET1
and TET2, which are dioxygenase involved in an active
DNA demethylation process, are critical for promoting cellu-
lar reprogramming into iPSCs [23, 24]. More specifically,
TET1-mediated reprogramming promotes the expression of
the pluripotency gene Oct4, while TET2 targets enhancer re-
gions involved in facilitating the formation of iPSCs [23].
Although epigenetic reprogramming such as DNA
methylation/demethylation dynamics are necessary for the
conversion of somatic cells into iPSCs, the epigenetic remod-
eling events required for cellular dedifferentiation processes
leading to the formation of other stem cell–like states such as
cancer stem cells (CSCs), also known as cancer-initiating
cells, remain largely unclear. Furthermore, how epigenetic
remodeling impact CSCs to enter a dormant cellular state,
which makes them resistant to conventional cancer therapies,
remains as a major question. Nevertheless, there are striking
similarities between the formation of iPSCs and the process of
dedifferentiation into CSCs. For instance, the core pluripotent
genes Oct4, Sox2, and Klf4 are upregulated during cellular
transformations into oncogenic malignancies and thereby
used as biomarkers for cellular dedifferentiation into cancer
stem–like cells [11] Apart from dedifferentiation into stem

cell–driven oncogenic states, the DNA demethylation–
dependent upregulation of these pluripotency genes is likely
to promote self-renewal capacity favoring CSC-dependent tu-
mor growth and metastatic invasiveness. In this review, we
highlight DNA methylation and demethylation mechanisms
underlying cell fate transitions towards CSC dormancy in
the context of brain and breast cancers.

4 DNA methyltransferases

DNA methylation occurs at CpG dinucleotides and causes
gene repression, which is a critical epigenetic regulatory pro-
cess involved in the maintenance of cell identity. In mammals,
cytosines are methylated at the fifth carbon position leading to
the formation of 5-methylcytosine (5mC), which is catalyzed
by DNA methyltransferase (DNMT) enzymes [25, 26]. The
DNMT family of enzymes is comprised of DNMT1,
DNMT3A, and DNMT3B but has distinct capabilities of
modulating the epigenome. While DNMT1 is required for
the maintenance of DNA methylation, DNMT3A and
DNMT3B are needed for de novo DNA methylation at spe-
cific genomic loci. A potent mechanism for repressing gene
expression is the recruitment of DNMTs at CpG-enriched
gene regulatory sequences such as promoters. Overall,
DNMT-dependent maintenance and de novo DNA methyla-
tion are critical epigenetic regulatory modes to ensure gene
expression programs required for sustaining cellular identity.
Mechanistically, DNMTs are recruited to specific genomic
loci by specialized epigenetic regulators and/or pioneer tran-
scription factors. For instance, the Ubiquitin like PHD and
RING Finger domains 1 (UHRF1) factor recruits DNMT1 to
preserve the status of DNA methylation during DNA replica-
tion, which is impaired upon cellular transformations into ma-
lignant states [27, 28].

Genomic regions with high CpG content termed CpG
islands (CGIs) overlap with the promoters of about 70% of
all human genes [29, 30]. Proper maintenance of DNA meth-
ylation by UHRF1-DNMT1 interactions is crucial for preserv-
ing genomic imprinting and overall epigenetic memory during
cell divisions [31]. This level of epigenetic memory allows
cells to sense exogenous stressors and adapt to challenging
microenvironment without compromising their cellular iden-
tity [32]. Interestingly, triple negative BCCs overexpressing
UHRF1 exhibit an accelerated cell growth rate due to short-
ening of the cell cycle at G1 phase and thereby UHRF1-DNA-
binding domain has been proposed as a drug target for cancer
therapy [33, 34]. In contrast to DNMT1, DNMT3A and
DNMT3B are able to establish de novo DNA methylation.
Interestingly, apart from DNMT1, UHRF1 can also interact
with DNMT3A and DNMT3B to silence gene promoters in
embryonic stem cells (ESCs) [35]. Although DNMT enzymes
have distinct roles to maintain and establish overall DNA
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methylation status, they can also collaborate among them-
selves to safeguard DNAmethylation throughout the genome.
For instance, DNMT3A targets unmethylated cytosines to
create hemimethylated CpG sites, which become new targets
for DNMT1 to preserve DNA methylation [36, 37]. Apart
from maintaining the integrity of the epigenome, these dy-
namic changes are essential for adaptation to extracellular
challenges such as microenvironment diversity. Multiple epi-
genetic changes work in concert to establish the necessary
gene expression patterns that are linked to various aspects of
cellular physiology including metabolic demands, cellular sig-
naling, and environmental adaptation. For example,
DNMT3A can recognize trimethylated histone H3 at lysine
36 (H3K36me3) or methylated histone H3 at lysine 4
(H3K4me) prior to initiating DNA methylation [35, 38].
This interplay between DNMTs and histone methylation is
essential for regulating specific gene expression patterns in
the context of health and disease. In this regard, the interac-
tions between DNMT1, UHRF1, and the histone methyltrans-
ferase enzyme G9a were elucidated from cultured BCCs [39,
40]. Additionally, G9a-dependent methylation of histone
H3 at lysine 9 (H3K9me) is recognized by the heterochroma-
tin protein 1 (HP1) and consequently causes the recruitment of
DNMT3 for de novo DNA methylation [41]. Thus, the chro-
matin microenvironment harboring histone modifications can
facilitate methylation of CpGs by promoting the recruitment
of DNMTs. Collectively, the crosstalk betweenmethylation of
both DNA and histones can work in concert to maintain or
modify the epigenetic landscape in response to cellular and
environmental challenges. Alterations to this epigenetic
crosstalk are associated with both BC and GBM, as highlight-
ed in more detailed below.

