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Abstract
Mucins (MUC) protect epithelial barriers from environmental insult to maintain homeostasis. However, their aberrant overex-
pression and glycosylation in various malignancies facilitate oncogenic events from inception to metastasis. Mucin-associated
sialyl-Tn (sTn) antigens bind to various receptors present on the dendritic cells (DCs), macrophages, and natural killer (NK) cells,
resulting in overall immunosuppression by either receptor masking or inhibition of cytolytic activity. MUC1-mediated interaction
of tumor cells with innate immune cells hampers cross-presentation of processed antigens onMHC class I molecules. MUC1 and
MUC16 bind siglecs and mask Toll-like receptors (TLRs), respectively, on DCs promoting an immature DC phenotype that in
turn reduces T cell effector functions. Mucins, such as MUC1, MUC2, MUC4, and MUC16, interact with or form aggregates
with neutrophils, macrophages, and platelets, conferring protection to cancer cells during hematological dissemination and
facilitate their spread and colonization to the metastatic sites. On the contrary, poor glycosylation of MUC1 and MUC4 at the
tandem repeat region (TR) generates cancer-specific immunodominant epitopes. The presence ofMUC16 neo-antigen-specific T
cell clones and anti-MUC1 antibodies in cancer patients suggests that mucins can serve as potential targets for developing cancer
therapeutics. The present review summarizes the molecular events involved in mucin-mediated immunomodulation, and metas-
tasis, as well as the utility of mucins as targets for cancer immunotherapy and radioimmunotherapy.
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1 Introduction

Mucins (MUC) are glycosylated proteins, synthesized princi-
pally by epithelial cells and provide protection and lubrication
to the epithelial surfaces [1]. The presence of highly O-glyco-
sylated tandem repeat regions (TR) is a hallmark of mucins,
consisting of proline, threonine, and serine (PTS) residues.
Mucins are classified into two subfamilies, secreted and mem-
brane-bound. The secreted mucin family comprises ofMUC2,
MUC5AC, MUC5B, MUC6, MUC7, MUC8, and MUC19.

Membrane-bound mucins contain a transmembrane domain
and include MUC1, MUC3A, MUC3B, MUC4, MUC11–
13,MUC15–17,MUC20,MUC21, andMUC22 family mem-
bers. Several structural attributes of mucins, such as extensive
glycosylation and presence of growth factor-like C-terminal
domains, modulate the microenvironment around the cell sur-
face and mediate the interactions of mucins with other surface
receptors [2–8]. Cellular transformation leads to the loss of
polarity of the epithelial cells, which brings transmembrane
mucins close to cell surface receptors that would otherwise be
sequestered basolaterally in the polarized epithelium. In addi-
tion, altered mucins glycosylation patterns during malignant
transformation enable their interaction with various receptors
and thereby promote cancer cell differentiation, proliferation,
invasion, and metastasis [9, 10].

Chronic inflammation is one of the risk factors for tumor-
igenesis. Mucins, such as MUC5B and MUC7, have been
implicated in the chronic inflammatory state Toll-like receptor
4 (TLR4) recognition and accumulation of inflammatory cells
[11]. Inflammation, in turn, regulates the expression of multi-
ple mucins [12–14]. Under non-pathological conditions, mu-
cins suppress inflammation by protecting epithelial cells from
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pathogens or injury. For instance, MUC2maintains a suppres-
sive environment in the intestinal lumen by establishing a
mucosal barrier between epithelial lining and microflora.
Similarly, MUC1 expression is upregulated during bacterial
infection in the colon [15, 16]. Cancer cells exploit this
immune-modulatory ability of mucins to evade immune sur-
veillance. Mucins can interact with various inhibitory recep-
tors like intercellular adhesion molecule-1 (ICAM-1) on T-
cells, leading to their anergy and impaired antigen recognition,
and with sialic-acid-binding immunoglobulin-like lectin re-
ceptors (siglecs) on antigen-presenting cells (APCs) [13, 17].
Aberrantly high levels of mucins on cancer cells create steric
hindrance and mask the detection of tumor-associated anti-
gens (TAAs) and prevent specific and non-specific lysis of
the tumor cells by immune cells [13, 18–20]. However, the
detection of circulatingMUC1- andMUC16-specific antibod-
ies in carcinoma patients suggests their immunogenic poten-
tial in stimulating antigen-specific humoral responses
[21–23]. Apart from this, a recent study identified MUC16
as a hotspot with four-fold higher neoantigen frequency in
the long-term survivors of pancreatic cancer as compared to
the short-term survivors [24]. In under-glycosylated MUC1,
the VNTR region with exposed cryptic peptide epitopes has

