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Abstract
Pediatric diffuse intrinsic pontine glioma (DIPG) represents approximately 20% of all pediatric CNS tumors. However, disease
outcomes are dismal with a median survival of less than 1 year and a 2-year overall survival rate of less than 10%. Despite
extensive efforts to improve survival outcomes, progress towards clinical improvement has been largely stagnant throughout the
last 4 decades. Focal radiotherapy remains the standard of care with no promising single-agent alternatives and no evidence for
improvement with the addition of a long list of systemic therapies. A better understanding of the biology of DIPG, though not
easy due to obstacles in obtaining pathological material to study, is promising for the development of specific individualized
treatment for this fatal disease. Recent studies have found epigenetic mutations to be successful predictors and prognostic factors
for developing future management policies. The aim of this review is to give a global overview about the epidemiology,
diagnosis, and treatment of DIPG. We further examine the controversial biopsy and autopsy issue that is unique to DIPG and
assess the subsequent impact this issue has on the research efforts and clinical management of DIPG.
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1 Introduction

Brain tumors are common cancers in childhood and represent
about 20–25% of all childhood tumors [1]. Although 15% of
brain tumors affect the brain stem, 80% of these cases are diag-
nosed as diffuse intrinsic pontine glioma (DIPG) [2]. DIPG is a
subtype of advanced grade gliomas that originates in the pons
and spreads to other parts of the brainstem. After the establish-
ment of magnetic resonance technology in the 1990s, DIPG was
classified separately from other focally growing tumors with
unique prognosis [3]. Before 2012, most of the epidemiological
data about DIPGwas mainly available from limited countries [4,
5]. The aim of this review is to give a global overview about the
epidemiology, diagnosis, and treatment of DIPG. Furthermore, it

highlights the controversy biopsy and autopsy issue with its sub-
sequent progress and impact on the biology of DIPG.

2 Epidemiology

Although DIPG is a rare tumor, it is the most lethal type of
pediatric brain tumor with 90% deaths within 2 years of diagno-
sis [6]. DIPG has a bimodal peak; it is apparent specifically in
children with median age of 6–7 years at diagnosis [2, 7] and
between 20 and 50 years in adults with a median age of 34 years
[8]. In the USA, around 100–150 children were diagnosed as
DIPG annually [4]. Its incidence is equal between males and
females (1:1) [9]. Unlike other pediatric tumors, the survival of
DIPG has not improved over the last 40 years. Despite the ex-
tensive continuous research to improve DIPG’s outcome, the
median overall survival (OS) of DIPG patients remains poor at
8–11 months [10]. Moreover, greater than 90% of patients die
within 2 years of diagnosis [6].

3 Presentation and diagnosis of DIPG pateint

The presentation of DIPG is characterized by neurological signs
and symptoms that were developed rapidly over 1–6 months
prior to presentation. The classical signs and symptoms may
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involve long tract signs (clonus, hyperreflexia, weakness, posi-
tive Babinski reflex, and increased tone) and cranial palsy (due to
tumor infiltration or mass effect on the sixth and seventh cranial
nerves with uni- or bi-lateral deficits), in addition to cerebellar
affection signs (ataxia, coordination deficit, and dysmetria)
[11–13]. Around 30% of DIPG patients suffer from increased
intracranial pressure, due to expansion of the pons. This expan-
sion together with fourth ventricular narrowing consequently
leads to obstructive hydrocephalus [13].

The standard and widely accepted criteria for DIPG diag-
nosis include symptoms that last greater than 6 months; the
presence of at least 2 symptoms of the 3 brainstem dysfunc-
tions (pyramidal tract affection, cranial nerve deficit, and co-
ordination dysfunction); and infiltration of more than 50–66%
of the pons [6, 13, 14]. A post-mortem assessment of DIPG
patients revealed that around 20% of the brainstem tumors had
a histologic diagnosis of brainstem primitive neuroectodermal
tumors (PNET) that mimic DIPGs radiologically [13, 15].
Thus oncologists must exercise caution when making a
DIPG diagnosis for a mass lesion in the brainstem.