5 TET enzymes

DNAmethylation dynamics rely not only on DNMTs but also
on specific chemical modifications occurring at methylated
cytosines. DNA methylation can be reversed by passive de-
methylation during DNA replication cycles, where specific
DNAmethylation sites are not maintained and thereby diluted
by successive cellular divisions. Notably, DNA methylation
can be erased by an active DNA demethylation process driven
by the ten-eleven translocation (TET) family of dioxygenase
enzymes (TET1, TET2, TET3) initially discovered as fusion
partners of theMLL gene in acute myeloid leukemia and other
forms of hematological cancers [42, 43]. Several lines of ev-
idence support the role of TET enzymes in an active DNA
demethylation pathway leading to de-repression or activation
of gene expression [44–47]. TET-dependent DNA demethyl-
ation occurs as a series of successive oxidation reactions
where 5-methylcytosine (5mC) is converted to 5-
hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC),

and 5-carboxylcytosine (5caC), in which 5fC and 5caC can
be recognized by DNA-based excision repair factors leading
to unmodified cytosines and thereby DNA demethylation [48,
49]. Apart from functioning as intermediates of DNA demeth-
ylation, TET-mediated DNA oxidations per se can function as
epigenetic elements to modulate gene expression [48]. In vitro
analysis using chemically modified oligonucleotides enriched
for either 5mC or 5hmC showed they can be targeted by a
discrete number of epigenetic readers [30]. Notably, 5fC and
5caC can be directly recognized by RNA polymerase II (Pol
II) to slow down transcription elongation by inducing Pol II
pausing [49, 50]. This particular finding supports the idea of
TET-mediated DNA oxidations functioning as epigenetic de-
terminants regulating gene expression by directly modulating
transcription. Thus, TET-mediated DNA oxidation can essen-
tially rewire the epigenome by serving as intermediates of
DNA demethylation or as epigenetic elements interacting with
the transcriptional machinery. DNA oxidations such as 5hmC
are ubiquitously found in multiple cell types and tissues but
are particularly abundant in ESCs and neural tissues [30, 48,
51, 52]. The mechanisms, by which these DNA oxidations
affect gene expression in the context of health and disease,
remain largely unclear [53]. The relevance of TET enzymes
in epigenetic remodeling has been investigated in embryonic
development and somatic cellular reprogramming into iPSCs
[29]. However, it is unknown how TET-mediated DNA oxi-
dations functioning as epigenetic elements impact the epige-
nome in the context of cancer initiation, progression, and met-
astatic invasion.

A prominent aspect of TET function involves their recruit-
ment to specific genomic loci. In contrast to TET1 and TET3,
the CXXC zinc finger DNA–binding domain is absent in
TET2 [54]. A CXXC-containing protein, IDAX, can recruit
TET2 to unmethylated CpG sequences within promoters and
CGIs [55–57]. Interestingly, this IDAX-dependent recruit-
ment causes a caspase-mediated degradation of TET2 bound
to CpG sites [57]. Notably, aberrant IDAX expression is found
in different types of cancers such as colon adenomas and renal
carcinomas [26, 58]. Other CXXC-containing proteins includ-
ing isoforms of the transcription factors MBD1 and MBD2
can recruit TET1 to specific genomic loci. For instance,
MBD1 can recognize methylated CGIs and modify gene ex-
pression by enhancing TET1-dependent conversion of 5mC
into 5hmC [59]. On the other hand, MBD2 protects 5mC from
TET1-mediated DNA oxidations [60, 61]. Thus, the recruit-
ment of TET enzymes is a highly regulated mechanism in-
volving accessory DNA-binding factors to make the epige-
nome responsive to intracellular and microenvironmental de-
mands. Plausibly, aberrant expression of these accessory fac-
tors could negatively alter the recruitment and function of
TET enzymes leading to miss regulated gene expression such
as activation of oncogenes and/or silencing of tumor suppres-
sor genes. In support of this notion, aberrant expression of
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MBD1 and MBD2 is found in diverse cancer types [62, 63].
Additionally, other epigenetic factors including the arginine
methyltransferase PRMT1 were shown to bind 5hmC pro-
duced by TET1 to promote the expression of genes involved
in tumorigenic progression of glioblastomas [64]. On the other
hand, the oncogenic epidermal growth factor receptor (EGFR)
triggers tumor suppressor gene silencing by inhibiting TET1
activity in lung adenocarcinomas and glioblastomas [65]. In
this scenario, TET1 induced the expression of tumor suppres-
sor genes via active DNA demethylation. Notably, a new iso-
form of TET1 lacking CXXC DNA–binding domain was
shown to be upregulated in breast cancer and glioblastoma
[66]. Although this TET1 isoform can produce 5hmC, it has
a poor influence on DNA demethylation at CGI regions.
Therefore, unraveling TET-dependent mechanisms of gene
regulation could help for the development of new
epigenetic-driven cancer therapies or early diagnostic
methods for detection of aggressive tumors such as
glioblastomas.