been shown to elicit strong humoral- and cell-mediated im-
mune responses [25, 26]. A study demonstrating the induction
of strong antibody responses in mice using naked MUC4 pep-
tides and Thomson-Friedenrich (T) and sialyl-Tn (sTn) glyco-
peptide antigens shows the significance of aberrantly glyco-
sylated backbone as tumor-associated glycopeptide antigens
[27]. These findings support multiple mechanisms by which
mucins and their glycosylation states establish an immunosup-
pressive or immune stimulatory environment [26, 28–31].
This review summarizes the distinctive attributes of tumor-
associated mucins in immune modulation during cancer pro-
gression and metastasis.

2 Immune modulation by aberrantly
glycosylated mucins

Aberrant overexpression and glycosylation patterns of tumor-
associated mucins have been implicated in immunomodulation
[32]. This immunomodulation can lead either to the activation of
innate immune effector function and increased inflammatory
stimuli or to the dampening of cytotoxic immune response and
increased metastasis in a context-dependent manner [32, 33]. In

Fig. 1 Immunomodulation by tumor-associatedMUC. Tumor-associated
mucins (MUC) promote an immunosuppressive microenvironment by
either masking Toll-like receptors (TLRs) on antigen-presenting cells
(APCs) or inhibiting synapse formation between cytolytic natural killer
(NK) cells and cancer cells. Mucins increase immune tolerance by
enhancing reprogramming toward a regulatory T cell (T-regs)

phenotype and decreasing expression of activation markers on dendritic
cells (DCs). Further, mucins activate tumor-specific humoral and cellular
immune responses in the presence of adjuvants or TLR agonists.
Antibody-dependent cellular cytotoxicity (ADCC), sialyl Tn antigen
(sTn), cytotoxic T-lymphocytes (CTLs), interleukin (IL), transforming
growth factor beta1 (TGF-β1), and cluster of differentiation (CDs)
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this section, we discuss how tumor-associated mucins either ac-
tivate or suppress the host–immune system depending upon the
cellular crosstalk in the tumor microenvironment (TME).
Figure 1 shows the immunomodulatory effects of tumor-
associated mucins.

2.1 Innate immune cell modulation

The formation of truncated O-linked glycans that lead to aber-
rant mucin glycosylation patterns results from alterations in the
mucin core peptide, mucin subcellular localization or expres-
sion, and activity of various glycosyltransferases [32]. These
changes in glycosylation result in the expression of unique car-
bohydrate epitopes, like sTn, fucosylated Lewisx/a, and T-anti-
gen, on carcinoma-associated mucins. Galectin-1, a beta-
galactoside-binding family protein, recognizes and binds spe-
cific cell membrane glycosylation patterns, triggering apoptosis
of cancer specific effector T-cells [33]. Altered glycosylation
patterns affect the binding of galectin-1 to mucins [34], which
hampers cytotoxic T-lymphocyte (CTL) activation and results
in immunosuppression [33]. In addition, mucins-associated sTn
antigens, expressed in various adenocarcinomas, inhibit the cy-
totoxic activity of natural killer (NK) cells, and the effect is
further enhanced in the presence of ammonium ions, which
are known inhibitors of NK cell function [35]. NK cells are
innate immune cells that exhibit cytolytic activity and kill can-
cer cells by the engagement of receptors present on their surface
upon cancer cell encounter.

DCs bridge innate and adaptive innate and adaptive im-
mune responses by regulated activation of antigen-specific T
lymphocytes. Increased TLR expression on DCs and other
APCs has been observed during infections and cancer [36,
37]. TLR activation and generation of mucin-specific immune
responses (through MHC class I or MHC class II) may vary
depending upon the extent and site of mucin glycosylation
[38, 39]. Moreover, the formation of extracellular mucinous
matrix by aberrantly glycosylated mucin masks various recep-
tors on the cell surface, hence obstructing ligand–receptor or
cellular interactions. For instance, membrane-bound MUC1
and MUC16 have been reported to suppress TLR-mediated
innate immune activation at the ocular surface, inhibiting secre-
tion of pro-inflammatory cytokines, such as IL-6, IL-8, and
TNF-α, in human corneal epithelial cells [40].

