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Abstract
Cancer-initiating cells (CIC) are the driving force in tumor progression. There is strong evidence that CIC fulfill this task via
exosomes (TEX), which modulate and reprogram stroma, nontransformed cells, and non-CIC. Characterization of CIC, besides
others, builds on expression of CIC markers, many of which are known as metastasis-associated molecules. We here discuss that
the linkage between CIC/CIC-TEX and metastasis-associated molecules is not fortuitously, but relies on the contribution of these
markers to TEX biogenesis including loading and TEX target interactions. In addition, CIC markers contribute to TEX binding-
and uptake-promoted activation of signaling cascades, transcription initiation, and translational control. Our point of view will be
outlined for pancreas and colon CIC highly expressing CD44v6, Tspan8, EPCAM, claudin7, and LGR5, which distinctly but
coordinately contribute to tumor progression. Despite overwhelming progress in unraveling the metastatic cascade and the
multiple tasks taken over by CIC-TEX, there remains a considerable gap in linking CIC biomarkers, TEX, and TEX-initiated
target modulation with metastasis. We will try to outline possible bridges, which could allow depicting pathways for new and
expectedly powerful therapeutic interference with tumor progression.
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1 Introduction

1.1 Historic overview on stem cells, metastasis
markers, and exosomes in metastasis

In the late 1980, the first reports described metastasis-
associated molecules [1–3]. To name a few, integrin
α6β4 exits hemidesmosomes during carcinoma progres-
sion, facilitating tumor progression by cooperating with
and amplifying signaling via the growth factor receptors

EGFR, ERBB2, cMET, and others. It contributes to inva-
sion by affecting promoter DNA demethylation of
metastasis-associated S100A4 and autotaxin and
upregulation/activation of NFAT1 and NFκB1, tumor-
promoting transcription factors (TF) [4]. The metastasis-
promoting activity of CD44v6 was first described in 1991
[5]. Overexpression of MTA11, noted in 1994 [6], is an
important component of NURD1 acting as corepressor
and coactivator of many genes including p53 and c-myc
[7, 8]. Other metastasis-promoting surface markers were
identified by proteome analysis [9, 10]. Importantly,
metastasis-associated markers are not oncogenes, but mol-
ecules expressed in nontransformed cells, possibly upreg-
ulated during activation processes. This culminated in an
early review outlining metastasis and tumorigenesis being
two independent events [11].

About a decade formerly, the discussion on cancer stem
cells started, pushed by the availability of hematopoietic stem
cells (SC) [12] and the translation toward leukemia SC [13].
Cancer stem cells/cancer-initiating cells (CIC) were first de-
fined by the capacity of human cancer cells to grow in xeno-
geneic, immunocompromised mice [14, 15]. Additional

1 Full names of proteins and genes are listed in Table S1.
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features like EMT (epithelial–mesenchymal transition), still
disputed to be required [16], and the so-called CIC markers
soon came into play, the latter largely overlapping with
metastasis-associated markers [17–19].

Independently, the slowly starting story on exosomes
(Exo) turned from a wastebasket [20, 21] into a magic
bullet, with tumor exosomes (TEX) and CIC-TEX being
suggested to affect non-CIC, endothelial, and hematopoi-
etic cells as well as host and tumor stroma, supporting
tumor growth and angiogenesis, deviating immune reactiv-
ity, and contributing in assembling a niche for migrating
tumor cell settlement [22–27].

With excellent reviews on all these topics, we will in-
troduce CIC markers, EMT-related TF, noncoding
(nc)RNA, and TEX in pancreas and colorectal cancer to
discuss the connection between these components sug-
gested to be the essential cues.

1.2 Colorectal and pancreatic cancer

Colorectal cancer (CoCa), the third most common cancer,
shows a slight tendency toward decrease [28, 29]. The
mortality rate varies greatly depending on the disease
stage. Over 90% of stage I patients have a survival rate
of > 5 years, which drops to 10–20% in patients with me-
tastases and to 25–50%, if metastases are resectable. The
incidence of metastasis at diagnosis is in the range of 10%,
but 50% of patients with a resectable CoCa at diagnosis
develop metastasis after resection [29–31].

Pancreatic cancer (PaCa), the fourth leading cause of
cancer-related death in Western countries, is the most lethal
cancer with an overall 5-year survival of approximately 5%
[28, 31, 32]. Surgery is the only curative treatment option, but
80% of patients are inoperable at diagnosis, and due to local
recurrence and metastatic spread, the survival rate does not
exceed 15–20% even after resection [33]. This is particularly
alarming, and the incidence of pancreatic ductal adenocarci-
noma, the most frequent subtype [33], steeply increasing, is
expected to become the second leading cause of cancer-related
death after lung cancer by 2030 [34]. The high mortality, due
to early spread and radio- and chemotherapy resistance [35], is
provoked by the small population of CIC [36].

1.3 Cancer-initiating cells

Development of a tumor is a stepwise process, where multiple
genetic and epigenetic alterations, like aberrant DNA methyl-
ation, histone modification, and altered ncRNA expression
[37], are culminating to reach unlimited growth and invasion.
This accounts also for CoCa and PaCa [38, 39]. However,
metastases require additional alterations, which mostly are
restricted to CIC [40, 41]. CIC characterization and sharing

with embryonic and adult stem cells (ESC, ASC) will be
briefly introduced.

Stem cells are a rare population of cells with self-renewal
and differentiation capacity. SC are defined as omnipotent,
pluripotent, and multipotent. The zygote and early blasto-
meres are totipotent as they form all tissue from the embryo
and the supportive extraembryonic tissue. ESC (inner mass of
the blastocyst) are pluripotent generating the ectoderm, meso-
derm, and endoderm of the developing embryo, but not the
placenta. Multipotent, tissue-restricted ASC generate the cell
types according to their tissue location [42, 43]. Notably, so-
matic cell nuclear transfer proved the nuclear equivalence
throughout development, with a sheep being the first mamma-
lian to demonstrate [44]. Soon thereafter, it was shown that TF
play central roles in specifying cell fate [45, 46].

The pancreas develops from the junction of the foregut and
midgut from dorsal and ventral pancreatic buds [47], the cells
representing early multipotent progenitors, which form all lin-
eages—acinar, ductal, and endocrine—of the pancreas [48].
They express and are critically dependent on PDX11.
However, studies to establish PDX1 expressing pancreatic
SC and particularly insulin-secreting cells from pluripotent
ESC or human-induced (hi)PSC failed or were of very low
efficiency and burdened by occasional development of terato-
ma [49], which led less than 4 years ago to the notion “pan-
creatic stem cell remain unresolved” [50]. The problem re-
cently was sorted out based on increasing technological prog-
ress combining clonal tracing and whole-mount reconstruc-
tion [51]. The authors describe that self-renewing precursors
at the termini of growing ducts drive ductal bifurcation, while
multipotent precursors become fate restricted giving rise to
acinar-committed precursors as well as ductal progenitors
and endocrine cells providing an answer to large-scale pattern-
ing of pancreatic subcompartments [52]. This outstanding
work offers a solid base for progress in the therapy of diabetes
mellitus and for defining PaCIC.

The intestine contains two stem cell populations (ISC).
ISC at the bottom of the crypt can divide rapidly giving rise
to transit amplifying cells, which move to the inner surface
of the crypt and differentiate into epithelial cells. These
ISC are called active (A)-ISC. There is a second low cy-
cling population (+4 cells), also called quiescent (Q)-ISC
located above the Paneth cells. Q-ISC can replace A-ISC
upon loss. More recently, it was suggested that the +4 cells
are nondividing precursors of secretory cells that can de-
differentiate to replace damaged ISC [53]. The main
markers of A-ISC are LGPCR 51, PHLDA11, ASCL21,
OLFM41, and SOX91; the main markers of Q-ISC are
BMI11, LRIG11, TERT1, DCLK11, MSI11, and HOPX1

(rev. in [54]). ISC reside in a niche composed of surround-
ing tissue cells including Paneth cells, which are essential
for ISC expansion. They secrete large amounts of EGF1,
WNT31, and DLL41 providing the essential components
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for LGR5+ ISC (rev. in [55]). Concerning about TF and
signaling in ISC [56], the Wnt pathway is essential for
crypt formation and renewal [57, 58]. RSPO1 binds
LGR51 and homologs and enhances Wnt signaling [59,
60].

There is compelling evidence that hematopoietic and solid
organ–derived malignancies also contain a small population
of CIC. Originally discussed to derive from ASC, CIC are
now considered to evolve independently [61–63].

CIC have the capacity of self-renewal and differentia-
tion [64, 65]. They are characterized by rare division
[66–68], longevity [69, 70], drug and radiation resistance
[71–74], and migratory activity [75–77]. Upon serial trans-
plantation of human CIC in xenogeneic, immunocompro-
mised hosts, outgrowing tumors resemble the original het-
erogeneous population [78, 79]. CIC were first identified
by Lapidot and Dick in human AML (acute myeloid leu-
kemia) as a CD34+CD38− subpopulation [80]. Al-Hajj
et al. identified a tumorigenicity of CD44+/CD24
−/±/lineage− breast cancer cells as [81]. Meanwhile, CIC
were identified in solid tumors of epithelial and mesenchy-
mal origin of most organs (rev. in [15]). Besides, by serial
transplantation [82], CIC are defined as side population by
Hoechst 33342 exclusion [83], by the capacity of spheroid
growth in serum-free medium [84], and by altered metab-
ol ism. CIC display high ALDH1, predominantly
ALDH1A1 and ALDH3A1, that contributes to metabolic
reprogramming by oxidizing absorbed vitamin A to RA1

acting as cotranscription factor for RARB1 in the nucleus,
c-Myc1, CCND11, and others, which affects various CIC
properties (rev. in [70, 85–87]). Finally, CIC are enriched
by flow cytometry according to CIC marker expression
(rev. in [88, 89]).

With great hope being given to CIC marker-based therapy
[90, 91], we proceed with an overview on prominent PaCIC
and CoCIC markers.

2 Function-relevant PaCIC and CoCIC
components

CIC are suggested accounting for metastatic spread. The com-
ponents that may be of major importance are CIC/metastasis
markers, ncRNA, particularly mi (micro)RNA and long-nc
(lnc)RNA, EMT-related TF, and Exo that help transfer the
CIC message. CIC sharing many markers and features with
ESC and ASC can pose a problem on their elimination but is
helpful in unraveling their mode of action.

2.1 Stem cell markers

CIC markers, different to oncogenes, are expressed in
nontransformed cells. The most relevant PaCIC and CoCIC

markers are EPCAM1, mediating homotypic adhesion [92],
CD44s/CD44v6 (CD44 standard/CD44 variant 6 isoform)
[93], and CD1661, which belongs to the Ig superfamily and
displays homotypic and heterotypic binding to CD6. Its func-
tion in CIC may rely on coexpression with LGR5, MSI1, and
DCLK1, the cells being suggested to provide a kind of reser-
voir to shift from homeostasis to induced SC [94]. EPHB21

[95], cMET1 [96], and CXCR41 [97] also are considered as
CIC markers in gastrointestinal cancer (rev. in [98, 99]). We
briefly describe CD133 and LGR5 and, in some detail,
CD44v6, Tspan8 (tetraspanin 8), EPCAM, and claudin7.