6 Interplay among DNA methylation, TET
enzymes, and metabolism

As described above, the overall status of DNA methylation is
regulated by the combinatory function of DNMTs and TETs
(Fig. 1a). The catalytic activity of these enzymes is dependent
on obligatory cofactors including the metabolic intermediates,
S-adenosylmethionine (SAM) and α-ketoglutarate (α-KG),
respectively [67, 68]. SAM is generated from methionine bio-
synthesis, and it is the universal donor of methyl groups to
both histone and DNA methyltransferases. DNMTs transfer
methyl groups donated from SAM onto cytosines at CpG-
enriched genomic regions [69]. The intermediate metabolite
S-adenosylhomocysteine (SAH), a potent inhibitors of
DNMTs, is generated as a byproduct of SAM (reviewed in
[70, 71]). SAH can be further hydrolyzed to homocysteine and
recycled back to methionine [72, 73]. Thus, changes in methi-
onine metabolism could lead to deregulated DNMT activity
and confer cancer cells with proliferative advantages (54).

The catalytic activity of TET enzymes is strictly dependent
on α-KG, which is part of the tricarboxylic acid (TCA) cycle,
and it is generated by isocitrate dehydrogenase (IDH) en-
zymes IDH1 and IDH2 [74, 75]. Mutations in these enzymes
cause the produc t ion of the oncometabol i t e 2 -
hydroxyglutarate (2-HG) functioning as a competitive inhibi-
tor of α-KG found in brain tumors [76] (Fig. 1a). On the other
hand, the catalytic activity of TET enzymes can be inhibited
by succinate and fumarate, which are intermediate metabolites
of the TCA cycle that are downstream of α-KG [74] (Fig. 1b).
The catalytic function of TET enzymes is also dependent on
vitamin C (ascorbate), which has been proposed as an anti-
cancer treatment [77]. Thus, changes in cellular metabolism

can influence the activity of DNMTs and TETs by regulating
the availability of their cofactors. Generally, alterations in
DNA methylation are a hallmark of cancer. For instance, dys-
regulated DNAmethylation at specific genomic loci including
promoter regions correlates with multiple types of cancers
including breast cancer and glioblastomas [78, 79]. More spe-
cifically, genes involved in the regulation of cell cycle and
tumor suppression are silenced by DNA hypermethylation in
breast cancer due to overexpression DNMT3B [80]. For ex-
ample, the tumor suppressor PTEN (phosphatase and tensin
homolog), which is one of the main regulators of cell cycle
progression, is downregulated due to elevated levels of
DNMT1 and SAM [81]. On the other hand, high levels of
TET expression determined from 162 breast cancer tissues
correlated with increased patient survival, possibly due to
DNA demethylation–dependent upregulation of tumor sup-
pressor genes [82]. Interestingly, the catalytic activity rather
than the expression of TET enzymes is altered in secondary
high-grade glioblastomas due to IDH mutations. As men-
tioned above, IDH mutants generate 2-HG, which results in
hypermethylation of tumor suppressor genes [83]. Additional
metabolic changes influencing DNA methylation/
demethylation dynamics in both breast cancers and glioblas-
tomas are dependent on oxygen levels. For instance, hypoxic
conditions in both glioblastomas and breast cancers trigger the
upregulation of the hypoxia-inducible factor-1α (HIF-1α),
which can interact with TET1 under hypoxic conditions
[84]. Tumor hypoxia causes an increase in cellular prolifera-
tion, epithelial-mesenchymal transition (EMT), metastasis,
and chemo-resistance, which are hallmarks for cellular dedif-
ferentiation towards cancer stem cells. As mentioned above,
TET enzymes are strictly dependent on α-KG, which be-
comes decreasingly available in cancer types expressing mu-
tated fumarate hydratase (FH) and succinate dehydrogenase
(SDH) enzymes, thereby leading to an overall decrease in
TET activity [74, 85–87]. Generally, dysregulated enrichment
of DNA methylation at promoter regions is correlated with
various types of cancers, including breast cancer and glioblas-
tomas [78, 79]. For instance, microarray analysis shows that
breast cancer cell lines characterized by genomic hypermethy-
lation overexpress the de novo DNA methyltransferase en-
zyme DNMT3B. DNA hypermethylation can also occur in
the context of IDHmutations found in brain tumors and breast
cancer [88–90]. Thereby, metabolic dynamics can affect the
epigenome by regulating the activity of TET enzymes during
carcinogenesis.