The ovarian tumor marker, MUC16, downregulates the ex-
pression of CD16 and CD94/NKG2A on NK cells, so that NK
cells are unable to use these receptors to bind and kill cancer
cells [41]. Selective binding of MUC16 to CD16+CD56dim NK
cells alters their phenotype to CD16−CD56br NK cells in ovar-
ian cancer patients, resulting in reduced cytolytic activity and
increased immune tolerance [42]. Inhibition of immune synap-
se formation between NK and cancer cells represents another
effective MUC16-mediated immunosuppressive mechanism.
MUC16 knockdown in mice demonstrated better synapse

formation, thereby enhancing the NK cell-mediated cytolytic
response [43].

2.2 Adaptive immune cell modulation

When the ability of mucins to elicit adaptive immune response
was tested using glycosylated and non-glycosylated OVA-
MUC1 fusion peptides, GalNac O-glycosylation resulted in
increased helper T-cell immune response and production of
MUC1-specific antibodies through MHC class II presentation
in HLA-A2 transgenic mice. However, the MHC class I pre-
sentation and CTL response were significantly impaired under
similar settings [38]. The extent of adaptive immune re-
sponses against mucin antigens is influenced by the expres-
sion of specific proteins or enzymes that regulate the process-
ing of cancer-associated mucins. Heat-shock protein 70
(HSP70), which is highly expressed in cancer cells, affects
the antigenic processing of MUC1 peptides depending upon
the extent and position of glycosylation [44]. In addition, the
presence of of cathepsins in low-density low-density
endosomes has been shown to catalyze site-specific MUC1
proteolysis and production ofMHC class II-restricted peptides
in DCs [31, 45]. The TR region of MUC1 contains three
predominant cleavage sites: Thr3-Ser4, Gly13-Ser14, and
His20-Gly1. However, O-linked glycosylation at either Thr3
or Ser4 sites renders MUC1 glycoforms unavailable for pro-
teolytic processing by DCs, probably due to cleavage site
masking [31]. Besides the O-glycosylation position, the num-
ber of GalNAc sugars linked to a particular residue in the TR
region also modulates the CTL response. The addition of a
GalNAc sugar to the central P5-Thr of MUC1 TR (MUC1–8-
5GalNAc) enables the peptide to anchor more tightly into the
groove, leading to its high affinity binding to MHC class I
H-2Kb and generation of a stronger CTL response in mice
challenged with MUC1-expressing tumors [46]. In contrast,
the addition of a second saccharide (Gal-GalNAc) to the same
P5-Thr residue completely abrogates the immunogenicity of
the processed peptide by inhibiting its binding to the MHC
class I molecule [47]. Human cathepsin-L and immuno-
proteasomes are involved in generation of these immunogenic
single GalNAc and non-immunogenic double GalNAc-linked
tumor-associated MUC1 octameric or decameric glycopep-
tides [SAPDT (GalNAc) RPAPG] [47]. Apart from their pro-
cessing and presentation by MHC molecules, mucins, due to
their multivalent nature, directly activate CTLs. The cytotoxic
T-cell line, W.D., established from a pancreatic cancer patient,
has been shown to recognize tumor-associated mucins inde-
pendent of MHC in pancreatic and breast cancer cell lines
[28]. Together, these studies demonstrate that the aberrant ex-
pression and glycosylation of cancer-associated mucins mod-
ulate both innate and adaptive immune effector functions, en-
abling cancer cell survival.
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3 Molecular basis of immune cell modulation
by tumor-associated mucins