CD133 is a 5-transmembrane molecule [100] whose ex-
pression is enhanced by intracellular binding molecules
HDAC61 and PTPRK1 [101, 102]. CD133 is confined to pro-
truding membrane subdomains, where it interacts with
cholesterol-based lipid rafts [103]. It is supposed to be en-
gaged in cell polarity and to be integrated in cell–cell and
cell–extracellular matrix (ECM) interactions [104]. By its in-
tegration in microdomains harboring signal transduction mol-
ecules, it becomes engaged in signaling cascades [105].
Finally, it is recovered in extracellular vesicles, originally
called prominosomes that contribute to intercellular commu-
nication [106] (Fig. 1a).

LGR51 [107] is expressed in ASC, best explored for ISC,
where it promotes Wnt signaling through binding to its ligand
RSPO [108]. In the absence of Wnt, a complex is formed
between FZD1, LRP5/61, and RNF431, an E3 ubiquitin ligase,
which promotes FZD ubiquitination and degradation. Upon
RSPO binding to LGR4/5, RNF43 becomes phosphorylated
and sequestered, and a more stable complex between RSPO,
LRP5/6, and Wnt-FZD is established that promotes liberation
of CTNNB11and β-catenin-LEF/TCF1 induction of Wnt
genes (rev. in [109]). With LGR5 being recovered in CIC of
many malignancies, it became tempting to speculate that
elimination of LGR5 may suffice for tumor eradication.
Though local tumor growth was only transiently retarded,
metastatic growth could be inhibited. The only transient
retardation of local growth is due to the plasticity of CIC,
where differentiated cells can revert to LGR5+ CIC [110,
111]. Proving the essential role of LGR5 in tumor
progression, the findings also stress SC plasticity (Fig. 1b).

2.1.1 CD44/CD44v6

The type I transmembrane glycoprotein CD44 varies in
size due to N- and O-glycosylation and insertion of alter-
natively spliced exon products [112–114]. The standard
isoform (CD44s) has seven extracellular domains, a trans-
membrane, and a cytoplasmic domain. By alternative
splicing between exons 5 and 6, different combinations
of 1–10 variant exon products are inserted (CD44v)
[114]. CD44 belongs to the cartilage link protein family,
conserved cysteines stabilizing the globular structure and
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two cysteines in the flanking region accounting for link
domain folding [115]. The globular domain is followed
by the heavily glycosylated stalk-like region, containing
putative proteolytic cleavage sites and variable exon prod-
ucts [116–118]. The transmembrane region supports olig-
omerization and glycolipid-enriched membrane domain re-
cruitment (GEM), important for interactions with extracel-
lular ligands and other transmembrane and cytoplasmic
molecule associations [119]. The cytoplasmic tail binds
to cytoskeletal proteins [120, 121]. Wide CD44s expres-
sion differs from CD44v expression only in epithelial and
hematopoietic cell subpopulations and frequent upregula-
tion in CIC [122].

CD44 has multiple ligands. The link domain binds colla-
gen, LN1, FN1, and E- and L-selectin [123, 124]. A basic
motif outside the link domain binds to HA1, with CD44 being
the major HA receptor [125] and having two additional gly-
cosaminoglycans (GAG) binding sites [126, 127]. Post-
translational CD44v modifications support growth factor
(GF) binding: CD44v6 binding HGF1, VEGF1, and OPN1

[128–130], thereby CD44v promotes RTK (receptor tyrosine

kinase) and GPCR activation [131]. The cytoplasmic tail
binds ankyrin, ezrin, radixin, moesin (ERM) cytoskeletal link-
er proteins [121, 132]. HA-dependent adhesion and motility is
aided by ankyrin contacting spectrin [121]. The activated
ERM proteins N-terminus binds CD44 and the C-terminus
F-actin, regulating migration, cell shape, and protein resorting
[132–134]. Cytoskeletal linker protein binding contributes to
expand CD44-mediated downstream signaling pathway acti-
vation [121, 133].

The lateral associations with distinct proteins are central to
understanding the multitude of CD44/CD44v activities.
cMET activation through CD44v6 HGF binding requires the
interaction of the CD44 cytoplasmic tail with ERM proteins
for Ras–MAPK1 pathway activation [135]. CD44v6–ECM
binding also promotes cMET transcription [136]. Similar ob-
servations account for CD44v6 cross-linking–induced activa-
tion of IGF1R1 and PDGFR1 [137]. CD44 also associates with
the GPCR CXCR4 [138], ABC1 transporters [139], additional
antiapoptotic proteins [140, 141], and membrane-bound
MMP141 and HYAL21 [142]. Upon GEM recruitment,
CD44v6 associates with Tspan8. By the LRP6 association,
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Fig. 1 CIC markers in pancreatic and colorectal cancer. a–h Schematic
presentation of the most prominent CIC markers CD133, LGR5,
CD44/CD44v6, Tspan8, a6b1/a6b4, claudin7, EPCAM, and CD24 in

PaCa and CoCa including some of the ligands and signaling pathways.
Arrows indicate associations between the distinct CIC markers. Full
names of protein symbols are listed in Table S1
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CD44 contributes to EMT-related transcription factor Wnt
signaling pathway activation [143]. The engagement in non-
RTK pathways proceeds via activated RTK, GPCR, and cyto-
skeletal linker proteins or directly via GEM-recruited CD44v
[144–146] (Fig. 1c).

We will discuss in detail how CD44 ligand binding and
lateral associations contribute to CIC maintenance, apoptosis
resistance, EMT, and the metastatic cascade.

2.1.2 Tetraspanins

Tetraspanins, 4-transmembrane proteins, have a small and a
large extracellular loop [147]. The latter is engaged in dimer-
ization and association with nontetraspanin partners, promi-
nently integrins and proteases [148, 149]. Tetraspanins also
bind cytoskeleton and cytosolic signal transduction molecules
[150–152]. Tetraspanins form TEM-located (tetraspanin and
glycolipid-enriched microdomains) webs, which are prone for
in te rna l iza t ion . Palmi toyla t ion of in t race l lu la r,
juxtamembrane cysteines supports tetraspanin web formation,
protects from lysosomal degradation, and links tetraspanins to
cholesterol and gangliosides. Importantly, after fission and
scission, the tetraspanin webs are maintained during intracel-
lular vesicle trafficking and are recovered after excretion in
exosomes [153–156] (Fig. 1d,e).

Tspan8 is upregulated in ovarian, hepatocellular, and
gastric cancer; malignant melanoma; and glioma
[157–161] and is enriched in CoCIC and PaCIC
[162–164]. Tspan8 promotes migration, invasion, and tu-
mor progression [162–165], which relies in part on integrin
recruitment, accompanied by integrin activation and initi-
ation of downstream signaling [166, 167] and the cooper-
ation with proteases [158, 167–169]. By associating with
CD44v6, cMET and additional RTK become recruited
[167, 170]. Finally, Tspan8 is engaged in the crosstalk with
the tumor surrounding and the tissue in premetastatic
niches [156] and promotes endothelial cell (EC) progenitor
maturation and activation [171, 172]. These activities are a
sequel of the Tspan8 engagement in Exo biogenesis and
binding [156, 173].

In brief, the CIC marker Tspan8 contributes to tumor
progression by arranging and clustering integrins and
RTK, facilitating downstream signaling induction and the
interaction with the surrounding. This accounts for CIC as
well as CIC-TEX.

2.1.3 EPCAM

The epithelial cell adhesion molecule (EPCAM), mediating
homophilic cell–cell adhesion [174], is overexpressed in
many epithelial cancers, serving as a diagnostic and therapeu-
tic target [175]. Besides interfering with E-cadherin-mediated
adhesion, oncogenic and tumor progression supporting

activity of EPCAM relies on engagement in Wnt/β-catenin
signaling, on controlling motility by PRKC1 downregulation
and MMP7 upregulation [176, 177]. After nuclear transloca-
tion, the cleaved intracellular domain (ICD) acts as a
cotranscription factor for c-myc, cyclinA/E, Oct4, Nanog1,
and others [178, 179]. EPCAM expression varies at different
stages of tumor progression, with a transient downregulation
during EMT being discussed [180–182]. Nonetheless, its CIC
activity is supported by strong overexpression in metastasiz-
ing tumor cells [183] and is endorsed by its contribution to
ESC pluripotency maintenance [184, 185].

Summarizing, a cell–cell adhesion molecule, expected to
hamper metastasis, contributes to tumor progression in part by
the cleaved ICD acting as a cotranscription factor. Notably,
EPCAM can be recruited via claudin7 (cld7) into TEM, which
adds a further dimension to its multiple activities (Fig. 1f,g).

2.1.4 Claudin7

Claudin7 is a member of four-pass proteins, central com-
ponents of tight junctions (TJ) [186, 187]. A cld7-
knockout (ko) being lethal within 10 days after birth due
to intestine destruction [188, 189] might be due to a miss-
ing integrin association and a striking MMP3 upregulation
[188] or as suggested by an intestine-specific conditional
cld7ko due to enhancement of paracellular small organic
solute flux across the TJ, which includes a major bacterial
product initiating colonic inflammation [189]. The latter
argues for loss of TJ-integrated cld7 accounting for lethal-
ity, and the former could also rely on non-TJ–integrated
cld7. There are two modes for cld7 recovery outside of
TJ [190, 191]. First, TJ are continuously remodeled.
Claudins are PRKA and C and MLCK1 targets and cld
phosphorylation prohibits TJ integration, with dysregula-
tion of TJ being accompanied by loss of epithelial cell
polarization and barrier function causing cell death and
inflammation [192–194]. Internalized, TJ-excluded cld
are recruited into Exo [195]. Cld7 also can become
palmitoylated, a prerequisite for partitioning into TEM
[196, 197], an important item in Exo biogenesis [198].
Palmitoylated, TEM-located cld7 associates with EPCAM
and Tspan8 (Fig. 1f). Thus, cld7 is recovered in two dis-
tinct Exo populations, derived from TEM or from vesicles
harboring “TJ-excluded” cld7 [199].

2.2 CIC markers and the contribution
of epithelial–mesenchymal transition
and transcription factors to SC and CIC maintenance

Transcription factors are of central importance in EMT during
development and tumor progression. As there are strong links
between EMT and SC/CIC including CIC markers, we will
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provide a condensed overview with emphasis on TF and
PaCIC/CoCIC marker connections.

2.2.1 The network of stem cell transcription factors

During embryogenesis, a cell continuously requires changing
the phenotype. It was sought that an endpoint was reached at
the stage of a terminally differentiated somatic cell. This view-
point changed, noting that a differentiated cell can be
reprogrammed to pluripotency, the so-called iPSC
reprogramming relying on an interplay between TF, chroma-
tin modifiers, and regulatory motifs [200, 201]. Importantly,
the phenotype of a cell is dictated by sets of TF that are reg-
ulated by other TF responding to extracellular signals, with the
TF networks being central in regulating SC/CIC fate. There
are two classes of TF: general TF, which bind to promoters
and recruit polymerase II initiating transcription, and tissue-
specific TF, which bind to promoter or enhancer regions and
recruit general TF. Furthermore, several TF can function syn-
ergistically by binding to a superenhancer, a cluster of several
enhancers that are highly cell-type specific and recruit addi-
tional cofactors like RNA polymerase II. Superenhancers may
bridge some TF deficits lowering the binding threshold pro-
voking a transcriptional burst. Last, but not least, extracellular
factors play an important role in initiating TF activation, most
prominently Wnt, LIF1, and TGFβ1 (rev. in [202]).