In general, tissue biopsy from brain tumor lesions is usually
required for proper diagnosis and appropriate treatment selec-
tion. However, most neurosurgeons do not perform tissue bi-
opsy as it impacts both the quality of life and function of DIPG
patients. Since the 1990s, most studies recommended using
MRI as an alternative option for obtaining tissue biopsy to
diagnose brainstem gliomas [3, 16]. In 2007, Schumacher
et al. proved that the diagnosis of brainstem gliomas can be
effectively made through precise imaging criteria, laboratory
data, and clinical history and symptoms. Diagnostic biopsies
are mainly reserved for tumors with atypical clinical presen-
tation [17]. Currently, the diagnosis of DIPG depends on both
the clinical symptoms andMRI. A tirade of symptoms includ-
ing ataxia, pyramidal tract dysfunction, and cranial nerve
palsies are the common presentations. These often have a
rapid clinical onset (less than 3 months). DIPG also exhibits
characteristic hypertense T2 or FLAIR MR sequence involv-
ing more than 50% of the ventral pons and no postcontrast
enhancement on T1 images.

4 Autopsy, biopsy, and liquid biopsy: “Areas
of Controversy”

A major obstacle that hindered progress in identification of
DIPG biology and consequently hindered developing a spe-
cific treatment is the neuroanatomical location of DIPG in
addition to the deficiency of in vivo models of DIPG.
Generally, the two main sources for obtaining DIPG tissues
are autopsies and biopsies. Autopsy, also called “post-mortem
material,” is a radiological-guided process. This process de-
pends mainly on the selfless gift and co-operation of DIPG
patients and their families of donating their post-mortem

tumor. Samples obtained by this process were large enough
to carry out many in vivo tumor model studies for drug testing
[18–20] and DIPG genomic profiling [21]. Many efforts were
exerted to develop protocols and standardize procedures for
specimen acquisition [22, 23]. However, the fact of obtaining
cells and tissues exposed to many treatment modalities and
evolution changes during the course of the disease is the major
drawback and limitation for the absolute value of such
procedure.

The indication for DIPG biopsy is a highly controversial
issue [24]. Biopsy is widely considered to be a risky procedure
with no direct patient benefits and was thus restricted to DIPG
patients of unusual or atypical imaging or presentation.
Increasing the need for improving the prognosis of DIPG
and achieving progress in understanding DIPG biology lead
to reconsideration of biopsy in DIPG. Many centers showed
the safety and feasibility of DIPG biopsy with low morbidity
and mortality [25–28]. A meta-analysis of 13 studies
performing stereotactic biopsy of brain stem lesions in 381
children and adults established a diagnostic yield of 96%,
notably with one incidence of death. The rate of permanent
and transient deficits was 4 and 1%, respectively [29].
Another meta-analysis on 192 children revealed a similar di-
agnostic yield of 94.9%, 0.7% mortality, and 4.9% morbidity
[30]. There is an ongoing national clinical trial in the USA that
obtains upfront biopsy from newly diagnosed DIPG pediatric
patients, called The DIPG Biology and Treatment Study
(DIPG-BATclinical trial) [31]. Puget et al. also put guidelines
for performing biopsies in DIPG patients including the choice
of the proper patient, the target, and the procedure [24].
However, dynamic monitoring of DIPG treatment using biop-
sy remains a major clinical challenge. On the other hand,
liquid biopsy or liquid biome avoids the most troublesome
aspects of biopsy. This is a non-invasive technique that has
recently garnered attention in many cancer types, and involves
using biofluids (e.g., serum, cerebrospinal fluids, urine, or
saliva) to detect certain analytes such as cell-free tumor
DNA (ctDNA), circulating tumor cells (CTC), and tumor-
derived extracellular vesicles [32]. Liquid biopsy has a wide
range of applications both at initial diagnosis and for post-
surgical or post-therapy monitoring. There is an additional
role for liquid biopsies in cancer screening, but this remains
of limited application [32, 33].

Huang et al. conducted the first study on the liquid biopsy
approach in pediatric midline gliomas including DIPG [34].
They used both Sanger sequencing and mutation-specific
PCR to detect H3 mutations in CSF-derived tumor DNA.
While the process was feasible, the Sanger sequencingmethod
had two limitations that hurdle the clinical utility of this meth-
od: the inability to calculate allele frequency and the lack of
sensitivity. Droplet digital PCR is another approach used to
overcome these limitations and to detect major mutations in-
stead of single variants [35]. Recently, molecular profiling
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using deep sequencing technique of CSF-derived tumor DNA
in brain tumors involving DIPG patients was successful. In
addition to its technique feasibility, CSF-derived tumor DNA
has better sensitivity (100%) compared with plasma circulat-
ing tumor [36]. Generally, liquid biopsy is considered a prom-
ising non-invasive approach for the future diagnosis and mon-
itoring of DIPGs. It helps at diagnosis particularly in the situ-
ation of unfeasible biopsy. Furthermore, it offers a non-
invasive dynamic monitoring of DIPG including molecular-
based longitudinal characteristics.