Immunosuppression is a state of blunted immune response upon
antigen challenge due to activation of various anti-inflammatory
mediators and regulatory T-cells (Tregs). Likewise, mucus-
forming mucins not only provide a physical barrier but also
dampen the immunogenicity of gut antigens by discharging
tolerogenic signals [48]. Cancer cells release MUC1-associated
sTn antigens which bind Siglec-9 expressed on immature DCs
and cause elevated interleukin-10 (IL-10) and reduced IL-12
production. This limits the ability of DCs to activate a Th1 re-
sponse [49, 50]. Similarly, treatment of immature human
monocyte-derived DCs with recombinantMUC1-sialylated core
1 (ST) oligosaccharides promotes an IL-10hiIL-12lo DC pheno-
type, with increased CD1a and CD206 and reduced expression
of CD40/CD80, MHC class I, MHC class II, and CD83 differ-
entiation markers [51]. The DCs in MUC1 knockout mice ex-
press higher levels of co-stimulatory molecules, CD40, CD80,
and CD86, and secrete higher amounts of pro-inflammatory cy-
tokines, such as TNF-α and VEGF, compared to DCs from
MUC1 wild-type animals, leading to better stimulation of allo-
geneic naïve T-cells [52]. Glycosylated MUC1 purified from
ascitic fluid of pancreatic and breast cancer patients remains
confined to the early endosomes due to poor processing and
presentation, limiting DCs to the immature phenotype [45].
DCs also express MUC1 on their surface [53] which interferes
with TLR activation and downstream signaling events. Thus,
deletion of the muc1 gene produces strong TLR4- and TLR5-
mediated DC responses [52]. Similarly, MUC2 promotes a
tolerogenic DC phenotype by markedly reducing pro-
inflammatory cytokines and increasing the production of IL-10
and TGFβ1, resulting in an increased Treg population. MUC2
binds to galectin-3 on the DC surface, favoring the galectin-3-
Dectin-1-FcγRIIB receptor complex, resulting in the activation
of β-catenin and in turn inhibition of NF-κB activation [48]. In
contrast to the tolerogenic MUC1-siglec-9 interactions, MUC2-
siglec-3 binding ameliorates apoptosis of human monocyte-
derived DCs in culture, which can be rescued by the treatment
of cells with anti-siglec-3monoclonal antibody (mAb) or recom-
binant siglec-3 [50]. Apart fromDC inactivation,MUC4 expres-
sion on pancreatic cancer cells mediates Fas-independent apo-
ptosis of CTLs, resulting in dampening of effector immune func-
tion [54].

Contrarily, MUC1 has been shown to elicit specific CTLs
[55, 56] and T-helper immune responses in various epithelial
malignancies [57]. The presence of antibodies against MUC1
in carcinoma patients at the time of diagnosis strongly indi-
cates the generation of a humoral immune response against
MUC1 [22, 23]. Reduced glycosylation of MUC1 at its TR
and generation of immunodominant epitopes, such as
PPAHGVT, RPAPGS, and PDTRP [58, 59], contribute to
strong humoral and cell-mediated immune responses [25,

26]. An improved antibody response has been observed in
the case of peptide modifications with α-GalNAc, due to
saccharide-mediated structural changes in the MUC1 peptide
backbone [29, 60, 61]. Increased tumor-specific anti-MUC1
IgG2 subclass antibody titers correlated with improved overall
survival in breast cancer patients, supporting the potential of
MUC1-directed immunotherapy [62]. MUC1-mediated sup-
pression of human T-cell responses can be reverted by the
presence of IL-2 and anti-CD28 monoclonal antibodies [13].
In addition to the promising therapeutic utility of anti-MUC1
antibodies, MUC1-mediated CTL activation is important for
anti-tumor response in advanced stages of the disease.

4 Mucin-based immune modulation
facilitating metastasis

Under malignant conditions, mucins mediate interaction of
cancer cells with leukocytes in the tumor microenvironment
and facilitate the colonization of disseminated cells at distant
sites. Aberrant glycosylation leads to the expression of T, sTn,
sLea, and sLex structures on tumor-associated mucins, which
contribute to the metastatic ability of several tumor types.
These structures, present on mucins, such as MUC1, MUC2,
MUC4, and MUC16, act as ligands for various selectins.
Leukocytes and platelets express selectins on their surface
for adhesion [63]. Mucins, being carriers for selectin ligands,
form aggregates with these cells and promote metastasis [5,
64, 65]. MUC4, by its bulky glycosylated extracellular region,
protects the disseminated tumor cells from immune recogni-
tion by masking various immunogenic cell surface antigens
[5]. Leukocytes, especially neutrophils, help these tumor cells
colonize at metastatic sites in colon and breast cancer by
forming extracellular nets [66]. A recent study demonstrated
that MUC4 further enhances the survival and extravasation of
the disseminated tumor cells by physically interacting with
platelets and immune cells, such as macrophages and hema-
topoietic progenitors [67]. Loss of MUC2 expression is ob-
served in colon cancer and is associated with higher metasta-
sis. Loss of MUC2 stimulates increased IL-6 production by
tumor-associated macrophages, which in turn leads to in-
creased STAT3 signaling and epithelial-to-mesenchymal tran-
sition in colon cancer cells [68]. MUC5AC leads to the sup-
pression of anti-tumor function of neutrophils, promoting en-
hanced in vivo tumor growth and metastasis. Further, IL-8
from cancer cells is also responsible for neutrophil migration.
MUC5AC silencing significantly increases IL-8 production
and neutrophil activation in pancreatic cancer cells [69].
MUC16 increases metastasis by altering E-cadherin, N-
cadherin, and vimentin expression in ovarian cancer cells
[70]. MUC16 is involved in decreasing the expression of
NK cell stimulating protein CD16, leading to reduced NK cell
activity [41, 42]. NK cells have been implicated in reducing
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metastasis and their reduced activation might contribute to
increased metastasis byMUC16. MUC16 also inhibits forma-
tion of immune synapses between tumor and NK cells. This
immune protection provided by MUC16 might facilitate sur-
vival of ovarian cancer cells from cytotoxicity and promote
peritoneal metastasis [43]. Conversely, a recent study showed
the selective loss ofMUC16 neo-antigen reactive T-cell clones
in patients with pancreatic cancer during metastatic progres-
sion, resulting in reduced intratumoral and circulating T cell
reactivity [24]. Overexpression of MUC1 in various malig-
nancies is associated with increased tumor cell invasion and
metastasis. MUC1, despite being efficiently taken up by the
DCs, was not transported to late endosomes for degradation
and was lodged in early endosomes. However, the long-term
MUC1 retention in early endosomes did not affect the pro-
cessing and presentation ability of DCs for other antigens,
consistent with the generation of tumor-associated MUC1-
specific tolerance in metastatic patients [45]. In addition,
MUC1 has been shown to cooperate with the NF-κB signaling
pathway and enhance MMP-2 and MMP-9 activities, thereby
increasing cancer cell invasion and metastasis [71].