2.2.2 EMT and transcription factors contributing to PaCIC
and CoCIC maintenance

PaCIC share with ESC a variety of TF, mostly OCT41, SOX2,
and NANOG that, however, are distinctly regulated in CIC
[203]. SOX2 expression is driven by HH1–EGFR1 signaling.
SOX2 is critical for proliferation, dedifferentiation, and gain
of stem cell features, with cyclin inhibitors being SOX2 tar-
gets. SOX2 also drives sphere formation and CIC marker
expression and induces SNAIL1, Slug1, and Twist1, contrib-
uting to EMT [204–206]. EMT-TF adding to PaCIC progres-
sion, an elegant study of Roe et al. unraveled massive changes
in enhancer activity driven by FOXA11, activating a transcrip-
tional program of embryonic foregut endoderm [207].

Heterogeneity of CoCIC relies on context and
surrounding-dependent patterns of gene expression and
methylation, with the differentiation states of CIC and
non-CIC changing in both directions [208, 209].
Signaling pathways regulating the plasticity of CoCIC are
not fully unraveled. APC1 mutations contribute to Wnt/β-
catenin pathway activation only in cells with a high level
of Wnt. Wnt/β-catenin pathway activation also is achieved
by KRAS1 mutation, NOTCH, HH, BMP1, PI3K1/AKT1

activation or metabolic changes, and high level of ROS
(reactive oxygen species) activating the NFκB pathway
[210–215]. A contribution via the interaction of Wnt with

the HIPPO pathway is still discussed, with the HIPPO
transducer YAP1 being a transcriptional coactivator. In
ISC, YAP supports stemness by inducing β-catenin nucle-
ar localization. Instead, in CoCa, YAP contributes to tu-
morigenesis and a β-catenin–YAP complex induces anti-
apoptotic gene expression (rev. in [216]). The four
NOTCH receptors, NOTCH signaling regulating self-
renewal and repression toward secretory cell differentia-
tion [217], distinctly regulate CIC-related TF (rev. in
[218]). NOTCH 1 expression, correlating with cMET and
CD44, increases migration and anchorage-independent
growth via Slug, Smad3, and Jagged1 [219]. Further ap-
proaching the role of NOTCH in CoCIC homeostasis re-
vealed engagement of the circadian clock gene PER31,
overexpression decreasing Notch1, Jagged1, β-catenin, c-
Myc, and LGR5 expression, accompanied by reduced drug
resistance and self-renewal [211]. STRAP1 antagonizes
NOTCH signal activation by competitively disrupting the
association of the chromatin modifier PRC21 subunits. The
authors suggest the STRAP–NOTCH1–HES11 axis as an
important CoCIC regulator [220]. CoCIC are also regulat-
ed by BMP2 and BMP4, interfering with stemness by pro-
moting differentiation through antagonizing Wnt/β-
catenin signaling, where the zinc-finger TF GATA61 drives
LGR5 expression in CoCIC and restricts BMP signaling to
differentiated tumor cells by competing with β-catenin/
TCF4 binding to a distal BMP4 regulatory region [213].
However, explaining the repeatedly described opposing ef-
fects of BMP on Wnt signaling, BMP inhibits Wnt signal-
ing only when p53 and SMAD4 are unaffected [221].
Thus, depending on STAT31 activation, BMP2 supports
CoCIC/EMT via activation of pSMAD1/5 and SNAIL
[222]. BMP4, a direct target of intracellular TH1 that in-
duces d i f f e r en t i a t i on , modu la t e s in a pos i t i ve
autoregulatory feedback loop TH signaling, mitigating
Wnt activity [223].

Finally, the surrounding tissue impacts PaCIC and CoCIC
(rev. in [224, 225]). The tumor stroma is characterized by an
abundance of connective tissue and mesenchymal lineage-
derived cells, most prominently fibroblasts. Cancer-
associated fibroblasts (CAF) can have different origin and
are characterized by amply secreting factors that affect CIC,
including TGFβ, HFG, EGF, FGF1, OPN, and SDF11, which
contribute to progenitor reprogramming toward CIC [93,
226]. CAF also secrete inflammatory IL6 and IL8, which ac-
tivate the JAK1/STAT pathway and recruit inflammatory cells
[227], and IL17A, which increases CIC self-renewal and in-
vasion [228]. CAF can convert to αSMA1 expressing
myofibroblasts and support anaerobic glucose metabolism
[229, 230]. Vascular EC promote CIC survival and self-
renewal through provision of DLL1, which assists Notch sig-
naling [231]. Nonetheless, the view of the tumor stroma se-
verely aggravating tumor progression recently changed.
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Stroma-derived HH controls epithelial SC and CIC via BMP,
in PaCa and CoCa loss of stroma HH being accompanied by
decreased BMP activity. Thus, stroma-specific HH acts as a
metastasis suppressor via modulation of BMP signaling in
CIC [232, 233].

2.3 Noncoding RNA

The recovery of function-relevant ncRNA has become a
milestone in cell biology, being of central importance in
development, homeostasis maintenance, and disease. The
group of ncRNA still increasing, miRNA and lncRNA be-
ing so far the best explored in SC and CIC regulation
[234], is shortly introduced.

2.3.1 MiRNA

MiRNA, the effectors of the endogenous RNA interference
machinery, inhibit translation of protein-coding genes [235].
Long, capped and polyadenylated transcripts (pri-miRNA)
form hairpins [236] that are processed by the ribonuclease
III Drosha and the RNA-binding protein microprocessor com-
plex subunit DGCR81, which generates 60–70 nt pre-miRNA
[237]. Pre-miRNA is exported and is processed in the cyto-
plasm by Dicer1 to mature miRNA [238]. The mature miRNA
is loaded into RISC (RNA-induced silencing complex) [239].
RISC-loaded miRNA bind to target mRNA in the 3′ UTR,
which represses mRNA translation by degradation or
blocking [240] (Fig. 2a). Due to their multiple targets,

miRNA cover ~ 30% of all mRNA. In cancer, miRNA can
function as oncogenes (oncomir), which inhibit tumor sup-
pressor genes or as tumor suppressors, which inhibit onco-
genes. MiRNA also promote tumor invasion and metastasis
and some miRNA are engaged in CIC maintenance [241,
242].

Metastasis-related miRNA significantly up- or downregu-
lated in PaCa and CoCa are summarized in Table S2. For more
comprehensive lists, we recommend some recent reviews on
PaCa [243] and CoCa [244, 245]. The miRNA list in Table S2
is by no means complete, which appears nearly impossible
taking into account that miRNA mostly have multiple targets.
Even sorting in oncomirs and tumor suppressor miR should be
considered with some caution, opposing activities being re-
ported for several miRNA, which we mention without provid-
ing detailed information. Finally, the view on miRNA may
profoundly change with progress in deep sequencing (DS)
and in silico network analyses, expected to furnish a complete
list of miRNA, their targets and their regulation, with lncRNA
being one miRNA controlling component.

2.3.2 LncRNA

LncRNA are > 200 bp long. They can be classified according
to the genomic location as (1) located away from protein-
coding genes (stand alone); (2) antisense transcripts (located
on the opposite strand of transcript units); (3) pseudogenes,
transcripts having lost protein coding potential by mutations;
(4) long intronic ncRNA, the transcript deriving from
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annotated gene introns; and (5) divergent transcripts from
sense and antisense directions of transcript start areas [246].

Mechanistically, lncRNA can interact with RNA, DNA,
and proteins. LncRNA can hybridize by specific sequences
with DNA or other RNA [247, 248] and can compete with
the endogenous RNA network by sharing miRNA [249]
due to tandem miRNA response element repeats allowing
distinct miRNA or miRNA combination binding [250],
targets being released from repression after miRNA decoy
[251]. LncRNA can form secondary and tertiary structures
that enable complex interactions with proteins. Functional
annotation of lncRNA can be based on participating in
biological processes at different levels such as chromatin
remodeling, histone modification, DNA methylation, tran-
scription, and translation [252]. A common classification
sorts lncRNA by (1) recruiting and interacting with pro-
teins, e.g., HOTAIR1 combines with the PRC21-regulating
HOXD1 transcription [253]; (2) acting by decoy, e.g.,
PANDA1 decoys NF-YA1 [254]; (3) corepressor or
coregulator activity such as SRA11, an androgen, estrogen,
glucocorticoid, and retinoic acid receptor coactivator
[255]; (4) miRNA sponging [256]; and (5) being a
miRNA host gene [257] (Fig. 2b,c). So far, information is
frequently limited to lncRNA acting as competing endog-
enous (ce)RNA.

The list of lncRNA is rapidly expanding with 565 pub-
lications on lncRNA in CoCa and 239 in PaCa. Only most
prominent lncRNA and, where available, hints on the mo-
lecular mechanisms are presented in TableS3. For the over-
all, clinically relevant impact, we refer to recent reviews
(CoCa: [258–260], PaCa: [261, 262], CIC: [263–265]).

LncRNA being supposed to regulate proliferation, apo-
ptosis, differentiation, invasion, and metastasis, statistical
evaluations of clinical samples accompanied by in silico
predictions to obtain hints toward prognosis and therapeu-
tic translation exceed studies searching for targets and the
mode of lncRNA action, which are urgently required.

3 Exosomes

Discussing a contribution of CIC markers to tumor pro-
gression requires introducing exosomes. Exo are small
40–100 nm vesicles delivered by live cells [266]. Exo
distribute throughout the body, being recovered in all
body fluids [267]. Exo expressing donor cell-derived
components provides an easy accessible diagnostic,
prognost ic , and therapy-control l ing tool [268] .
Importantly, Exo components are function-competent
[269], message delivery [270], severely modulating tar-
get structures and reprogramming target cells in health
and disease [271–274]. Thus, Exo are highly effective

intercellular communicators expected to become a pow-
erful therapeutics [275].

3.1 Exosome biogenesis

Exo biogenesis starts with early endosome (EE) formation,
deriving from the trans-Golgi network or internalized mem-
brane microdomains [276]. EE are guided toward
multivesicular bodies (MVB) by distinct transport machiner-
ies [277]. Vesicles, called intraluminal vesicles (ILV), receive
their cargo during inward budding into MVB [278–280]. Exo
plasma loading with protein coding and ncRNA and DNA are
nonrandom processes, SGPP11 and diaglycerol being engaged
in cargo sorting, and LPAR11, Alix/PDCD6IP1, and HSP701

promote inward budding [281, 282]. Monoubiquitination, ac-
ylation, myristoylation, higher order oligomerization, or
sphingolipids forming ceramide facilitate protein sorting
[173, 283–285]. Annexin-II supports RNA sorting [286].
Alternatively, based on the affinity to the raft-like outer layer
of the MVB membrane, continuous interaction of cellular
RNAwith the outer (cytoplasmic) MVB surface may account
for ILV incorporation [287]. A zip code in the 3′ UTR and
coupling of RISC to a specific EXOmotif (GGAG) of the
sorting complex controls miRNA loading by binding to
hnRNPA2B11 [279, 288]. The mechanism for selective re-
cruitment of lncRNA is unknown [289]. After ILV inward
budding, MVB are guided toward degradation in the protea-
some or toward the plasma membrane, trafficking toward the
plasma membrane involving microtubules and Rab proteins
(rev. in [277, 290]). SNARE1 proteins and SYT1 are engaged
in fusion with the plasma membrane (rev. in [276, 277, 290]).
The released vesicles are called Exo. The cited excellent re-
views provide detailed informations, including open questions
and the diversity of Exo derived from individual cells.