5 Biology of DIPG

A better understanding of DIPG biology will positively impact
disease prognosis and overall patient outcomes. Great advances
in neurosurgical techniques with the advancement of operative
microscopes, intraoperative MRI, and stereotactic technology
have effectively decreasing the risks associated with obtaining
a surgical biopsy. In addition, using small samples for genomic
profiling and drug efficacy testing has enabled researchers to
perform whole genome sequencing (WGS) on DIPG tumor tis-
sues to understand DIPG biology. They successfully revealed
many oncogenic pathways and drivers involved in DIPG tumor-
igenesis [37–40]. DIPG biology is complex and involves epige-
netic aberrations and genetic changes that affects many pathways
of cellular proliferation and cell cycle machinery regulations
(Table 1). Pontine precursor-like cells (PPC) are thought to be
the cells of origin for DIPG. During infancy, they are available in
all ventral brainstem structures and wane by the age of 2 years.

At the age of 6 years, they have another peak which is corre-
sponding to the median age of DIPG presentation [41].

5.1 Epigenetic aberrations

Epigenetic aberrations identified in DIPG involve both his-
tone H3 mutations and polycomb repressive complex (PRC)
abnormalities.

5.1.1 H3 mutations

Histone protein help in packaging DNA as a chain of nucleo-
some. Each nucleosome composed of 147 base pair (bp) wrap-
ping around 2 copies of histones [H2A, H2B, H3, and H4] [42,
43]. Both lysine (K) and arginine (R) residues are the N-terminal
end of histones. These terminals are transcriptionallymodified by
acetylation or methylation and play a role in DNA regulation,
replication, and transcription. The histoneH3 family is composed
of functionally and structurally related proteins (H3.1, H3.2, and
H3.3) encoded by different genes. Both the H3F3A and H3F3B
genes encode the H3.3 protein, while H3.1 protein is encoded by
multiple genes including the HIST1H3B gene. H3K27M muta-
tion results in a lysine-to-methionine substitution at K27 and has
been reported in greater than 80% of DIPG patients. This mis-
sense mutation is mostly related to the H3.3 protein (H3F3A
gene) and to a lesser extent the H3.1 protein (HIST1H3B and
HIST1H3C genes) [44]. Both H3.1 and H3.3 tumor mutations
behave deferentially regarding location, aggressiveness, overall
survival, and the response to radiotherapy (RTH) treatment [45].
G34R/V mutations represent another small proportion of H3.3
mutations (H3F3A gene). It involves a substitution of glycine (G)

Table 1 Summary of genetic, epigenetic and immune check abnormalities in DIPG with their pathways and main drivers

Abnormality classification Pathway Main driver References

1-Epigenetic Aberrations H3 mutation H3K27M mutation
G3R/V mutation

[45]
[39]

Polycomb Repressive Complex (PRC) PRC1 downregulation [47]

2-Gene Aberrations

I-Cellular Proliferation
pathway aberrations

ACVR1 ACVR1 somatic mutation [48-50,52]

Receptor Tyrosine Kinase Pathways PDGFA amplification and PDGFR alpha overexpression
EGFR mutation and amplification

[54]
[55,60]

MYC-N abnormalities MYC-N amplification [2,38,63]

II-Cell Cycle Regulation
Pathways aberrations

The P53 pathway TP53 mutation
PPM1D mutation

[38,64-65]

The RB pathway Cdk2A and CDK2B Deletions Cdk4, cdk6 and cyclin D1
amplification

[60,69,70]

The Aurora Kinase signaling pathway AURB overexpression [74]

The WEE1 kinase pathway WEE1 overexpression [76-78]

Poly (ADP-ribose) polymerase
(PARP)-1 overexpression

PARP1 overexpression [80]

3-Immune Check
Abnormalities

B7-H3 as a part of B7-CD28 family B7-H3 overexpression [83]
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34with arginine (R) or valine (V) [39]. Additionally, the H3K27I
mutation is a novelH3F3A genemutation that results in lysine 27
to isoleucine substitution. Furthermore, mutations in chromatin-
modifying enzymes have been reported in DIPG. Both the
H3K27M and G34R/V mutations are associated with other mu-
tations in DIPG, e.g., TP53, ATRX (alpha thalassemia/mental
retardation syndrome X-linked), and PDGFRA mutations [38,
39, 46].