As mentioned above, IDH mutations altering the levels of
α-KG are found in brain tumors. IDH mutations in glioblas-
toma producing 2-HG are found in 70% of low-grade tumors
[91–93]. Gliomas of increased malignancy show a decrease in
TET1 activity that correlate with lower levels of 5hmC in
patient-derived tumor samples. On the other hand, decitabine,
a DNA methyltransferase inhibitor, has been shown to reduce
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cellular proliferation of IDH1 mutant glioma cells [94].
Interestingly, glioma cancer stem cells, which are resistant to
most treatments targeting cellular replication, have increased
levels of 5fC and 5caC [95]. However, the mechanisms un-
derlying the role of these DNA oxidations in brain tumors
remain to be determined. As mentioned above, TET enzymes
are dioxygenases whose activity is dependent on oxygen
availability. A pan-cancer analysis shows that TET activity
in hypoxic tumors is inversely correlated with hypermethyla-
tion [83]. Hypoxia is a hallmark of cancer, in which oxygen
deprivation can alter epigenetic regulatory programs of cancer
cells causing an increase in metastatic competence and by
facilitating cellular transitions towards stem cell–like states
[96–98]. Collectively, TET-mediated DNA oxidations are
highly dependent on metabolic states conferring cancer cells
the ability to reprogram their epigenome to control gene ex-
pression networks that promote tumor growth and metastasis.

7 CSCs

The initiation of malignancy is a complex process that may be
due to a combination of the following: viral infection, hered-
itary gene mutation, somatic mutation, and/or environmental

factors that might be sporadic [1, 2]. Tumors are comprised of
a heterogeneous population of cells [5]. There is an upsurge of
interest in a small subset of cancer cells with self-renewal
capabilities that where first identified over 20 years ago in
acute leukemia [99]. These cells, designated as cancer stem
cells (CSCs), are presumed to be the source of cancer relapse,
which sparked clinical interest in their therapeutic targeting.
CSCs are a subpopulation of tumor cells that share properties
with normal stem cells, such as self-renewal, asymmetric di-
vision, hierarchical differentiation, prolonged doubling time,
expression of core stem cell genes (i.e., Oct4a, Nanog, Notch,
and Sox2), and their ability to exit their cell cycle towards a
dormant cellular state [8, 100, 101]. The origin of CSCs could
be attributed to mutations within the adult stem cell niche or
dedifferentiation of somatic cells via cellular reprogramming
into a stem cell–like state [102].

CSCs have increased expression of multidrug resistant
genes such as ATP-binding cassette (ABC) transporters,
allowing the efflux of toxins and chemicals and causing the
evasion of therapeutic treatments [103, 104]. CSCs were ini-
tially classified as CD44+/CD24−/low, CD133+, and alde-
hyde dehydrogenase 1 (ALDH1+) [105–107]. However, there
is evidence indicating that these markers are not reliable for
the identification of CSCs. In our lab, we have stratified BCC
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Fig. 1 Crosstalk between metabolites and epigenetics. a S-
adenosylmethionine (SAM), which is produced from methionine biosyn-
thesis functions as a methyl group donor for DNMT-dependent DNA
methylation. TET enzymes can successively oxidize 5mC into 5-
hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-
carboxylcytosine (5caC). Both 5fC and 5caC can be recognized by
base-excision repair (BER) factors leading to DNA demethylation.
Alpha-ketoglutarate (α-KG), an obligatory cofactor for ten-eleven trans-
location (TET) enzymes, is generated through the TCA cycle by IDH1

and IDH2 enzymes. Mutated IDH enzymes generate 2-hydroxyglutarate
(2-HG), which inhibits TET activity. Generally, DNA methylation is
associated with gene repression, while TET-mediated DNA oxidations
are involved in gene activation. b TET activity is positively regulated by
vitamin C and its obligatory cofactor α-KG. Derivatives ofα-KG such as
succinate and fumarate inhibit TET activity. In cancer, both succinate and
fumarate are accumulated due to mutated versions of succinate dehydro-
genase (SDH) and fumarate hydratase (FH) enzymes
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subsets based on Octamer-4a (Oct4a) gene expression,
allowing for improved identification of CSCs, which consti-
tute about 5% of the total BCC population [8, 108].

Two different mechanisms have been proposed to describe
the origin of CSCs. Initially, it was established that mutations
in cancer cells resulted in their dedifferentiation into cells with
a stem cell–like phenotype (Fig. 2a) [109]. Conversely, it was
hypothesized that mutations in core pluripotent genes of nor-
mal stem cells contribute to the development of CSCs [110,
111]. Regardless of the origin, CSCs exhibit similar properties
to healthy stem cells, which impede their therapeutic targeting
due to potential harm to non-malignant stem cells.
Furthermore, as mentioned above, CSCs can adopt a dormant
phenotype, allowing them to evade conventional treatment
and persist in a quiescent state within a particular niche for
extended periods of time [112]. In this section, we will address
the epigenetic regulation of CSCs from breast cancer and
GBMs with respect to their DNA methylome.