3.2 Exosome composition

Though open questions remain on biogenesis pathways,
aggravated by differences in biogenesis and the delivery
of distinct exosomes by individual cells [291, 292], strong
progress was achieved unraveling Exo composition. Exo
are buildup by a transmembrane protein-containing lipid
bilayer and proteins, mRNA, ncRNA, and DNA in the
vesicle lumen. The latter being already introduced, Exo
membrane components are briefly outlined.

The Exo lipid envelop contains phosphatidylcholine,
phosphatidylethanolamine, phosphatidylinositol, prosta-
glandins, and lysobisphosphatidic acid and abundantly
sphingomyel in , choles tero l , GM31/GRM61, and
phosphatidylserine [293], the high phosphatidylserine con-
tent allowing differentiating Exo from microvesicles [294].
Though the lipid composition of TEX appears suited for
diagnosis [295], only recently developed new methods will
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allow a precise judgment on exosome lipids, information
so far confirming similarity with lipid rafts, a higher lipid
order and stability against detergents [294].

Improved mass spectrometry (MS) [296] greatly facili-
tates Exo protein characterization, so far > 7000 being
identified [297]. Structural proteins and proteins involved
in vesicle biogenesis and traffic are constitutive Exo com-
ponents, most abundantly 7–124-fold enriched tetraspanins
[298, 299]. Adhesion molecules, proteases, MHC1 mole-
cules, HSPs, TSG1011, Alix, annexins, cytoskeleton pro-
teins, metabolic enzymes, cytosolic signal transduction
molecules, and ribosomal proteins, some recruited via their
association with biogenesis engaged proteins, also are co-
pious (rev. in [300, 301]). Notably, the all-so-far described
CIC markers are recovered in TEX, e.g., MART11 [302],
EGFRVIII [303], MDR11 [304], EPCAM [199, 305], MET
[306], mutant KRAS [307], CD44v6 [308], Tspan8 [307,
309], α6β4 [310, 311], cld7 [199, 312], LGR5, and CD133
[313, 314]. We interpret this finding that CIC markers may
contribute to Exo activities [315, 316].

3.3 Exosome targeting and uptake

Exo targeting depends on their membrane structure and
appropriate target ligands, which can be cell or ECM com-
ponents. Exo binding promotes matrix and cell modulation
[276, 297]. Bound Exo can be taken up, which requires
different target structures and has distinct consequences
for target cells [317].

Integrins, CD44, proteoglycans, and others are engaged
in Exo binding to the ECM [318]. Exo proteases, mostly
MMPs, IDE1, sialidase, and heparanase, contribute to ma-
trix degradation and remodeling [319, 320]. Exo protease
activity is accompanied by matrix-incorporated cytokine,
chemokine, and protease liberation [321] and matrix-
incorporated cell activation [322]. Exo binding also pro-
motes cell movement through the ECM [323]. Finally, Exo
lncRNA adds to ECM remodeling [324].

Only selected target cells bind and take up Exo. Binding
frequently involves (tetraspanin-associated) integrins, part-
ners among others for ICAM, FN, LN, proteoglycan-
binding lectins, and phosphatidylserine binding TIM41,
HAVCR1/TIM11, HAVCR2/TIM31, GAS61, MFGE81,
STAB11, ADGRB11, and RAGE/AGER1 [317, 325, 326].
Other binding partners are galectins, selectins, and sialic
acid–binding lectins [327–329]. We experienced Exo bind-
ing being greatly facilitated by clusters of adhesion mole-
cules in both Exo and target cells [330].

Exo uptake proceeds by Exo fusion with the cell mem-
brane [331, 332] or endocytosis, requiring actin cytoskel-
eton modulation [333]. Modes of uptake include phagocy-
tosis, macropinocytosis, clathrin-dependent endocytosis,
and lipid raft and caveolae uptake (rev. in [327]).

Phagocytosis proceeds by formation of cup-like exten-
sions, the tips fusing and becoming internalized, and
phagocytic markers LAMP11 [334] and TIM4 binding
phosphatidylserine facil i tate phagocytosis [335].
Macropinocytosis relies on lamellipodia folding back and
fusing with the plasma membrane [336]. Most frequent is
endocytosis via clathrin-coated pits, rafts, cholesterol- and
glycolipid-enriched membrane microdomains, like TEM
[337] or caveolae [338]. Uptaken Exo may itinerate [339]
but mostly are directed to MVB and are targeted to lyso-
somes for degradation their content modulating target cells
directly or by stimulating target cells’ signaling cascades,
transcription, and silencing processes [340–342].

3.4 Exosomes and target cell reprogramming

Target cell reprogramming by Exo can be initiated via binding
or the uptaken Exo cargo. Target cell modulation by bound
Exo relies on signal transduction and/or target cell membrane
protein cleavage, e.g., Exo tissue factor binds to the GPCR
PAR-21 in EC provoking heparin-binding EGF induction and
ERK1/21 activation [343]; Exo HSP20 binding to VEGFR2
activates the VEGFR2 signaling cascade [344] and Exo bind-
ing to TRKA11 promotes activation and downstream signal-
ing including FAK1 and Src1 [345]; Exo binding via α5β1 to
target cell FN promotes IL1β, which does not require Exo
uptake [346]. Due to technical difficulties differentiating
binding- and uptake-induced target activation, only few stud-
ies explicitly explored binding-induced activation. Taking into
account the ample presence of signaling receptors, integrins,
CD44 and CAMs, and their ligands on Exo, respectively, tar-
get cells, we suggest Exo binding-induced target activation
having not received adequate attention [337].

The uptaken Exo content could directly affect the target cell
or provide an incentive hit. There are examples demonstrating
the transferred Exo content directly changing the target cell.
Transferred exo αvβ6 into αvβ6-negative prostate cancer
cells localizes to the cell surface, with recipient cell de novo
αvβ6 expression being excluded [347]. Also, tumor antigens
are processed and loaded into newly synthesized MHC mole-
cules in TEX-loaded dendritic cell (DC) [348]. Also, thera-
peutically tailored Exo loaded with large amounts of drugs or
miRNA or signaling checkpoint inhibitors likely act via con-
tent transfer [349–351]. However, the naturally available
amount of one type of Exo unlikely contains sufficient load
for directly modulating targets. First, the small Exo plasma
homes limited amounts of proteins and nucleotides [352]; sec-
ond, TEX from a cloned tumor line distinctly affects tumor
cells, fibroblasts, EC, and hematopoietic cells. Our hypothesis
on activation of signal transduction and/or transcription/trans-
lation being the dominating mode of uptaken Exo activity is
supported by DC-Exo uptake strongly affecting the immune
synapse [353] and activating or inhibiting B cells, NK, and
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neutrophils, which also accounts for macrophage (Mϕ-Exo,
SC-Exo, and TEX) [272, 354–356]. Also arguing for Exo-
initiated activation of signal transduction are anterograde and
retrograde information transfer by neurological synapses,
which accounts for maintaining plasticity under physiological
conditions and for pathological protein spread [357, 358]. In
brief, the target cell–integrated Exo content can directly ac-
count for target modulation or provide an incentive hub.

Having outlined that signaling molecules/transcription fac-
tors, ncRNA, Exo, and host cells, are important contributors to
CIC maintenance and activity, the question arose on a selec-
tive contribution of PaCIC and CoCIC biomarkers in the mes-
sage exchange between CIC, non-CIC, and nontransformed
host tissue [359, 360].

4 Coordinating CIC markers with molecules
and exosomes engaged in tumor progression

We will provide some hints supporting coordinating activities
of PaCIC and CoCIC biomarkers. In view of many open
questions, this trial is doomed to be fragmentary, but worth-
while a shot.

4.1 The net of CIC markers

Asking for a possible connecting role of CIC markers, it
should first be mentioned that many of them are associated.

Tspan8 most prominently contributes connecting PaCIC
and CoCIC markers. Like all tetraspanins, it is located in
TEM, where it associates with other tetraspanins, a multi-
tude of adhesion molecules, proteases, and other mole-
cules. In PaCIC and CoCIC, the Tspan8-associated mole-
cules include the CIC markers CD44v6 [162, 170], α6β1
[361, 362], α6β4 [162, 361], EPCAM, and cld7 [162, 363,
364]. These associations mostly are not direct protein–
protein interactions [361, 362], the molecules are not ex-
clusively recovered in association with Tspan8, and some
are only associated with Tspan8 in activated cells. This
accounts particularly for the association with α6β4 [173,
361], a major contributor of hemidesmosomes in nonacti-
vated cells [365]. It also applies to the TJ component cld7
[187, 196], which becomes recruited to the Tspan8 web
only upon palmitoylation [366]. Finally, EPCAM is re-
cruited in association with palmitoylated cld7 [199,
367–369], the association being based on a direct
protein–protein interaction [366] (see arrows in Fig.
1c,g). The Tspan8 web becomes expanded by the recruit-
ment of cMET and VEGFR2 via CD44v6-bound HGF and
VEGF as well as by the association of HA-bound CD44v6
with GPCR (CXCR4) and the CD44v6 association with
LRP5/6 [370]. Tspan8 also associates with α3β1, α4β1,
and α5β1 [19, 172, 361]. Last but not least, CD44v6

provides a feedback on the Tspan8 net stability by promot-
ing Tspan8 transcription [167].

The striking associations of several PaCIC and CoCIC
markers may, in part, explain their contribution to CIC main-
tenance and activity, all these markers being engaged in tran-
scription factor and signal transduction activation, facilitated
by the TEM lipid composition that fosters the attachment of
cytosolic molecules.

4.2 The engagement of CIC markers in exosome
biogenesis

CIC marker contributions to CIC activities frequently rely on
the location in membrane microdomains prone for internali-
zation and EE formation and the loading process during in-
ward budding of ILV.

4.2.1 CIC markers, early endosome formation, and endosome
trafficking

Membrane microdomains that are doomed for curvation are in
favor of invagination, scission, and fusion to form EE.
Prominent membrane domains are caveolae, clathrin-coated
pits, TEM, and proteolipid-enriched domains. EE formation
by caveolae involves dynamin [371]. Clathrin-coated pit nu-
cleation requires PIP2, AP21, and actin dynamics. Dynamin,
actin, and myosins are involved in scission [372]. Highly hy-
drophobic proteolipids, recovered in detergent-resistant mem-
brane microdomains characterized by solubility in organic
solvents, are prone for internalization and EE formation
[373, 374]. Invagination of TEM is facilitated by
palmitoylation of tetraspanins or associated molecules and
involves dynamin and, for some tetraspanins, intersectin 2
[148, 173, 375] (Fig. 3a).