5.1.2 Polycomb Repressive Complex

The polycomb repressive complex is another relevant group
of proteins (PRC1 and PRC2) in the context of DIPG that
remodel chromatin and enable epigenetic gene silencing.
High expression of B cell–specific Moloney murine leukemia
virus integration site 1 (BMI-1) as a component of PRC1 has
been detected in DIPG [47].

5.2 Gene aberrations

This includes aberrations in both cellular proliferation path-
ways and cell cycle regulation pathways.

5.2.1 Cellular Proliferation Pathways aberrations

ACVR1 somatic mutations The ACVR1 or ALK2 gene encodes
activin receptor type 1A, also known as the bone morphogenetic
protein (BMP) type 1 receptor. It belongs to transforming growth
factor beta (TGF-β) signalling family. Activation of ACVR1 by
binding to its ligand activates SMAD transcription factor.
Receptor-activated SMADs activates subsequently growth-
promoting genes. Six somatic ACVR1 mutations have been de-
tected in 21–25% of DIPG patients, while germline ACVR1
mutation leads to the congenital malformation syndrome
fibrodysplasia ossificans progressive (FOP). Both mutations af-
fect the same residues (R206H,Q207E, R258G,G328E,G328V,
G328W, and G356D) [48–50]. ACVR1 tumor mutations upreg-
ulate expression of BMP1-TGF-β signalling pathway targets,
e.g., members of the ID gene family [51]. Recently, cooperation
between both ACVR1 (R206H) and H3.1K27M mutations in
promoting DIPG tumorigenesis has been reported [52]. Also,
development of ACVR1 or ALK2 inhibitors with better potency
and selectivity in addition to valuable pharmacokinetic profile
in vitro and in vivo has been reported to help as a targeted therapy
for DIPG patients [44].

Receptor tyrosine kinase pathways There are 58 receptor tyro-
sine kinase (RTK) genes in humans categorized into 20 subfam-
ilies. RTKs are transmembrane protein receptors that are activat-
ed upon ligand binding followed by signal transduction to nucle-
us then protein transcription. These signalling pathways play
critical role in cell proliferation, differentiation, and survival
[53]. Recurrent amplification of platelet-derived growth factor

subunit A (PDGFA) protein and platelet-derived growth factor
receptor (PDGFR) alpha overexpression have been identified by
molecular profiling of DIPG samples [54]. Also, somatic-
activating mutations have been reported in DIPG samples that
include missense mutations, in-frame deletions, and insertions
[55, 56]. Also, these PDGR oncogenic mutations have been
observed with concurrent amplification in DIPG [56]. PDGFR
alpha is expressed by precursor cells that are derived from PCC,
the DIPG cell of origin. In many DIPG model systems, PDGF
signalling pathway is a potent driver of brainstem gliomagenesis
and a potential therapeutic target. Two small molecule inhibitors
targeting PDGFRA (imatinib and dasatinib) have been evaluated
in phase I clinical trials for pediatric DIPG patients but both trials
did not show significant prolonged survival [57–59]. Epidermal
growth factor receptor (EGFR) aberrations have also been detect-
ed in DIPG samples, either as an immune positivity in 27% of
patients [54] or as a gene amplification in 7–9% of patients [60].

The MYC-N pathway The MYC-N protein is a proto-oncogene
encoded by theMYC-N gene. It is involved in both cell prolifer-
ation and differentiation [61]. MYC-N protein amplification has
been reported in DIPG samples along with genetic, epigenetic,
and histological aberrations [2, 38, 62]. This amplification plays
an important role as a transcriptional regulator on the epigenetic
landscape causing upregulation of gene expression. TheMYC-N
proto-oncogene pathway can be activated through H3 mutations
[38, 46, 63] and independent of them [2].