A major issue for targeting CSCs is their functional simi-
larities to normal stem cells. These include their intrinsic self-
renewal capacity, differentiation into functional mature cells,
low proliferative potential, and drug resistance, which make
them a challenging target for current cancer therapies [3, 5,
99]. Additionally, CSCs, in particular those from BC, choose

the bone marrow (BM) as a preferential microenvironmental
niche where cancer cells can exist in a dormancy state [113].
This cellular niche preferred by dormant BCCs imposes diffi-
culties for establishing therapeutic targeting strategies since
the BM niche is the home for endogenous hematopoietic stem
cells [113, 114]. It is therefore important to understand the
interaction between CSCs and the microenvironment since
this could allow for the development of new therapeutic inter-
ventions [2, 3, 5]. Thus, we propose that cancer niches such as
the BM will cause changes in the epigenetic “machinery” of
cancer cells leading to their reprogramming into CSCs (Fig.
2b). The identification of such facilitators could result in the
development of new pharmacological treatments.

8 BM secretome

BM is a complex organ comprising of hematopoietic and non-
hematopoietic cells, soluble factors, extracellular matrices,
and microvesicles [115]. Hematopoietic stem cells (HSC)
and mesenchymal stem cell (MSC) are two major resident
stem cells in BM [114, 116]. HSCs are the source of immune
and blood cells, whereas MSCs can support HSC function
[114, 116, 117]. Additional supporting cells include stromal
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cells that are generally grouped as fibroblasts, macrophages,
endothelial cells, and adipocytes [114]. Cellular support of
hematopoiesis includes soluble and insoluble secretome that
mediate intercellular communication among hematopoietic
and non-hematopoietic cells [108, 118]. BCCs can take ad-
vantage of the normal hematopoietic system for their survival
as dormant tumor cells and when provided with specific mi-
croenvironmental cues their dormancy state can be reversed to
facilitate the formation of metastatic cells [119, 120]. Among
the microenvironmental cues facilitating a dormant cellular
state are mediators of intercellular crosstalk such as cytokines
and exosomes [3, 119, 121].

This review focuses on exosomal secretome, which are
small microvesicles of endocytic origin [119]. Exosomes can
shuttle cargo such as RNA, proteins, lipids, and DNA into
recipient cells [121]. Initially, exosomes were thought to be
part of a cellular garbage disposal system. These vesicles have
since been shown to elicit phenotypic and functional cellular
changes, including hematopoietic regulation [119]. Cancers
such as BC and GBM cells have also utilized exosomes to
facilitate their survival by promoting cellular interactions with
the cells within the BM microenvironment [3, 5]. Thus, dis-
seminated tumor cells (DTCs) such as BC show preference for
the BM by taking advantage of the microenvironment for
dormancy to keep the BCCs in BM and to also use the same
BM niche cells to reverse dormancy to release the dormant
cells to tertiary metastatic sites (Fig. 3a) [122]. As mentioned
above, exosomes can facilitate BCCs to undergo cycling states
of quiescence (Fig. 3b).

The secretome within the BM niche including small RNAs
inside exosomal vesicles can mediate intercellular communi-
cation to facilitate dormancy of BCCs [119]. This can occur
by the transport of molecules such as miRNA, proteins, and
mitochondrias through gap junctions between tumor cells and
microenvironment niche cells [123–126]. Such communica-
tion is not limited to BM since similar crosstalk has been
reported between astrocytes and glioma cells [127]. Cancer
cells can also communicate with each other to transfer drug
resistance molecules [128]. Such communication can occur
via gap junction due to high expression of Cx43 (GJA1) on
BC and GBM (Fig. 3c) [126, 129]. Direct interactions be-
tween CSCs and BM stroma are critical for establishment of
dormancy at the endosteal niche (Fig. 3c). This communica-
tion is characteristic of the late stages of dormancy, and there
is minimal understanding of the epigenetic regulation of CSCs
during such process.

MiRNA cargo within exosomes has been well-studied with
respect to tumor dormancy. These miRNAs are ~ 23 nucleo-
tides in length with significant roles in gene regulation mostly
at the post-transcriptional level [130–133]. They can also in-
duce epigenetic changes involving DNA methylation and his-
tone modifications by targeting epigenetic regulatory factors.
These epigenetic factors are associated with chromatin

dynamics capable of altering gene expression patterns and
play pivotal roles in tumor initiation, progression and invasion
[134, 135]. Examples of epigenetic regulators that can be
targeted by miRNAs as well as other relevant effects are brief-
ly summarized in Table 1. Since miRNAs are mostly transla-
tional suppressor, their involvement could suppress the ex-
pression of the epigenes. On the other hand, if the miRNAs
suppress the translation of a negative regulator, this would
enhance the expression of the epigene. Mutation of such pro-
teins has been linked to decrease in patient prognosis,
underscoring the importance of dissecting the function of
miRNAs in epigenetic regulation [134, 135].