Early endosome traffic toward MVB mostly requires
ESCRT (endosomal sorting complex required for transport).
However, in ESCRT-depleted cells, MVB biogenesis is affect-
ed, but not absent [376], particularly TEM-derived endosome
traffic frequently using ESCRT-independent pathways. Thus,
PMEL1 is sorted in an ESCRT-dependent pathway toward
MVB and becomes degraded. By sorting along a CD63-
dependent pathway, PMEL evades degradation and amyloid
fibers are generated [377]. Delivery of antigen-presenting Exo
by DC also can follow different pathways of Exo biogenesis.
Cognate interaction with antigen-specific CD4+ T cells trig-
gers recruitment of MHCII into CD9 tetraspanin microdo-
mains, where it does not become ubiquitinated and, after in-
corporation into MVB and Exo delivery, serves for peptide
presentation to CD4+ T cells [378]. Uptake of antigen-
loaded TEX by DC is strongly promoted by CD81, EE being
driven into the MHCII-loading compartment [348]. Also, the
intracellular domains of a pair of CD81 molecules form a
pocket, which catches cholesterol contributing to distinct
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tetraspanin EE traffic [379]. Trafficking along the tetraspanin
pathway interfering with ubiquination of associated molecules
was also described for CD82 and ligand-induced EGFR
ubiquitination, with CD82 controlling the activity of the E3
ubiquitin ligase CBL1 [380]. The TEM-guided pathways of
EE trafficking also contribute to viral transport. The associa-
tion of CD63 with syntenin and syntenin-1 interacting protein
ALIX affects human papilloma viruses, virus disassembly,
and post-uncoating processing being severely impaired in

the absence of CD63 or syntenin [381]. The EBV-encoded
oncoprotein LMP-11 is transferred via a CD63-dependent
and a CD63-independent pathway into Exo, with only
CD63-independent Exo biogenesis promoting pronounced
MAPK/ERK and NFκB activation [382]. Other examples
are the engagement of CD63+ EE in cation transporter cy-
cling. hOCT21-associated CD63 colocalizes with Rab4, en-
gaged in rapid endosome recycling to the plasma membrane,
where transport of endosomal hOCT2 to basolateral
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proteolipid-enriched domains, cholesterol-based lipid rafts, and TEM
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for CIC markers located in internalization prone membrane domains,
where TEM are of particular interest as tetraspanins associate with a
multitude of proteins including the CIC markers α6β1, α6β4,
CD44v6, cld7, and cld7-associated EPCAM). b By fission and scission
of invaginated membrane domains, early endosomes (EE) are generated,
which are transported toward multivesicular bodies (MVB) frequently
involving ESCRT components and mostly guided by rab4 and rab5.
However, cholesterol-based lipid raft and TEM-derived EE use ESCRT-
independent pathways for trafficking, which for cholesterol-based lipid
rafts include ceramide, neutral sphingomyelinase, and S1PR1. The
transporters engaged in TEM-derived vesicles remain to be defined. It
is important to note that invaginated membrane-derived EEmaintain their

organization, which includes membrane proteins, attached cytosolic
proteins, and the selective lipid composition. So far, there is no
evidence of different trafficking routes for MVB toward the plasma
membrane or the armament required for exocytosis, after which the
endosomes are called exosomes. c Invagination of endosomes, called
ILV into MVB, is an energy-dependent process and includes a selection
of cytoplasmic proteins, coding RNA, ncRNA, and DNA, which all
require distinct supports that are not fully elucidated. Protein
recruitment is facilitated by ANXAII and may be supported by cld-
associated transporter molecules; miRNA recruitment requires TRPR,
hnRNP, and RISC, with evidence for CD44v6 contributing by
associated RNA processing proteins. The latter may also account for
lncRNA recruitment where rules, however, are largely unknown. The
mode of selective DNA recruitment also remains to be explored. d Pa-
CIC-TEX is presented showing a selection of prominent protein markers.
It should be noted that all CIC markers are recovered in TEX. Full names
of protein and gene symbols are listed in Table S1
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membranes essent ia l ly requires CD63 [383] . In
lymphoblastoid B cells, CD38 associates with CD81,
HSP70, and LYN1, and the complex being recovered in Exo
indicates maintenance during CD81-directed Exo biogenesis
[384]. Trafficking of Tspan8–TEM awaits exploration, with
preliminary evidence pointing toward CD81-like routing
[385] (Fig. 3b).

The PaCIC and CoCIC markers CD133 [100, 386] and
CD24 [387], recovered in Exo, are located in internaliza-
tion prone rafts [387, 388]. Similar to TEM-guided EE
trafficking, CD133 follows an ESCRT-independent path-
way. EE traffic requiring ceramide and NSM1 relies on
S1PR11 [389], confirmed by demonstrating that SNCA1,
which causes expulsion of S1PR1 from lipid rafts, reduces
MVB formation [390] (Fig. 3b).

Briefly, ESCRT-independent EE recruitment into MVB
accounts for different types of lipid-enriched membrane
microdomains, mainly demonstrated for TEM and classical
rafts. These distinct pathways frequently circumvent
ubiquitination and subsequent guidance to lysosomes.
Notably, the microdomains are conserved during Exo bio-
genesis and all components including attached cytoplasmic
proteins are recovered in Exo. The components required
for ESCRT-independent EE traffic are not fully elucidated.

Filling this gap will be important aiming to eliminate
disease-promoting Exo. Finally, to our knowledge,
ESCRT-independent membrane microdomain-guided Exo
biogenesis does not influence the traffic of MVB toward
the plasma membrane and the Exo release.

4.2.2 CIC markers and endosome loading

The selective processes of ILV loading are not fully explored.
Nonetheless, it is worthwhile to remember that the interaction
of RNA with the outer (cytoplasmic) surface of MVB may
account for RNA recruitment [277], possibly also valid for
protein recruitment. Furthermore, the special lipid composi-
tion of invagination-prone membrane domains supports the
attachment of a large range of cytosolic signaling molecules,
fostered by palmitoylation and myristoylation [391–393].

These modes of recruitment explain the high enrichment of
tetraspanins and associated transmembrane and cytosolic mol-
ecules, in view of the recruitment of mRNA, miRNA, DNA,
and the RNA splicing machinery (rev. in [277, 374,
394–396]), another observation that requires notion. Upon
precipitating Exo lysates with anti-CD44v6, anti-CD44s, an-
ti-EPCAM, anti-cld7, or anti-Tspan8, a wide range of RNA
processing molecules including RNA splicing and alternative
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splicing and miRNA processing components only co-
immunoprecipitated with CD44v6. As anti-Tspan8 precipitat-
ed mostly the panel of proteins recovered in TEM, the selec-
tive co-immunoprecipitation of CD44v6 with the mRNA pro-
cessing machinery points toward an activity of cytoplasmic
CD44v6 that—to our knowledge—did not receive attention,
but could well contribute to Exo-promoted activities. Exo
were described to process miRNA [394, 397]. They contain
Dicer, AGO21, and TRBP1, which also are recovered in late
endosomes [394, 397]. Furthermore, CD431 is guiding the
RISC loading complex into late endosomes in breast cancer
[394]. Thus, we speculate that CD44v6 performs this task in
PaCa and CoCa, with preliminary evidence showing that
CD44v6 contributes to miRNA and lncRNA loading.
Palmitoylation-deficient cld7 precipitates rather exclusively
transporter molecules or lipid-processing–engaged compo-
nents, which would be in line with cld7-TEX contributing to
lipid metabolism and ion transport (Fig. 3c).

In brief, protein incorporation into ILV may partly rely on
integration of invagination-prone membrane domains, which
includes in PaCIC and CoCIC particularly Tspan8-associated
proteins. A potential contribution of TJ-derived cld7 in the
recruitment of transporter proteins requires confirmation.
Though less is known on coding and noncoding RNA recruit-
ment, there is evidence for a decisive role of CD44v6. If con-
firmed, this would add a new dimension to the multiple
metastasis-promoting activities of CD44v6. However, there
is a need for further explorations of ILV loading, and new
experimental tools for identifying RNA-associated motifs will

accelerate progress in the future [398]. Last but not least, all
PaCIC and CoCIC biomarkers are abundantly recovered on
TEX (Fig. 3d).

4.3 CIC markers, exosome targeting, and exosome
uptake

Exosomes are recovered in the ECM mesh [399]. The major
components of the ECM are collagen, LN, and HA. CD44v6
binds HA [330], coll, and FN. Tspan8-associated α3β1 and
α6β4 bind to collagens and LN [173, 310, 400], with the
Tspan8–α6β4 complex particularly facilitating LN332-rich
basement membrane attachment [401] (Fig. 4a).

With regard to cell binding, Exo tetraspanins play a deci-
sive role, which relies on clustering associated molecules to
increase the strength of binding either of individual or a range
of tetraspanin partners that varies according to the Exo donor
cell [375]. For PaCIC and CoCIC, Tspan8 clusters are domi-
nating with likely some contribution of CD151 clusters [156].
The Tspan8 association with integrins is crucial for the contact
with target cells. Thus, α6β4 binds cells in the premetastatic
niche of the lung, whereas in the liver, integrin αvβ5 binding
is dominant [310]. Binding to EC is promoted by α4β1 and
α5β1 [171, 172]. Other Tspan8 partners like CD44v6 may
contribute to selectin binding [402]. As only monomeric
EPCAM associates with Tspan8, a possible contribution of
EPCAM to targeting remains to be explored. Literature search
did not provide hints toward an engagement of Tspan8–Exo in
the crosstalk with leukocytes, which is in line with our
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TEM-derived Exo have a whole panel of potential target proteins. Exo
binding can be followed by fusion with the plasma membrane or by
uptake via macropinocytosis or GEM invagination. After uptake, the
Exo membrane is digested and the content is released. Full names of
protein symbols are listed in Table S1
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experience [403]. Instead, CD151 and CP9 contribute partic-
ularly to platelet targeting [404, 405]. Finally, tailoring
nontransformed cell Exo with Tspan8 greatly facilitates target
cell binding [406, 407].

In PaCa and CoCa, target cell-bound Tspan8–Exo are read-
ily taken up. Antibody blocking and proteome analysis after
pulldown revealed preferential Tspan8–Exo uptake by mole-
cules clustered in internalization-prone membrane domains.
However, there is no evidence for a particular uptake by
TEM [363], i.e., uptake by Tspan8-kd and Tspan8-ko cells is
unaltered [405, 406]. TJ also were reported to exchange mem-
brane particles [408], which was confirmed for the exchange
of TJ components of DC and monocytes with lung epithelial
cells [409]. Also, lymphatic vessels express cld7 at a high
level [410] and TEX promote lymphatic vessel growth [411,
412]. Thus, we speculate that cld7 may contribute to CIC-
TEX uptake. TJ are continuously remodeled [413], and pro-
teins being either reshuttled or—evading degradation—are
recovered in TEM-independent Exo [199]. A contribution of
these Tspan8-devoid cld7–Exo to uptake by target cells re-
mains to be experimentally confirmed (Fig. 4b). We are not
aware of studies evaluating a possible contribution of the CIC
markers CD133, CD24, and LGR5 to Exo targeting and
uptake.

Taken together, the Pa- and CoCIC marker Tspan8 takes a
prominent role in TEX targeting and uptake, guiding clustered
integrins and CD44v6 toward their ligands, but target cell
Tspan8 does not or not significantly add to uptake. For other
TEX CIC markers, a contribution to targeting/uptake remains
to be unraveled.

4.4 CIC markers and exosome message delivery

Exosome message delivery is hotly disputed as a possibly
most powerful therapeutic tool in autoimmune disease, regen-
erative medicine, and cancer including cancer progression.
There is an abundance of excellent reviews dealing with these
diverse therapeutic options. Even with the restriction toward
Pa- and CoCIC markers, we cannot cover the field and apol-
ogize for not citing outstanding publications. Instead, we aim
to give a short overview on two topics: the contribution of CIC
markers to modulation of the ECM and to changing expres-
sion profiles and signaling in TEX target cells.