5 Targeting immunomodulatory effects
of mucins

5.1 Antibody-based approach

Altered glycosylation of mucins generates new epitopes that
form the basis of monoclonal antibody (mAb) based diagnosis
and targeted therapy. Various mAbs have been generated
against these altered mucins, which have shown potential in
diagnostics and therapeutics development in multiple cancers.
With the advent of new antibody engineering techniques, the
focus has shifted toward the generation of genetically
engineered antibody fragments with increased binding affinity
and tumor localization abilities [72]. Furthermore, these high-
affinity mAbs have been successfully used in immunotherapy
and radioimmuno-diagnostics for several malignancies [73–75].

5.1.1 Antibodies targeting immune response

Murine anti-MUC16 (CA125) mAb-B43.13 (Oregovomab) was
used to detect recurrence in ovarian cancer patients. Later, this
antibody was observed to form strong immune complexes with
circulating CA125 within 30 min of administration.
Subsequently, mAb-B43.13 injection reinforced the production
of more CA125-specific antibodies directed to different epitopes
by induction of strong antigen-specific humoral and cellular im-
mune responses. Furthermore, the generation of CA125-specific
B- and T-cell responses after treatment with mAb-B43.13 im-
proved survival in ovarian cancer patients [76, 77]. However, in
clinical trials, oregovomab as a mono-immunotherapy did not

achieve improved outcomes in patients with advanced stage
ovarian cancer [78]. Alternatively, an anti-idiotypic monoclonal
antibody (abagovomab) against oregovomab, mirroring CA125
in phase I or II clinical trial developed anti-anti-idiotypic anti-
bodies (Ab3) and MUC16 antibodies and the patients with Ab3
showed better survival. Further, the administration of CA125
fusion protein with interleukin 6 increased the production of
Ab3 through CA125-specific B-cells [79].