9 DNA methylation in BCC subsets

BCCs do not solely rely on genetic alterations to persist within
a specific niche. Modifications of the epigenome were shown
to be beneficial for BCC survival due to increased cellular
plasticity, which allows them to adapt to diverse microenvi-
ronments. Epigenetic alterations within BCCs are required for
cell-fate transitions and might facilitate their reprogramming
into CSCs (Fig. 2c). The capacity of CSCs to display epige-
netic plasticity could account for cancer aggressiveness and
resurgence. Hence, studying the epigenetic mechanisms in-
volved in the regulation and generation of CSCs is a critical
step towards successful eradication of these malignant cells.

As mentioned previously, one of the major caveats in the
field is the proper and specific identification of CSCs. For
instance, CSCs were phenotypically identified as CD44+/
CD24−; however, not all cells harboring this phenotype dis-
play functional properties of CSCs. Subsequently, breast
CSCs were characterized as CD44high/CD24low/ALDHhigh

and only a small population had long-term repopulating
capacities. Several reports have shown that CSCs exhibit
distinct epigenetic features that can be used as identification
markers. For example, breast CSCs possess elevated levels
of DNMT1, which is critical for their self-renewal (Fig. 2c)
[136]. Moreover, differentially expressed methylation pat-
terns observed in young BC patients (< 35 years) versus old
patients are associated with the aggressiveness of the dis-
ease [137]. In addition, specific DNA methylation patterns
confer breast CSCs resistance to treatment by modulating
their TGF-β signaling pathway, which is involved in cellu-
lar growth [138]. Notably, modulation of methylated pat-
terns at specific miRNAs promoter allows the enrichment of
breast CSCs. More specifically, DNA methylation–
dependent repression of miR-203 induces self-renewal ca-
pacities in BCCs and abrogates epithelial-to-mesenchymal
cellular transitions (EMT) [139]. Importantly, inhibition of
5mC levels at miR-203 promoter regions by 5-azacytidine
resulted in decreased tumor formation and enhanced migra-
tory properties of BCCs [139]. Another miRNA that
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displays enriched methylation is the miR-200c/141cluster,
allowing transcriptional activation of the oncogene Twist,
an EMT promoting protein that confers invasive properties
in BCCs [140]. In human ductal breast carcinoma, aberrant
methylation at CpG islands within ERα and E-cadherin
gene promoters are observed right before the tumor obtains
invasive capacities increasing cancer progression [141].
Importantly, heritable DNA methylation profiles from pe-
ripheral blood circulating DNA are associated with suscep-
tibility to BC and serve as a prognostic for clinical assess-
ment [142]. Interestingly, mapping of DNA methylation

patterns in BCCs revealed that enhancer regions of the
genes ERα, FOXA1, and GATA3 are enriched with 5mC,
allowing for the identification of a specific subset of BCs
[143]. Another study indicated that breast CSCs exhibit
hypomethylated CpGs in genes involved in Jak-STAT sig-
naling and thereby critical for self-renewal [144].
Additionally, circulating tumor cells derived from patients
with metastatic BC shown methylation of tumor suppressor
genes such as cystatin M and breast cancer metastasis sup-
pressor 1 (BRMS1) [145].
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Fig. 3 BMmicroenvironment in support of BCC dormancy. a Overview
of the BMmicroenvironment and the support of BC behavior in different
regions of the cavity. b Mesenchymal stem cells release exosomes
containing cargo that modulate the epigenetic landscape of BCCs. A
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Table 1 MiRNA-mediated regulation of epigenetic factors/silencing in cancers

MiRNAs Epigenetic targets Others References

MiR-9, miR-148, miR-124, miR-137, miR-34, miR-127, miR-512 CpG silencing in cancers [134]

MiR152-3p, miR152-148a, miR152-155 DNMT1 [167, 177]

MiR-29 DNMT3 [134]

MiR-129-5p DNMT3A [166]

MiR-23 DNMT3 [134, 135]

MiR-31, miR-223, miR-222, miR-1-1 HDAC [134, 178, 179]

Let-7adf, miR-29bc, miR-26, miR-101, miR-125 TET [180–182]

MiR-329, miR-137, miR-155 KDM1A [135, 183, 184]

MiR-137, miR-194 KDM5B [135, 185]

MiR-200b/a/429, let7 miR-31 EZH2 Loss by EZH2 [134, 164]
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One of the reasons for CSCs to persist in a microenviron-
ment niche after treatment is due to their immune evasive
properties. Mechanistically, this can occur by upregulation
of immune checkpoints such as programmed death-ligand 1
(PD-L1). Evaluation of PD-L1 promoter in BCCs revealed
enhanced hypomethylation and displayed significant enrich-
ment of 5hmC mediated by TET3 [146]. Another feature that
favors CSC survival is their ability to exist in hypoxic envi-
ronments. Hypoxia-inducible factors are transcription factors
that respond to low oxygen levels and have been shown to be
dysregulated in multiple cancer types [147]. Hypomethylation
at non-CpG sites along with acetylation of histone H3 at lysine
9 (H3K9ac) trigger the upregulation of the hypoxia inducible
factors HIF-1α in BCCs, which is critical for their survival
and maintenance [148]. Overall, DNA methylation dynamics
are part of an epigenetic program that sustains the survival and
proliferation of BCCs.