4.4.1 CIC markers and modulation of the ECM

Being receptors for matrix proteins, integrins and CD44v6 are
central components in TEX-promoted matrix protein binding.
After binding, the process of matrix modulation will be initi-
ated. So far, only few reports are explicitly concerned about
the ECM, rather than the incorporated cells.

First to note, Exo can be coated with HA, which becomes
deposited with the Exo in the ECM facilitating migrating

tumor cell settlement by CD44 binding [319, 414]. Exo also
carry FN, supporting docking to integrins and promoting tu-
mor cell motility [323, 415], where Exo–FN binding depends
on heparinsulfate binding annexins A2 and A6. These Exo
also express the serine protease DPP41, with the activity in
ECM modulation being not yet fully defined [416]. However,
DPP4 is associated with Tspan8 and could contribute to ECM-
incorporated protein digestion. Of particular interest with re-
spect to ECM modulation is the Exo protease profile, which
includes especially membrane-boundMMP14; ADAM10 and
171 and ADAMTS1, like ADAMTS51; and glucuronidases/
sialidases like NEU11 [324, 417–420], elegantly reviewed by
Bandari et al. [421]. To give a few examples, LOXL21 cata-
lyzes the first step of collagen cross-linking [420]; MMP14
contributes to FN and VN1 degradation [422, 423]; IDE,
routed via detergent-resistant membrane complexes into
Exo, degrades matrix-deposited proteins, most well described
for amyloid [424]; Exo heparanase degrades heparin sulfate in
the ECM affecting the heparin-rich basement membrane
[421].

With regard to PaCIC and CoCIC markers in matrix re-
modeling, the deposition of TEX-attached CD44-linked HA
and CD44- or integrin-linked FN should be taken into ac-
count. For restructuring the matrix, the link between proteases
and Tspan8/CD44v6 is important affecting collagen cross-
linking as well as collagen and LN degradation and via
CD44-linked hyaluronidase HA degradation [425]. The con-
tribution of Tspan8-associated α6β4 binding to the LN332-
rich basal membrane and of heparanase to the heparin-rich
basement membrane may be prominent in promoting tumor
cell migration. Tumor cell migration and settlement in distant
organs receives additional support by liberation of growth
factors, chemokines, and proteases deposited in the ECM
[321] (Fig. 5a).

4.4.2 CIC markers and exosome target cell activation
and reprogramming

Four topics related to CIC marker engagement in TEX-
promoted target cell modulation appear of particular interest:
gene transcription and silencing, activation of signaling cas-
cades, acquisition of a motile phenotype, and apoptosis resis-
tance. Great effort is taken to explore these topics, which may
in part be linked. Open questions surpassing available answers
and few examples are given separated according to being
protein- or ncRNA-mediated. We also will consider the ongo-
ing dispute on the uptaken Exo content directly accounting for
target cell modulation or acting as a hub [271, 426, 427].

CIC markers and exosome binding-induced signal trans-
duction The contribution of Exo-CIC markers on target mod-
ulation is best explored for tetraspanin-associated integrins
and CD44/CD44v6. TEX tetraspanin-associated integrins
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account for premetastatic niche formation, with distinct
integrins determining the organ specificity. This also holds
for EC/EC progenitors, which are targeted by Tspan8–
CD49d/CD49e Exo that induce CXCL51, MIF1, vWF1, and
CCR11 mRNA upregulation. Induction of VEGFR2 required
support by external VEGFA (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE18812). Upregulated mRNA
were recovered after 1–5 days, which points toward
induction of transcription and excludes upregulation directly
relying on the transferred TEX content that expression is low
in TEX [172]. Similarly, Tspan8–CD49f or Tspan8–CD104

TEX, but not Tspan8kd–CD49f or Tspan8kd–CD104 TEX,
distinctly affect gene expression differing depending on the
target cell. In fibroblasts, mostly proteases (ADAM17,
MMP14, TIMP1,21) become upregulated. Instead, EC re-
spond with upregulation of FGF, VEGFR1, and VEGFR2;
BMC (bone marrow cells) with upregulation of TNF1 and
STAT4 activation; LNC (lymph node cells) with upregulated
TNF, TGFB1, and FoxP31; and tumor cells with vim1, Slug,
and Snail expression. The target cell-dependent distinct re-
sponses argue for Exo providing an initiating hub [406]. Not
taking into account tetraspanin expression, CD104–vinculin
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severely affects the targets a after ECM binding the Exo protease
becomes active, which include (membrane-bound) MMP, ADAM,
ADAMTS, uPAR, hyaluronidases, glucuronidases/sialidases, and IDE.
Some of these proteases are associated with tetraspanins or integrins or
CD44v6, which facilitates their concentration at the binding site. Besides
collagens, FN, LN, HA, and heparansulfate, Exo also degrade deposited
proteins and support activation of incorporated pre-proteases. Finally,
deposited cytokines and chemokines become liberated and contribute to
tumor cell activation, thereby a path for migrating tumor cells is generated
and EC as well as tumor cells becomes activated. b Target cell activation
by CIC markers expressed in bound or uptaken Exo is more difficult to
decipher. A few examples are shown. CD24 binding to cortactin supports
Notch stabilization and Nanog regulation. CD133 may contribute to
NOTCH activation and promotes TIMP2 upregulation. Cld7 was
reported to promote FASN, transporter, VEGFR3, and PDGFRB

expression by not yet fully clarified pathways. Monomeric EPCAM
promotes myosin and Mybbp1A upregulation. There is a large range of
ligands for Tspan8-associated integrins and CD44v6, which could
promote activation of multiple signaling pathways. CD44v6,
additionally could bind to GPCR5B, which supports cMET activation;
GLI1 becomes activated via EREG binding to the EGFR and promotes
EMT gene, VEGFA, FGF, and IL8 expression. Transfer of OPN from
CD44v6 to αvβ3 promotes MAPK, ERK1/2, and PI3K activation-
supporting EGHR activation and CD44 expression. c For the crosstalk
between miRNA and PaCIC and CoCIC markers, a few examples of an
experimentally proven impact on metastasis are shown. d LncRNA also
is engaged in CIC marker expression. So far, mostly release from
repression by sponging miRNA was reported. However, there is
increasing evidence that lncRNA predominantly act via chromatin
modifications and regulation of transcription. Full names of protein
symbols are listed in Table S1
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TEX were described to cope with resistance toward Taxol, a
complex diterpene alkaloid [406]. This may rely on CD104-
bound plectin recruitment into TEX, as blocking the transfer
of plectin into Exo interfered with PaCa growth [428].

The PaCIC and CoCIC cel l and TEX marker
CD44/CD44v6 strongly force target cell reprogramming.
Coculture of PaCa cells with CD44v6-competent, but not
CD44v6kd TEX promotes, besides others, upregulation of
tumor progression-engaged MMP3, ADAMTS-1,
ADAMTS-5, ADAMTS-8, several chemokines, proteogly-
can 4, COX21, SOD21, MDR1, PLA2G2A1, SSB11,
FABP31, and MYH111 mRNA (ENA database accession
no.: PRJEB25446), and for some of these mRNA, the di-
rect transfer from TEX is excluded [429]. mRNA DS of
human pancreatic non-CIC after coculture with CIC-TEX
confirmed a compelling CD44v6-dependent impact. Two
features should be particularly mentioned. First, the major-
ity of upregulated mRNA were engaged in translation and
splicing, followed by signaling components with a prepon-
derance of RTK and EMT TF. Second, drug transporters
were most strikingly upregulated. Most of these genes,
being not affected in a Tspan8kd PaCa line, point toward
the engagement of TEM-independent CD44v6 (ENA data-
base accession no.: PRJEB25446). How can these strong
effects be explained? Target cell modulation by CIC-
CD44v6 was recently reviewed [430]. Thus, we will focus
on the crosstalk between CD44v6-TEX and target cells.
First, via cytokine binding, CD44v6 becomes linked to

several RTK, which could account for initiation of signal-
ing cascades. It was suggested that EGFR, ERBB21, and
INSR1 are transferred from TEX to target cells, where they
initiate MAPK signaling pathway activation [431]. TEX
EGFR also is transferred into liver stroma cells, where
HGF becomes activated, binds tumor cells, and facilitates
tumor cell settling in the liver [432]. A similar pathway of
activation was suggested accounting for bone metastasis
[433]. Alternatively, TEX EREG1 binds to target cell
EGFR inducing EMT by regulating GLI11 and increasing
VEGFA, FGF, and IL8 expression [434]. It also was report-
ed that cMET activation does not proceed by the transfer
from TEX, but via orphan GPC5B1 that promotes MAPK
and together with HGF cMET activation [435]. This sug-
gestion appears very attractive and fits to the results of
several studies, reporting on TEX-initiated target cell acti-
vation relying on the delivery of chemokines and cyto-
kines. Thus, CXCR4 associates with CD44 upon HA
cross-linking, which promotes signaling by CXCL12.
Taking the HA coat of Exo, the delivery of Exo CXCL12
provides a convincing mode of CIC-Exo–initiated signal-
ing [436], although activation of lymphatic EC by the di-
rect transfer of Exo CXCR4 was also described [412]. A
further mode of activation could rely on the release of
Rantes/CCL51 from Exo that directly binds CD44 and pro-
motes MAPK cascade activation [437]. Activation of
CD44 signaling was also described for OPN and confirmed
for Exo OPN, which proceeds via αvβ3 binding [438].

Fig. 5 (continued)
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Finally, Exo tissue factor binding to its GPCR F2R1 pro-
motes E-selectin upregulation and IL8 secretion [439].

Another PaCIC and CoCIC marker that is recovered in
TEX is CD24. Its ligands are selectins, NCAM11, and
CNTN11, a GPI-anchored member of the Ig-superfamily.
TEX CD24 signals via contactin, promoting activation of
the MAPK pathway. It is also engaged in EMT by
NOTCH1 stabilization via p38MAPK and in STAT3-
mediated NANOG regulation [440–442].

CD133, abundantly recovered in CIC-TEX, suppresses
the RET1 tyrosine kinase via p38MAPK and PI3K signal-
ing and regulates TIMP2 expression. A soluble form of
EC-derived Jagged1 promotes colocalization of CD133
and Notch accompanied by NOTCH activation [231, 443,
444]. Whether these activities also account for TEX-
CD133 remains to be explored.

Claudin7, recovered in two distinct Exo populations [199],
targeting cell communication became of special interest.
Proteome profiling of cells and TEX revealed that non-
TEM–derived cld7 is dominating in TEX, and proteome anal-
ysis of immunoprecipitates uncovered that in cells and TEX-
expressing TJ-derived and GEM-derived cld7, distinct com-
ponents were prevalent with an abundance of proteins en-
gaged in fatty acid biosynthesis/metabolism and TJ organiza-
tion in cells expressing only TJ-derived cld7. In TJ-derived
TEX, four independent network clusters related to TJ assem-
bly, endocytosis, proteasome degradation, and a fourth, larger
cluster of proteins engaged in DNA replication, RNA trans-
port, AA synthesis, and metabolismwere seen. However, after
transfer of TJ-derived cld7-TEX, solely a pronounced upreg-
ulation of VEGFR3 and PDGFRB appeared to be linked to
cld7, reinforcing the suggested contribution of TEX-cld7 to
lymphangiogenesis [197].