Similarly, a MUC1-specific murine antibody, known as
mAb-HMFG1, was generated against the PDTR epitope in
the extracellular TR region of MUC1 [80]. This antibody
was humanized (huHMFG1) and clinically tested for the treat-
ment of breast cancer [81]. The phase II clinical trials of
huHMFG1 (AS1402) on breast cancer patients were
discontinued due to worse response rates for early disease
progression and its poor efficacy [82]. Moreover, the phase
III clinical trials following treatment with radiolabeled
HMFG1 in ovarian cancer patients failed to reach endpoints
of increased time to relapse or patient survival [83].
Pankomab, also known as GT-MAB 2.5-GEX, targets a car-
bohydrate-induced, conformational tumor-associated epitope
present on MUC1 (TA-MUC1). This unique feature of
Pankomab enables it to distinguish between tumor-specific
MUC1 expression and physiological MUC1 expression [84].
Major properties of this antibody include the following: (a)
rapid internalization; (b) toxin-mediated elimination of tumor
cells; and (c) strong induction of an ADCC response.
Additionally, Pankomab does not bind to peripheral mononu-
clear cells and exhibits high tumor specificity and affinity
[85]. As the work on Pankomab progressed, a humanized
version of Pankomab (hPankomab) was developed for poten-
tial clinical application. The safety and tolerability of
PankoMab-GEXwas tested in phase I clinical trials in patients
with advanced metastatic carcinomas. It was safely tolerated
and showed anti-tumor response for advanced disease. Out of
60 evaluable patients, one ovarian cancer patient showed com-
plete response and 19 patients were confirmed for the stable
disease. Based on these findings, PankoMab-GEX was select-
ed for pre-clinical efficacy in phase II trials [86]. In addition,
immunohistochemistry studies of hPankomab, which ana-
lyzed 137 clinical samples from various carcinomas and
non-epithelial malignancies, revealed the highest reactivity
with carcinomas originating from glandular or squamous ep-
ithelium. Moderate reactivity was also observed in hepatocel-
lular carcinomas but not with sarcomas [87].

Anti-mucin mAbs have also been exploited for targeted
delivery of drug conjugates. Of the two anti-MUC16 mAbs,
3A5 and 11D10, the former was found to target the TR of
MUC16, showing comparatively greater reactivity and more
effective delivery of the microtubule-disrupting cytotoxic
drug Monomethyl auristatin E (MMAE) to cancer cells [88].
Phase I clinical trial of a 3A-MMAE conjugate DMUC5754A
in unresectable ovarian and pancreatic cancer patients
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revealed minimal cytotoxicity and anti-tumor activity for
MUC16-expressing tumors. In addition to murine and human-
ized antibodies, NPC-1C, a chimeric IgG1 mAb, recognizes a
tumor-associated MUC5AC antigen expressed in colorectal
and pancreatic cancer tissues. Reactivity tests of NPC-1C
against human tumor cells positively stained 52–94% of co-
lorectal and pancreatic cancer cell lines, 43% of colon and
48% of pancreatic cancer tissues with no reactivity observed
against normal colon or pancreatic tissues [89].

5.1.2 Mucin-based radioimmunotherapy

Radioimmunotherapy (RIT) is a promising approach for
antigen-specific targeting and delivery of radiation into tu-
mors with the help of native antibodies or their immunologi-
cally active bonsai fragments (Fig. 2). Successful RIT relies
on both the expression of target antigens within the tumor and
the epitope accessibility to the antibodies [72]. The
radiolabeled antibodies target primary tumors, disseminated
circulating cancer cells, newly developing metastatic niches,
and residual malignant cells in antigen-specific manner.
Successful clinical testing of RIT in lymphomas and leukemia
with radiolabeled antibodies against CD20, CD33, CD37,
C45, and HLA-DR and additional cell markers opened ave-
nues for other malignancies, including solid tumors [90].
Cancer-specific expression of mucins and the epitope multi-
plicity in TRs make mucins appropriate targets for RIT devel-
opment [79, 91]. Mucin-based RIT began with optimization
and development of mAbs against epithelial mucin [92], in-
cluding mucin expressed on ovarian cancer [79, 93] and breast
cancer [94]. Anti-MUC1 antibodies have been used against
several epitopes with variable success rates in tumor regres-
sion and survival [95–103]. RIT-based clinical trials using
anti-MUC1 are listed in Table 1. Peterson et al. developed

anti-mucin mAbs that recognized the overlapping epitopes
in the TR of breast cancer mucin. One of these mAbs, Mc3,
when conjugated with 90Y, significantly increased complete
response rates in a breast cancer xenograft model [109].
Additionally, another monoclonal antibody PAM4, was eval-
uated in pancreatic cancer preclinical and clinical studies for
both targeting as well as therapeutic efficacy using different
radioisotopes [103, 110, 111]. Earlier this antibody was
claimed to be MUC1-specific. Subsequent studies suspected
MUC4 as its target antigen but a recent study by Gold et al.
showed MUC5AC as a specific mucin to which PAM4 reacts
[108]. In addition, studies in xenograft models and pancreatic
cancer patients showed that, when combined with
gemcitabine, 90Y-PAM4-based RIT prolonged survival and
increased tumor regression [112–114]. Interestingly,
gemcitabine treatment was reported to radiosensitize pancre-
atic tumors and enhance the therapeutic response to radiation
[114] . Fur ther, 90Y-humanized PAM4-tet raxetan
(clivatuzumab tetraxetan) with concurrent low-dose
gemcitabine showed clinical feasibility in pancreatic cancer
patients with metastasis [107].