10 TET enzymes in BCC subsets

Abrogation of TET enzymes during early stages of BC is
associated with poor patient prognosis [82]. Despite the
standalone contribution of TET enzymes to BC progression,
interplay between TET enzymes and histone modifiers is cru-
cial for regulation of metastasis, cell cycle progression, and
dormancy (Fig. 2c). For example, the loss of mixed-lineage
leukemia 3 (MLL3), a mediator of H3K4 methylation at en-
hancers, disrupts the association between TET2 and ERα,
resulting in a reduction of TET2 and inhibition of BCC pro-
liferation [149]. In addition, the histone lysine demethylase
2A (KDM2A) has been shown to be a transcriptional repres-
sor of TET2 by interacting with RelA, which inhibits tumor
suppressor genes in BC such as epithelial cell adhesion mol-
ecule (EpCAM) and E-cadherin [150]. Moreover, EZH2, a
member of the polycomb repressive complex 2 (PRC2),
which represses transcription via methylation of histone
H3 at lysine 27 (H3K27me3), is associated with poor patient
prognosis. Notably, EZH2 can decrease TET1 expression,
thereby preventing demethylation of the tumor suppressor
gene TP53, which results in dysregulated BCC proliferation
[151].

As mentioned above, hypoxia regulates tumor dormancy
and cellular stemness. Specifically, hypoxia causes TET1 and
TET3 enrichment, which is associated with CSC features
[152]. Increased 5hmC levels upon hypoxia treatment induce
TNF-α-p38-MAPK signaling, which is critical for maintain-
ing a CSC phenotype and for survival of BCCs [152].
Furthermore, hypoxia drives hypermethylation of tumor sup-
pressor genes and reduces function of TET enzymes [153].
TET1 has been shown to promote BCC progression by regu-
lating genes involved in the PI3K/mTOR pathway, resulting
in increased cellular migration and proliferation [154]. In

addition to its oncogenic role, TET1 can act as a tumor sup-
pressor by regulating the homeobox A gene, HOX9. To do so,
TET1 autoregulates its promoter causing enhanced demethyl-
ation and enrichment of H3K4me3; as a result, TET1 interacts
with HOX9 to restrict BCC growth [155]. Furthermore, TET1
modulates expression of tissue inhibitors of metalloproteinase
2 and 3 to suppress breast and prostate tumors [155].
Equivalently, loss of TET2 restricts BCC growth in an
estrogen-dependent manner [48].

A mechanism bywhich tumor cells persist within a niche is
via immune cells recruitment. However, a recent study dem-
onstrated that p65-mediated downregulation of TET1 de-
creases expression of immune markers in BCCs, affecting
recruitment of immune cells to the tumor microenvironment
[156]. As mentioned above, vitamin C is a cofactor for TET
activity. Interestingly, vitamin C promotes the enrichment of
5hmC inducing apoptosis in BCCs via TRAIL pathway [157].
These studies proposed TET-dependent mechanisms that halt
tumor growth. Collectively, the interplay between DNAmeth-
ylation and demethylation functions as a critical epigenetic
program regulating CSCs.

11 DNA methylation in GBM

GBM, a grade IV astrocytoma, is one of the most aggressive
brain tumors with patient survival being limited to only ~
15 months after diagnosis. Currently, there is no effective
therapy against GBM; thus, a deeper understanding of its de-
velopment and progression is required to eradicate these on-
cogenic cells to increase patient lifespan. The fast progression
of GBM could be explained by epigenetic dynamics favoring
cellular plasticity, which allows adaptation to specific micro-
environments. Hence, targeting of epigenetic mechanisms
could serve as a plausible avenue for GBM treatment.

Tumor heterogeneity among GBM cells can arise as a re-
sult of alterations in DNA methylation patterns (Fig. 4) [158].
To further complicate the scheme of this cancer type, specific
DNA methylation marks are observed in GBM CSCs. For
instance, DNA methylation causing transcriptional repression
of the tumor suppressor genes SPINT2, NEFM, and PENK2
are present in GBM CSCs [159]. Notably, overexpression of
SPINT2 altered GBM growth resulting in decrease cellular
stemness and proliferation, thereby restricting tumor progres-
sion [159]. Acquisition of a CSC phenotype by GBM progen-
itor cells occurs by increased expression of SOX2 and
FOXG1 genes. Importantly, enhanced DNA methylation at
the p romote r r eg ion of downs t r eam ta rge t s o f
SOX2:FOXG1 such as Foxo3 promotes self-renewal of
GBM CSCs and facilitates cellular dormancy [160].