5.2.2 Cell cycle regulation pathways

The TP53 pathway The TP53 pathway is composed of a net-
work of genes that play a critical role in the cellular homeostasis
as they respond to internal and external stress signals. The stress
signals of this network activate p53 protein leading to pro-
grammed cell death or apoptosis. TP53 gene mutation is com-
mon in numerous types of cancer [46]. In DIPG, the incidence of
TP53 genemutation is between 9 and 77% [38, 64]. This showed
up in glioma grade III and IV tumors, while grade II DIPG
samples and those carrying wild-type TP53 represent 50% of
DIPG cases and are characterized with the presence of PPM1D
oncogenic mutation. This oncogene codes for the wild-type p53-
induced phosphatase 1D (WIP1) that inactivates p53 protein
[65]. In brief, both TP53 and PPM1D mutations lead to the
abnormal function of TP53 pathway in the tumorigenesis of
DIPG. Many small molecule compounds are under investiga-
tions in clinical trials [66, 67].

The RB pathway The Rb protein plays a critical role in the
negative control of the cell cycle machinery as well as in tumor
progression. The cell cycle machinery is controlled by cyclins
and cyclin-dependent kinases (cyclin/cdks) proteins [68]. In
DIPG, abnormalities in cyclins/CDKs involved in the Rb path-
way that regulate the G1/S transition of the cell cycle have been
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identified. These abnormalities include deletions of bothCDK2A
and CDK2B and amplifications of CDK4, CDK6, and CCND1
(encodes cyclin D1) [60, 69, 70]. Cdk4/6 inhibition was recently
recognized as a therapeutic target. Many cdk4/6 inhibitors, e.g.,
abemaciclib, ribociclib, and palbociclib, have entered clinical
trials for the treatment of DIPG patients [71].

The Aurora kinase signalling pathway Aurora kinase is a
serine/threonine kinase complex composed of the three ki-
nases: AURKA, AURKB, and AURKC. They are responsible
for regulation of mitosis phase in the cell cycle machinery.
Recently, their role in many types of cancer has been discov-
ered and many Aurora kinase inhibitors have been investigat-
ed in several clinical trials [72, 73]. Overexpression of
AURKB has been detected in 70% of DIPG samples.
Consequently, it can be a potential therapeutic target for
DIPG patients [74].

The WEE1 kinase pathwayWEE1 kinase regulates both the
G2 checkpoint of the cell cycle as well as irradiation-
induced DNA damage repair immediately preceding mi-
totic entry [75]. Overexpression of WEE1 protein has
been detected in DIPG samples [76]. In a preclinical
study, AZD1775, a selective WEE1 inhibitor, showed
promising results in DIPG cell culture and murine models
when combined with chemotherapy [76–78]. The safety
and efficacy of AZD1775 (also known as adavosertib) in
combination with RTH for the treatment DIPG patients
are under investigation in a phase I clinical trial
(NCT01922076).

Poly (ADP-ribose) polymerase (PARP)-1 overexpression
PARP1/2 are nuclear proteins responsible for activating
DNA repair proteins that facilitate apoptosis evasion
[79]. Overexpression of PARP1 has been detected in
DIPG samples. This overexpression facilitates repair of
DNA damage post-RTH or temozolomide treatment lead-
ing to resistance [80]. In phase I and II trials, combination
of veliparib/ABT-888 (PARP1/2 inhibitor), RTH, and tem-
ozolomide in DIPG patients was well-tolerated but did not
show benefit compared with previous studies [81, 82].

5.3 Immune checkpoint abnormalities

B7-H3 (CD276) is a type I transmembrane glycoprotein
and is a part of B7-CD28 family. B7-H3 overexpression
has been detected in DIPG samples [83]. It is recognized
by monoclonal antibody 8H9 with high selectivity to
neuroepithelial tumors only. This selectivity along with
its safety and efficacy resulted in the use of intrathecal
131I-8H9 as a salvage therapy in stage IV neuroblastoma
[84]. Recently, B7-H3 CAR T therapy showed its role as a
therapeutic option in many relapsed and refractory

pediatric malignancies and it can be tried in DIPG patients
[85, 86].