Previously, combined therapeutic effects of RIT with
IFN-γ in colon cancer [115] and with cisplatin in ovarian
cancer [116] were observed in murine models. In addition,
radiolabeled antibodies used in combination with chemother-
apeutic agents either demonstrated tumoricidal effects or fa-
cilitated better penetration and distribution of radio-
conjugated antibodies inside tumors, and improved therapeu-
tic responses in multiple cancer types [117–119]. Several mu-
cins, like MUC4, MUC5AC, MUC5B, MUC16 and MUC17,
have also been shown to be differentially expressed in various
cancers and, therefore, hold potential as targets for RIT. For
instance, MUC4 expression significantly correlates with pan-
creatic cancer progression, while remaining absent in normal

Primary Tumors 

expressing mucins 

mAbs/active fragments (mucins) 

Macromets

Micromets

CTCs

DTCs

Targeting Metastasis

mAb mAb mAb

Blood vessel 

Fig. 2 Stages for ADCC, ADC or
radiolabeled anti-mucin antibody
mediated targeting during cancer
progression. Different stages (1-
5) during cancer progression and
metastasis that are vulnerable to
targeting by mucin specific
antibody/active fragment(s).
ADCC, ADC, and RIT are all
dependent on antibody specificity
and antigen expression in a
particular cancer type. In addition,
RIT is shown to be suitable for
targeting post resection residual
disease (6). Abbreviations:
Circulatory tumor cells (CTCs);
disseminated tumor cells (DTC);
monoclonal antibodies (mAbs).
Organ structures are adapted from
ChemDraw drawing software
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pancreas, and MUC4 can be selectively targeted because of
the availability of specific antibodies against the TR and non-
TRs [120–122]. However, antibodies generated against syn-
thetic mucin peptide epitopes are sometimes unable to recog-
nize the native epitope due to differential glycosylation of
mucins. Further, the high molecular weight of antibodies and
host compatibility are among the major challenges in devel-
opment of successful RIT. Therefore, antibody engineering to
develop immunologically active recombinant Ab fragments,
as well as humanization of antibodies derived from different
hosts, are important for the clinical success of RIT. Engineered
antibodies show better therapeutic utility due to reduced mo-
lecular size, better pharmacokinetics, and lower immunoge-
nicity [123–125]. In summary, overexpressed mucins are suit-
able for antibody-mediated targeting, and development of
mucin-targeting RIT approaches might significantly enhance
existing therapeutic regimens. These new mucin-based strate-
gies are expected to overcome some of the challenges associ-
ated with cancer progression, metastasis, and post-surgical
recurrence.

5.2 Mucin peptide-based vaccines

Ever since the clinical safety of MUC1 peptide vaccines was
demonstrated [126], a number of clinical trials have tested
synthetic MUC1 peptide vaccines. Potent anti-tumor vaccines
necessitate the induction of strong CD8+ and CD4+ T cell
responses and the generation of long lasting immunological
memory. Avaccine consisting of 5 repeat sequences ofMUC1
peptide fused with mannan polysaccharide was clinically test-
ed in 25 patients with a variety of cancers. Despite eliciting
MUC1-specific antibodies in 13 patients, the vaccine was un-
able to induce significant CTL responses [55]. Similarly, a
clinical trial of MUC1 peptides in combination with various
adjuvant therapies failed to promote T-cell activation in spite
of generating high titers of MUC1 antibodies [127, 128].
Phase II studies of immunization with MUC1 peptide demon-
strated increased survival in patients with non-small cell lung
cancer (NSCLC). Liposomal trafficking enhanced antigen up-
take and presentation of the MUC1 peptide by APCs, leading
to the activation of MUC1-specific T-cells [129]. BLP25 is a
liposomal MUC1 vaccine (L-BLP25) consisting of a 25-mer
MUC1 sequence (STAPPAHGVTSAPDTRPAPGSTAPP),
BL25 lipopeptide, TLR4 agonist monophosphoryl lipid A
(MPLA) and three lipid adjuvants [130]. BLP25 stimulated
peripheral blood lymphocytes, resulting in strong CTL re-
sponses in a phase III clinical trial for NSCLC patients
[131]. TG4010, a recombinant virus vaccine encoding
MUC1 and IL-2, induced reasonable MUC1-specific CD4+