CD133, a membrane glycoprotein, has been used as a sur-
face marker for the isolation of CSCs. However, in GBM
progenitor cells, DNA methylation represses expression of
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CD133, resulting in increased recruitment of methyl-DNA
binding proteins [161]. Similarly, DNA hypomethylation of
alkaline phosphatase is observed in GBM patients and is as-
sociated with poor outcome [162]. Importantly, modulation of
the methylome in GBM results in chemosensitivity to temo-
zolomide (TMZ) (Fig. 4). Mechanistically, downregulation of
DNMT1 reduced methylation of miR-20a and enhances sen-
sitivity to TMZ (Fig. 4) [163]. In addition, DNMT1 cooper-
ates with EZH2 to promote silencing of miR-200b/a/429
resulting in progression of GBM and gastric cancer [164].
Furthermore, GBM cells harbor increased methylation in
apoptosis-related genes allowing their survival [165].
Interestingly, inhibition of DNMT3A by miR-129-5p results
in cell cycle arrest, which affected GBM cell proliferation
[166]. MiR152-3p has been reported to downregulate the ex-
pression of DNMT1, and as a result, expression of neurofibro-
matosis type 2 (NF2) is increased, allowing tumor suppression
[167]. Collectively, these studies demonstrate the relevance of
DNA methylation in the regulation of GBM.

12 DNA oxidation in GBM

Accumulation of 5hmC marks across the epigenome is a hall-
mark encountered in GBM. For instance, elevated levels of
TET1 cause an increase of 5hmC in GBM cells, resulting in
enhanced proliferation and tumorigenesis. As an epigenetic
entity, 5hmC recruits CHTOP, a protein that targets arginine
methyltransferases to promote transcriptional activation [64,
168]. Depletion of CHTOP caused a decrease in tumor forma-
tion and a reduction in global 5hmC levels. EGFR-mediated
repression of TET1 results in downregulation of tumor sup-
pressor genes, allowing survival of GBM [65]. Deposition of
5hmC at enhancer elements is associated with better prognosis
[169]. Conversely, genome-wide reduction of 5hmC levels
caused by downregulation of TET3 increases proliferation of
GBM cells [170]. Concordantly, high expression of TET3
correlates with increased survival in GBM patients [170].
Furthermore, TLX, a nuclear receptor involved in initiation
of brain tumors, facilitates CSCs self-renewal and prolifera-
tion rate of GBM [171]. Downregulation of TLX potentiates

TET3, resulting in a reduction of tumor growth and inhibition
of CSC self-renewal properties [172]. Interestingly, TET3 is
variably expressed across CSCs derived from multiple cell
lines, whereas TET1 and TET2 display downregulation and
upregulation, respectively [173]. GBM CSCs show differen-
tial expression of HOX genes, which are implicated in surviv-
al and apoptotic and proliferative pathways in comparison to
normal neural stem cells (NSCs) [173]. In addition, TET2
modulates TNFα signaling to sustain CSCs by providing
chemoresistance through inhibition of pro-apoptotic pathways
[174]. Indeed, TET2 can act as tumor suppressor by enhanc-
ing expression of miRNAs that restricts GBM differentiation
[175]. Overall, DNA oxidations are key epigenetic compo-
nents of GBM and much needs to be unraveled about their
mechanisms involved in gene regulation.

In conclusion, modulation of the epigenome via DNA
methylation/demethylation dynamics is an integral mecha-
nism involved in cancer dormancy. Although dormant CSCs
are present in both BC and GBM, the aggressiveness and
resistance to therapy are quite different between these cancer
types. However, the mechanisms underlying epigenetic mod-
ifications such as DNA methylation and DNA oxidations as
drivers of cellular reprogramming towards dormant CSCs in
BC versus GBM remain to be elucidated. For instance, the
specific recruitment and genes targeted by individual mem-
bers of the TET family of enzymes remain as major questions.
Distinct roles for TET enzymes were described in embryonic
stem cells (ESCs), in which TET1 is preferentially bound near
transcription start sites, whereas TET2 is predominantly asso-
ciated with gene bodies [176]. Nevertheless, it remains to be
determined if this applies to CSCs. Additionally, differential
expression levels among individual TETs could play relevant
roles in the formation of dormant CSCs in BC versus GBM.
Furthermore, the roles of each DNA oxidation, 5hmC, 5fC,
and 5caC, generated by individual TET enzymes in the con-
text of cancer dormancy, remain largely unexplored. Finally,
it is unknown how the interplay between DNMTs and TETs in
the context of specific histone modifications could impact
cellular dormancy in BC and GBM. Therefore, a clear under-
standing of DNA methylation/oxidations as epigenetic deter-
minants of cellular dormancy could sprout new methods for

DNMT1

miR20a

Resistance to treatment 

GBM

DNMT1

miR20a

Inhibition

Susceptibility  to treatment 

TMZ

Cell death 

Fig. 4 Regulation of DNA methylation in GBM increases susceptibility
to TMZ. Upregulation of DNMT1 in GBM cells promotes increase of
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downregulates expression of miRNA resulting in susceptibility to TMZ
and cell death [164]
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early diagnosis or therapeutic treatments to combat GBM,
which is one of the most aggressive cancers exhibiting a high
degree of therapeutic resistance.
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