Concomitantly with TEX-cld7, we searched for cld7-
independent TEX-EPCAM-promoted activities. There were
only 10 proteins not recovered in EPCAMkd-TEX, where
the absence of the corepressor/coactivator MYBBP1A1 and
of the actin-dependent motor proteins Myh10 and Myh14,
engaged in cytokinesis, may be mentioned [445, 446].
Although there are a considerable number of proteins co-
immunoprecipitated with TEX-EPCAM independent of the
presence of cld7, signaling pathway analysis did not reveal
hints toward EPCAM selectivity. Thus, whether and by which
means TEX-EPCAM communicates with target cells is not
yet answered.

There remains the CIC marker LGR5 that is engaged in
Wnt signaling, where we did not succeed finding relevant
notice on its activity in TEX (Fig. 5b).

Not related to prominent PaCIC- and CoCIC-TEX
markers, we mention two additional aspects. Depending
on TEX TGFβ1 or TGFβ2 and supported by TEX
PDGF, FGF, and IL6, TEX promote the conversion of fi-
broblasts into CAF [447], which may involve activation of

SMAD signaling [448]. This impact of TEX on the tumor
surrounding will have a rebound on CIC. Finally, Exo dis-
play intrinsic metabolic activities. They carry lactate,
PGE1, LDH1, pyruvate, and monocarboxylate transporters,
implicated in fatty acid synthesis and cholesterol metabo-
lism. They also can synthesize ATP by glycolysis
[449–451]. The transfer of these lipids and glucose and
particularly lipid metabolism-regulating components se-
verely affects the metabolic state of target cells [452–454].

To summarize, PaCIC- and CoCIC-TEX marker-bind-
ing and transfer into target cells contributes to tumor pro-
gression, which includes tumor, stromal, endothelial, and
hematopoietic lineage cells. The engagement of Tspan8
predominantly relies on its association with integrins, with
contributions of α3β1, α4/α5β1, α6β4, and αvβ3 being
well documented. Tspan8 also adds by associating with
proteases. CD44v6 takes a leading role by engagement in
RTK and GPCR associations as well as by the association
wi th LRP6 , s t r eng then ing Wnt s igna l ing . The
CD44/CD44v6 engagement is fostered by HA and FN as
well as selectin binding. Cld7 mainly contributes to
lymphangiogenesis and modulating lipid metabolism.
Contributions of TEX CD24, CD133, and EPCAM remain
to be substantiated.

Though pathways whereby CIC-TEX markers modulate
targets are not fully elaborated, binding-initiated signal
transduction plays a dominant role, and reports on activa-
tion of signaling cascades and in silico analyses depicting
the connectivity of molecules in networks and between
networks support this interpretation. This does not ques-
tion exceptions, where the transfer from TEX into targets is
unequivocal ly demonstrated. Nonetheless , TEX-
transferred and TEX-induced proteins may act as initiators.
This possibly also accounts for the transfer of coding and
ncRNA.

CIC markers and exosome transfer of noncoding RNAWith
rapidly increasing evidence on the importance of Exo ncRNA,
particularly miRNA and lncRNA, a discussion on a possible
connection to CIC-TEX markers should not be missed.
However, three major unsolved or partially solved issues pro-
hibit a round answer. Issue 1: There is no explanation on the
abundance of lncRNA in Exo compared to cells, which differs
from proteins and miRNA; only for few lncRNA the function-
al relevance was tackled, frequently restricted to lncRNA ac-
tivity as miRNA sponge; it is also unknown whether Exo
lncRNA is transported with/without their targets into acceptor
cells [455]. Issue 2: There are hints that miRNA may be proc-
essed within Exo. Though the armament appears to be avail-
able, the functional importance of an intra-Exo processing and
the consequences remain to be unraveled. Furthermore, many
miRNA having several to > 100 targets, an assignment to
target cell mRNA remaining sporadic and even knowing that
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a given miRNA targets one of the CIC markers, it is debatable
whether the amount of transferred miRNA suffices affecting
the activity of the respective CIC marker or associated/linked
molecules. Third, as already mentioned, will the transferred
Exo ncRNA be the actual effector or an initiator? Facing the
limited state of knowledge, we only can give some examples
on the link between transferred ncRNA and CIC markers.

Regarding CD44vv6, its engagement in miRNA recruit-
ment into ILV was outlined [429]. Furthermore, expression
of several miRNA and CD44 or CD44-associated mole-
cules is linked. miR-146-5p targets ZNF831, resulting in
pronounced migration and invasion and Frizzled6 and
CD44v6 -a s soc i a t ed LRP6 up regu l a t i on [456 ] .
Overexpression of the CD44 3′ UTR promotes motility,
invasion, and metastasis. miR-328 targets the CD44 3′
UTR and COL1A11; miR-491, miR-512-3p, and miR-671
target CD44 and FN. The authors speculated that ECM
protein synthesis could be corrected by provision of
CD44 3′ UTR [457]. miR-34a targeting the 3′ UTR of
CD44 prevents prostate Ca metastasis [458]; mir-218-4
targeting CD44-ROCK1 affects invasion. It is downregu-
lated in squamous cell carcinoma [459]; miR-328-3p, up-
regulated in triple-negative breast cancer, targets AR1,
which controls the expression of CD44 via miRNA-
dependent and miRNA-independent pathways [460];
CD44-associated cMet, MMP2, and MMP9 become regu-
lated by miR-340, which suppresses invasion and metasta-
sis [461]. Exo miR-520c-3p targets CD44, which is accom-
panied by reduced extravillous trophoblast invasion [462].

CD133+ TEX from melanoma and CoCa contain many
ESCRT and ESCRT-associated proteins, selectively harbor
several miRNA, and are enriched in tumor progression-
promoting proteins such as CD44, MAP2K41, GTP-
binding proteins, ADAM10, and Annexin A2 as well as
tetraspanins. The proteolipid assembly resembles that of
TEM. The authors demonstrate that CD133+ TEX uptake,
including the selectively enriched miRNA, strengthens
metastatic potential [271]. On the other hand, miR-142-
3p binds CD133, LGR5, and ABCG2 acting as a tumor
suppressor and being downregulated in CoCa [463].

LGR5 also becomes regulated by miRNA. miR-363,
downregulated in CoCa, targets GATA6, which enhances
LGR5 expression [464]. LGR5 is also targeted by miR-100,
downregulated in CoCa [465] (Fig. 5c).

EPCAM+ CoCIC-TEX also are enriched in selective
miRNA, where miR-16-5p, miR-23a-3p, miR-23b-3p,
miR-27a-3p, miR-27b-3p, miR-30b-5p, miR-30c-5p, and
miR-222-3p recovery decreases after tumor excision,
which supports these miRNA being tumor-derived and
contributing to tumor progression [466]. Furthermore, a
study separately collecting miRNA from extracellular ves-
icles (EV) and EPCAM+ TEX of a CoCa line revealed
distinctly enriched miRNA clusters in EV and TEX with

selectivity of some miRNA enrichment in EPCAM+ TEX
[467].

There are also hints on the engagement of lncRNA in reg-
ulating PaCIC and CoCIC marker-promoted activities.

The lncRNA GAPLINC1 contributes to CD44-dependent
invasiveness. Upregulation, associatedwith shorter survival in
gastric cancer, correlates with CD44 expression, with CD44
targeting miR-211-3p being sponged by GAPLINC [468].
uc002kmd.1 is highly expressed in CoCa. It regulates CD44
by competing with miR-211-3p, which affects CoCa growth
in xenogeneic mice [469]. DGCR5 is overexpressed in
NSCLC (nonsmall cell lung carcinoma)-CIC. It targets miR-
330-5p, which releases CD44 from repression [470].

LncRNA are also engaged in EPCAM expression.
Upregulated LinC00152/CYTOR1 in HCC (hepatocellular
carcinoma) promotes proliferation and tumor growth
in vivo and in vitro. It binds to the EPCAM promoter
promoting MTOR1 pathway activation [471]. TINCR1 is
downregulated in CoCa and expression inversely corre-
lates with metastasis. Pulldown assays revealed that
TINCR binds EPCAM RNA, with TINCR downregulation
being associated with the release of EPCAM–ICD and
Wnt–β-catenin signaling [472]. TCF7 promotes glioma
cell self-renewal, accompanied by EPCAM upregulation,
which relies on TCF7 sponging miR-200c [473]. A clini-
cal study reported upregulated BCYRN11 promoting gas-
tric cancer progression and being accompanied by
EPCAM upregulation. The underlying mechanism re-
mains to be explored [474].

CASC151 promotes gastric cancer metastasis. It sponges
miR-4310 accompanied by the release of LGR5 from repres-
sion [475].

KRTAP5-AS11 binds miR-596 and miR-3620-3p and
TUBB2A1 binds miR-3620p in gastric cancer. This is accom-
panied by cld4 release from repression and promotes upregu-
lation of EMT genes [476]. PlncRNA1/CBR3-AS11 and miR-
34c are engaged in regulating TJ proteins in inflammatory
bowel disease. PlncRNA1 targets miR-34c thereby releasing
the miR-34c target MAZ1 from repression, which regulates
ZO11 and occludin expression, and PlncRNA1 strongly miti-
gates inflammation-induced TJ dysfunction. As cld7 is highly
expressed in the gastrointestinal tract [477], we suggest an
additional involvement of cld7 that remains to be approved
(Fig. 5d).

Finally, a comprehensive study in CoCa revealed 1028
lncRNA selectively enriched in TEX, with the co-existence of
RNU1-1 and RNU1-21 in TEX suggesting a possible link to
recipient cell splicing events [478].

DS of PaCIC-TEX and of the corresponding Tspan8kd and
CD44v6kd line revealed that from 142 lncRNA, 37 displayed
a higher and 28 a lower signal strength in Tspan8kd cells,
whereas in CD44v6kd cells, 73 lncRNA were not and 12
lncRNA were detected at a lower level, with only 23
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lncRNA being recovered at a higher level. The finding rein-
forces the contribution of CD44v6 to ncRNA loading during
Exo biogenesis.

Expression of the three lncRNA with the highest score
in TEX, LRRC75A-AS1, ZFAS11, and SNHG81, was
strikingly reduced in CD44v6kd cells. LRRC75A-AS1
was described to be a prognostic factor of AML.
Network analysis revealed that it mostly affects TP53
and ETV61 [479]. ZFAS1 represents a snoRNA host gene
that produces a ncRNA. Increased ZFAS1 expression or
locus amplification is associated with metastasis. The
transcript regulates the expression of differentiation in-
volved genes. It may act as a molecular sponge by direct-
ly interacting with miR-484. ZFAS1 also acts as ceRNA
for miR-486, which promotes osteosarcoma progression.
ZFAS1 enhances Wnt/β-catenin signaling with multiple
effects on proliferation, EMT marker, and protease ex-
pression in gastric cancer [480–482]. SNHG8 affects sev-
eral gastric cancer-specific pathways and targets EBV
(Epstein–Barr virus) genes, which are largely enlaced. In
line with this report, SNHG8 transcript levels are signifi-
cantly higher in cultured EBV-associated gastric cancer
cells than in normal gastric mucosal cells or EBV-
negative gastric cancer cells. A SNHG8kd arrests the cell
cycle in the G0/G1 phase, inhibits proliferation and colo-
ny formation, and suppresses tumor growth in vivo. In
endometrial cancer, too, SNHG8 expression is significant-
ly increased. It sponges miR-152, which targets cMET.
Though not directly related to cancer, it is interesting to
note that in muscle SC transcription of SNHG8 and the
lncRNA GM26917 are regulated by FoxM1 that binds to
their promoters [473, 483, 484].