6 Treatment strategies

Early retrospective studies showed similar outcome of treating
whole brain radiation or more limited approach in pediatric
brainstem glioma [87, 88]. Therefore, the standard of care for
children with DIPG remains along the last 40 years, focal
external beam RTH. It is well proven that RTH increases the
overall survival by around 3–6 months; as without RTH the
overall survival is only 5 months [29]. Conformal radiation is
most commonly delivered up to a dose of 54 Gy in 1.8-Gy
daily fractions over 6 weeks. The timing of RTH was investi-
gated in 95 DIPG patients treated at St. Jude Children’s
ResearchHospital, with or without chemotherapy. They found
that time to start RTH as a continuous variable did not affect
overall survival (OS) or event-free survival (EFS). The dichot-
omization of time at 14 days in the same cohort showed poorer
outcomes for those starting treatment earlier (HR = 1.7 (95%
CI 1.11–2.59, p = 0.014)). This has to be interpreted with
caution as this better survival is probably due to the slower
tumor proliferating capability of the patients treated later [89].

In the early 1990s, the Children’s Cancer Group (CCG) and
Pediatric Oncology Group (POG) tested hyper-fractionated
RTH in DIPG at 78 and 75.6 Gy, respectively. Both demon-
strated no benefit over conventional RTH at 54 Gy [90, 91].
Delineating the gross target volume (GTV) is usually per-
formed after fusion and registration of the CT simulation with
T2w or Flair MR studies safety margin of 1.0–1.5 cm to GTV
after adjusting for bony structures and tentorium. Larger vol-
ume did not lead to better outcome. More recently, Zaghloul
et al. randomized 71 DIPG patients to 39 Gy in 13 fractions
(2.6 weeks) vs the conventional RTH of 54 Gy in 30 fractions
(6 weeks). The hazard ratio for OS was 1.14 (95% CI 0.70–
1.89, p = 0.59). The 18-month OS was 10.9 (95% CI 5.1–
16.7%) for the hypofractionated arm and 13.1 (95% CI 7.1–
19.1%) for the conventional RTH arm. The OS for the
hypofractionated arm was non-inferior to that of the conven-
tional arm. The same group underwent a larger randomized
controlled study (NCT01878266) including 245 children.
They used 2 hypofractionated regimens: 39 Gy in 13 fractions
and 45 Gy in 15 fractions compared with the conventional
54 Gy in 30 fractions. This study confirmed their previous
study results of non-inferiority of both hypofractionated regi-
mens. More importantly, there was no difference in RTH-
related side effects between arms in the 2 randomized studies.
The authors concluded that hypofractionated RTH has an ad-
vantage over conventional RTH of decreasing the burden on
the child, his family, and the health care provider reducing the
overall treatment time with similar effect on survival without
any additional immediate or late side effects [92].
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6.1 Re-irradiation

The concept of re-irradiation (reRT) at first DIPG progression
has been emerged as a novel intervention with the potential to
improve clinical course and survival in pediatric brain tumors
[93]. Re-irradiation in DIPG may be justified and medically
accepted, as local relapse is extremely high, the clinical end
results are very poor, the prolonged survival is rare for late
side effects to manifest, and the symptoms upon relapse are
intense. The application of reRT to the DIPG is increasing,
with all most studies reporting long follow-up periods showed
good symptomatic response and minimal risk of serious tox-
icity when reRT is administered appropriately in well-selected
patients. The late toxicity ranged between 2 and 4% [94].

7 Combination chemotherapy

The role of chemotherapy has been extensively studied in
DIPG. Specifically, the use of chemotherapy as a
radiosensitizer, neoadjuvant prior to radiation therapy, or ad-
juvant following radiation therapy, was generally tolerated but
had no added benefit. In a phase III trial, the CCSG random-
ized 74 brainstem tumors patients between 1977 and 1980, to
either RTH alone (50–60 Gy) or RTH followed by PCV (pred-
nisone, lomustine, and vincristine). The 5-year OS rate
achieved was 17% vs 23% (p = 0.56), respectively. The 5-
year progression-free survival was 17% for both arms. This
trial predated the use of MRIs in the diagnosis and follow-up
of brainstem gliomas, so one could not exclude the inclusion
of focal tumors having better prognosis. Notably, the authors
reported an increased risk of infection in the PCVarm (16/37
vs 5/30) [95].