The tumor suppressors lncRNA HOTAIRM1, LINC-
PINT1, and SLC25A25-AS11 were recovered at a very low
level in PaCIC-TEX and not in CD44v6kd cells. HOTAIRM
is downregulated in CoCa and suggested to be a promising
candidate for diagnosis. So far, most studies were concerned
about its role in myelogenesis, where it acts as a ceRNA for
miR-20a/106b and miR-125b, promoting ULK11, E2F11, and
DRAM21 release from repression. It also regulates
oncoprotein degradation [485, 486]. LINC-PINT is downreg-
ulated in multiple types of cancer and acts as a tumor suppres-
sor by reducing the invasive phenotype of cancer cells. A
highly conserved sequence element specifically interacts with
PRC2, necessary for the LINC-PINT-dependent repression of
a pro-invasion signature of genes regulated by EGR11. The
authors suggest that LINC-PINT by proximity of co-regulated
genomic loci affects the availability of free PRC2 [487].
SLC25A25-AS1 overexpression significantly inhibits prolif-
eration and colony formation in CoCa lines and downregula-
tion enhances chemoresistance and promotes EMT, accompa-
nied by ERK and p38 signaling pathway activation [488]. In
PaCa, TEX expression is low and reduced compared to cells.

These and additional lncRNA in PaCIC-TEX are listed in
TableS4 including available information on functional relevance.
Besides the most striking reduction of lncRNA in CD44v6kd
cells and a relative abundance of intronic lncRNA, there was a
dominance of lncRNA that cooperate with chromatin modifiers
and affect transcription.

Last but not least, lncRNA regulation in PaCa and CoCa
can also proceed independent of CIC markers. LINC-ROR1

sponges miR-145 and miR-205, regulating Oct4, Sox2, and
Nanog [489]. IL22 induces H19 lncRNA1 via STAT3 signal-
ing. H19 promoting proliferation binds a cluster of prolifera-
tion inhibiting miRNA (let-7, mir-34a). It inhibits p53 but
promotes MycN and FOXM1, which are targets of the H19-
regulated miRNA [490].

Taken together, there is evidence for a crosstalk between
metastasis-promoting CIC markers and cellular as well as TEX
miRNA and lncRNA. We expect that further progress in
lncRNA activities will strengthen information on the network
between lncRNA, miRNA, and CIC-TEX markers. The still
hypothetical engagement of CD44v6 in miRNA and lncRNA
recruitment into TEX could add another knot to the engagement
of CIC markers into tumor progression. Without striving for an
irreplaceable position ofCIC-TEXmarkers in tumor progression,
their central and networking activity is beyond question.

5 Conclusions, open questions, and outlook

It is well appreciated that CIC markers are suited for CIC enrich-
ment and can serve for non-/minimally invasive diagnosis, prog-
nosis, and therapy response control due to recovery of TEX in
body fluids. This review aimed to collect available information
on the advantage for CIC and CIC-TEX in tumor progression by
expressing these biomarkers.

I. At the present state of knowledge, CIC mostly profit
from CD44v6 expression as it recruits several ligands
for RTK, which become activated via the association of
signaling molecules/cytoskeletal linker proteins with
the CD44ICD. LRP5 binding facilitates Wnt signaling
pathway activation. The major CD44 ligand, HA, adds
to the range of CIC-supporting CD44v6 activities at
multiple levels facilitating binding and tumor cell mi-
gration, receptor cross-linking, and uptake. It contrib-
utes to inflammatory response induction and affects the
metabolism after uptake. The CD44/CD44v6 linkage to
ABC transporters, strongly supporting drug resistance,
is of high clinical relevance. The engagement in
hyaluronan synthase and hyaluronidase transcription
and stabilization enforces matrix remodeling. CIC do
not directly profit from Tspan8 expression. However,
via the association with integrins, predominantly
α6β4, CIC gain in motility and the association with
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proteases promote invasion. LGR5 is important in
transferring Wnt signaling. Whether EPCAM promotes
metastasis or rather oncogenesis remains an open ques-
tion. A significant contribution of cellular cld7 and
CD133 to tumor progression also has not been un-
equivocally demonstrated.

II. Looking at exosomes, we are confronted with a different
scenario. Tpsan8 plays a dominant role in TEX biogenesis
as it contributes to EE formation, guiding all associated/
loosely attachedmolecules into EE. In addition, tetraspanins
use a distinct, ESCRT-independent trafficking route toward
MVB, where due to monoubiquitination, endosome pro-
teins are largely deviated from lysosomes and degradation.
The associated CIC markers α6β4, CD44v6, cld7, and
EPCAM profit from this Tspan8 activity. All other PaCIC
and CoCIC markers are also located in membrane domains
preponed for invagination and EE formation, but are not
linked to one another.

The small cytoplasm of ILV is loaded during inward
budding. There is evidence for TEM-independent CD44v6
being associated with several components of the RNA pro-
cessing machinery, thereby contributing to ILV loading.
Whether the recruited RNA processing machinery suffices
for RNAprocessing is still disputed. TEM-independent cld7
is associated particularly with transporter molecules and lip-
id metabolism components and apparently has a share in
recruitment into ILV. There is no evidence for CIC markers
adding to MVB transport toward the cell membrane and
Exo release.

III. TEX-TEM contribute to target selection, which is in-
volved in PaCIC and CoCICTspan8-associated integrins
and CD44v6. The power of Tspan8 builds on offering
densely packed receptors to target cell ligands, which
decreases the threshold level and facilitates uptake.
Target cell ligands mostly are located in synapses also
prone for internalization, but target cell tetraspanins pro-
vide no special contribution to TEX uptake. A share of
TEM-independent cld7, LGR5, and CD133 to TEX up-
take remains to be explored.

IV. Exo can be captured by the ECM. For CIC markers, this
relies on the HA coat, on CD44 binding to FN and HA
and on collagen- and LN-binding Tspan8-associated
integrins. ECM binding frequently initiates ECM remod-
eling, which is provoked by Tspan8- and CD44v6-
associated proteases. ECM remodeling is important in
creating a path for migrating tumor cells. Liberation of
deposited cytokines, chemokines, and matrix degrada-
tion products facilitates CIC settlement and activation,
angiogenesis, and leukocyte recruitment.

V. CIC-TEX binding and uptake by non-CIC and
nontransformed cells, which can be of endoderm, me-
soderm, or ectoderm origin, account for induction of a
more aggressive phenotype including EMT in non-

CIC, (lymph)angiogenesis, niche preparation, and de-
viation of hematopoietic cell maturation. Induction of
signaling pathway activation includes TF, RTK,
GPCR, membrane-integrated adhesion molecules,
and proteases. Contributions were described for all
PaCIC- and CoCIC-TEX markers. CD44v6, due to
its multiple ligands and engagement in several
receptor-initiated pathways, plays a dominant role.
The situation is less clearcut for uptaken and digested
TEX, with the TEX content still being disputed to act
as effector or initiator. Different target cells showing
distinct responses to the same TEX preparation argues
in favor of the latter. Irrespective of the mode of trans-
ferred TEX activity, the strongest response was seen in
CD44v6-deficient targets, followed by cld7-deficient
targets, whereas EPCAM- and Tspan8-deficient tar-
gets displayed only few Tspan8- or EPCAM-specific
responses. The rebound of CD44v6-deficient targets is
dominated by activation of signal transduction,
followed by transporter activation and transcription/
translation modulation. This accounted for mRNA
and miRNA, and lncRNA requires further evaluation.
The weaker reaction of cld7kd cells is ruled at the
mRNA/protein level by signaling, followed by adhe-
sion and structural molecules. Few selective changes
in miRNA were mostly related to trafficking mole-
cules. Many of the cited publications approving these
effects in vivo still appear like having touched the tip
of an (nonmelting) iceberg, which leads to the point of
open questions.

VI. The TEX composition is quite well explored, and traf-
ficking pathways of CIC markers located in lipid-
enriched microdomains require further evaluation.
Loading of ILV, too, needs additional scrutinized elabo-
ration particularly with regard to the CIC marker contri-
bution to miRNA and lncRNA loading. Required tech-
niques being established will facilitate achieving the
goal.

VII. In PaCIC- and CoCIC-TEX and possibly additional
gastrointestinal CIC-TEX, particularly, the tetraspanin
Tspan8 plays a dominating role in target selection. A
contribution of CD133, LGR5, and CD24 awaits an
answer. More questions remain on the target cell li-
gands. There is evidence for molecules embedded in
internalization-prone microdomains being preferably
targeted, but only few ligands were unequivocally de-
fined and the contribution of lipids is largely unan-
swered. Clarifying these issues is essential approaching
tailored therapeutic Exo/Exo mimetics for message de-
livery into selective targets.

VIII. The most urgent, but also the most demanding, ques-
tion relates to the activity of uptaken Exo. The query
may preferentially be answered with pluripotent SC to
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avoid overlaps between oncogenes and metastasis-
associated genes. After a comprehensive analysis of
the mode of uptaken Exo actions, clarifying the main
level of activity requires evaluation. It is unknown
whether the main activity centers on proteins,
mRNA, miRNA, or lncRNA or whether the different
Exo components are equally important. For TEX-
derived lncRNA, a contribution by moving toward
the nucleus getting involved in chromatin modulation
and transcription also requires clarification. Minor, but
still unanswered, points are the number of miRNA
molecules needed for suppressing a given mRNA.
Progress should also be strived for judging the efficacy
of lncRNA as ceRNA and the contribution of lncRNA-
incorporated miRNA. Clarifying metastasis-related
CIC-TEX activities may greatly facilitate gaining
knowledge on Exo activity in nontransformed cells.
All PaCIC- and CoCIC-TEX biomarkers are being im-
portant in the crosstalk with non-CIC and
nontransformed targets, but the mode of action of none
of the TEX-CIC markers being fully explored strives
for answers with high priority.

Is there too much noise about a few CIC biomarkers and
small vesicles? Distinct to tumor induction relying on onco-
genes, tumor progression builds on overexpression of
nonmutated genes and is driven by the TEX-mediated
crosstalk between CIC and the near surrounding as well as
distant organs. There is convincing evidence that the PaCIC/
CoCIC markers CD44v6, Tspan8, Tspan8-associated
integrins, cld7, EPCAM, CD133, and LGR5 contribute to
tumor progression, which includes the shift or a partial shift
toward EMT, apoptosis resistance, motility/docking, matrix
modulation, and (lymph)angiogenesis. Due to the location in
specialized microdomains, these markers also add to TEX
biogenesis and facilitate selective targeting. Amply demon-
strated and approved in clinical studies, many details require
further exploration, above all the suggested interplay between
CIC markers, miRNA, and lncRNA. Answering the open
questions will provide a unique chance for tailoring Exo/Exo
mimetics that could prevent any step in the metastatic cascade.
With cancer mortality largely being a sequel of metastasis,
there is not too much noise about CIC markers and TEX that,
based on profound answers to open demands, may allow turn-
ing metastasis in a curatively treatable disease.
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