Pre-irradiation chemotherapy was also studied in the
1990s. CCG-9941 randomized participants to either
carboplatin, etoposide, and vincristine (n = 32) or cisplatin,
etoposide, cyclophosphamide, and vincristine (n = 31). Both
arms then proceeded to receive hyperfractionated RTH of 72
Gy. There was no difference in EFS, OS, or response rate
between the two regimens (p > 0.05) despite the greater che-
motherapeutic intensity of the second arm. The 1-year EFS
was 17% (95% CI 7.2–26.8%). Interestingly, based on the
Goldie-Coldman hypothesis which implied that large tumor
volume would predict resistance to therapy and hence surviv-
al, the authors reported that this seems to not apply to gliomas
intrinsic to the brainstem according to their trial, although this
data was not shown and the trial was not powered for such a
hypothesis [96]. Allen et al. measured the cumulative maxi-
mum tolerated dose (MTD) for carboplatin when given with
RTH (72 Gy) for DIPG patients in a phase I/II trial, which was
1540 mg/m2; they also reported a median OS of 12 months,
although the trial was not designed to measure such an

outcome. This figure, however, was still “typical” of other
experiences [97].

In a multicenter Brazilian trial, the BGCG group used ta-
moxifen 200 mg/m2 alongside conventional RTH (median
dose 52 Gy) and then for 52 weeks after RTH. Eleven DIPG
cases out of 22 had an objective radiologic response, and only
3 completed the entire protocol without progression or signif-
icant toxicity. One-year OS was 37% and the median survival
was, again, 10.3 months. The group recommended testing
alternative treatments [98].

In 2004, COG enrolled high-grade glioma (HGG) patients,
including 63 DIPG cases, in a phase II study entailed RTH plus
temozolomide (TMZ) (90 mg/m2/day for 42 days), and then
maintenance with TMZ (10 cycles of 200 mg/m2/day for 5 days,
every 28 days) (ACNS0126). Temozolomide is an alkylating
agent, especially effective in O6-methylguanine DNA methyl-
transferase (MGMT) promoter methylated tumors that are prov-
en to be sensitive to the drug and show a prolonged survival
compared with MGMT-unmethylated HGGs. The comparison
of TMZ vs other chemotherapeutic agents in CCG-9941 did
not show any benefit (p = 0.96) with median time to progression
and death of 6.1 and 9.6 months, respectively [99]. This result
was also confirmed in a single-arm trial (CNS 2007/4 from the
UK) which studied the effect of concurrent and adjuvant TMZ in
43 cases, resulting in a median survival of 9.5 months (95% CI
7.5–11.4). Interestingly, there were five 2-year survivors with an
age range between 9 and 16,which is older than the typical DIPG
patient. It has been previously shown that patients < 3 years old
might have better prognosis due to the presence of different
oncogenic mutations. The investigators of this trial raised the
possibility of another prognostic group of older adolescents
[100]. These trials demonstrate that there is no progress whatso-
ever in the survival of DIPG patients treated with any of the
chemotherapeutic agents used in other gliomas.

7.1 Novel therapeutic approaches and ongoing trials

Different approaches to the management of pediatric DIPG have
recently been explored, but have unfortunately found to be sim-
ilarly ineffective thus far. These include intra-arterial chemother-
apy, intra-nasal chemotherapy, convection-enhanced drug deliv-
ery (CED), and targeted therapy.

CED is a surgical technique used to bypass the BBB and
increase the bioavailability of the drug, which is delivered
through a pump, directly into the tumor mass by a catheter.
The cannula is inserted via the transfrontal extraventricular ap-
proach, and the drug is delivered to the pons in one session. The
safety of drug delivery by CED into the brainstem has been
demonstrated in preclinical studies [101–103].

Directing the focus towards the delivery of specific macro-
molecules, like monoclonal antibodies, the first trial of CED in
DIPG patients started in 2012 (NCT01502917). It is an open-
label dose-escalation safety trial of 124I-8H9 alongside standard
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RTH. 8H9 is a monoclonal antibody that is specific to B7-H3
protein, which is expressed by HGG of the pons but not by
normal brain tissue.

Another phase I trial (NCT03086616) started in 2017 to re-
cruit DIPG patients after RTH, to study the efficacy of irinotecan
liposome injection (nal-IRI). The primary endpoint of this study
is the number of treatment-related adverse events, and the sec-
ondary endpoint is the 1-year OS. More recently, a trial studying
nanoparticle formulation of panobinostat MTX110, a histone
deacetylase inhibitor, via CED is underway (NCT03566199).
As discussed earlier, the availability of DIPG tissue encouraged
the identification of targeted agents. For example, the use of
HDAC inhibitors in H3K27M-mutant gliomas was studied.
These studies showed an effect of HDAC inhibitors in K27M-
mutant DIPG cell lines and mouse xenografts [104], although a
later study showed that the activity is similar in K27Mwild-type
cell lines, and almost no effect in vivo [105].

Valproic acid (VPA), another HDAC inhibitor, was retrospec-
tively studied in a single center that was administering VPA as a
prophylactic anticonvulsant. Patients receiving RTH+CTH
(carboplatin and VCR) were compared with RTH+CTH+VPA.
They reported a statistically significant advantage in median OS
and PFS for those who received VPA.Median OS was 7.8 in the
control (n = 6) vs. 13.4 months in treated patients (n = 13) (HR
0.60 (95%CI 0.37–0.98, p = 0.05)) [106]. However, considering
the small number of participants and the retrospective nature of
this study, results should be viewed skeptically.

The Pediatric Brain Tumor Consortium (PBTC) studied gefi-
tinib, an EGFR tyrosine kinase inhibitor, in 43 DIPG patients.
The 1- and 2-year OS were 56.4% (95% CI 48.8–64%) and
19.6% (95% CI 13.7–25.5%), respectively [107]. PDGFRA
and FGFR can be targeted using TKIs, such as dasatinib,
ponatinib, imatinib, pazopanib, and sunitinib. The Biological
Medicine for DIPG Eradication trial (BIOMEDE) is a phase II
trial (NCT02233049) randomizing DIPG patients to three oral
targeted therapies—erlotinib 125 mg/m2/day, everolimus 5 mg/
m2/day, and dasatinib 170 mg/m2/day—based on three bio-
markers—EGFR, PTEN, and PDGFRA.

CUDC-907 is a dual HDAC and PI3K inhibitor in relapsed
solid tumors, includingDIPG, and lymphomas (NCT02909777).
The NCI-COG Pediatric MATCH (Molecular Analysis for
Therapy Choice) Screening trial (NCT03155620) is an umbrella
trial recruiting relapsed pediatric patients to different targeted
treatments, including, for example, LY3023414, a PI3K/mTOR
pathway inhibitor, in PI3K-activating tumors (NCT03213678).
Finally, to date, there is no effective treatment for DIPG.

8 International collaboration

An invaluable collaboration was accomplished upon establish-
ment of the International Diffuse Intrinsic Pontine Glioma
Registry (IDIPGR) in April 2012. This research infrastructure

registry collects demographics, clinical, imaging, pathological,
and molecular data from many DIPG patients located in many
countries: Canada, the USA, New Zealand, Australia, and many
other countries including Egypt. According to a recent report,
this registry recruited more than 1006 DIPG patients [108]. In
addition, this enabled many interested centers in DIPG research
to work closely for better outcome, and it is translated in the 9
projects initiated by 13 principal investigators using IDIPGR.
Now, it is considered a central resource for many families, on-
cology clinicians, and patients in many DIPG aspects including
literature review, clinical trials, and consultations, in addition to
educational materials. It has a future plan to expand collaboration
to others around the world and improve awareness about DIPG
among medical staff and families through education. In addition,
it may act as a good platform formulti-institutional DIPG clinical
trials. This not only represents pronounced progress in DIPG
registry but also jumps in DIPG understanding.

The European Society for Pediatric Oncology (SIOPE)
DIPG Network is another example of collaborative effort to
develop registry and imaging repository in DIPG [109]. It was
established as a part of SIOPE Brain Tumour Group. SIOPE
DIPG Network and registry includes 27 countries.
Fortunately, SIOPE DIPG Network and registry works in
close collaboration with IDIPGR to advance DIPG research
outcome [109, 110].

A recent systematic review about registered clinical trials
on ClinicalTrials.gov on DIPG as a primary investigation is
recently published [111]. Out of 95 registered DIPG clinical
trials, there are 13 trials coordinated between multicenter-
based USA and sponsored by the US NCI. The USA ranks
the highest in number (67 trials) as a contributing country.
Outside the USA, there are three clinical trials coordinated
by the Children’s Cancer and Leukaemia Group (UK). Also,
they reported 49 trials that involve a single center. The rarity
and lethality of DIPG disease mandate collaboration in differ-
ent aspects (basic and clinical) to yield a transnational impact
touched in practice in near future.
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