and CD8+ T cell activity in a phase II clinical trial for meta-
static renal clear-cell carcinoma [132]. Furthermore, TG4010
did not cause significant adverse events, while eliciting prom-
ising clinical responses when tested in patients with various

cancers [132–134], including lung cancer [135]. When given
in combination with chemotherapy, synergistic enhancement
of the TG4010 efficacy resulted in better patient survival [135,
136]. MUC1-derived glycopeptides containing TAAs coupled
with bovine serum albumin have also been evaluated as an
anticancer vaccine [137]. Tripartite vaccine candidates
consisting of MUC1-derived glycopeptides, a promiscuous
T-helper epitope, and a TLR2 agonist elicited high-titer IgG
antibodies recognizing cancer cells expressing those glyco-
peptides in vivo [138]. Further, these tripartite vaccine candi-
dates induced a robust CTL response when lymph node CD8+

Tcells were incubated with peptide-pulsed DCs. Moreover, in
a humanized mouse model for mammary cancer, engineered
tripartite vaccines generated an antibody-dependent, cell-
mediated cytotoxic (ADCC) response against tumor-
associated MUC1 antigens [139]. Apart from MUC1, a study
with MUC4-positive HCT-116 colorectal cancer cells showed
in vitro induction of a MUC4 peptide-specific CTL response
using candidate HLA-A*0201-binding peptides, establishing
the suitability of a MUC4 peptide (LLGVGTFVV) in cancer
immunotherapy [140].

5.3 Cell-based approaches

In contrast to vaccination, adoptive immune cell therapy (AT)
is another immunotherapeutic approach, which specifically
exploits the MUC1-induced T-cell response. AT involves au-
tologous transplantation of ex vivo activated T-cells stimulated
byMUC1 peptide-pulsed DCs andmacrophages. Despite sev-
eral initial failures, adoptive transfer of MUC1-specific CD4+

T-cells secreting IFN-γ and IL-10 showed the appearance of a
memory cell phenotype, and enhanced T-cell survival, effec-
tively increasing patient survival in ovarian cancer. In addi-
tion, the ratio of natural and inducible T-regs after immuniza-
tion was responsible for the long-term anticancer activity and
immune memory response [141]. Multiple studies have eval-
uated the potential of adoptive transfer of MUC1-pulsed DCs
in clinical trials. Twelve pancreatic and biliary cancer patients
after resection were immunized with MUC1 peptide-loaded
DCs, and 4 out of the 12 patients survived without disease
recurrence [142]. Administration of autologous DCs
transfected with MUC1 cDNA increased IFN-γ-secreting
CTLs two- to ten-folds in 10 pancreatic, breast, and papillary
cancer patients in a phase I/II clinical trial [143]. Adoptive
transfer therapy by co-administration of autologous 100-mer
TR MUC1 peptide-loaded DCs and CTLs in twenty pancre-
atic cancer patients with unresectable or recurrent tumors re-
sulted in a complete response in one patient with multiple lung
metastasis while 5 patients showed stable disease with mean
survival of 9.8 months [144]. Genetically engineered T-cells
expressing mucin-specific chimeric antigen receptors (CARs)
have also been exploited as therapy. Anti-cancer-associated
MUC1 Tn-specific (Anti-Tn-MUC1) CAR T-cells show
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potential target specific cytotoxicity and growth inhibitory ef-
fect on T cell leukemia and pancreatic cancer xenograft models
[]. Apart from MUC-1, tumor-associated glycoprotein (TAG)-
72-specific CAR T-cells were tested in phase I clinical trials in
patients with metastatic colorectal cancer. The study demon-
strated the safety of CART72 cells in the patients and use of
fully human CAR constructs for better efficacy [145].

6 Conclusion

Mucins expressed by epithelial cells are involved in a plethora
of biological activities under normal and pathological condi-
tions. Among others, immunomodulation by mucins is in-
volved in various inflammatory and cancerous conditions.
Aberrant glycosylation and extensive splicing of carcinoma
mucins result in the generation of cancer-specific B- and T-
cell epitopes, providing opportunities for vaccine design.
Further, the presence of neo-antigen reactive CTL clones re-
sponsible for long-term survival in cancer patients under-
scores the protective role of anti-mucin adaptive immunity.
However, immunosuppression by multiple mechanisms and
stearic hindrance caused by mucins shielding cancer-
associated epitopes facilitate tumor progression and dissemi-
nation and highlight their dichotomous role in cancer biology.
The attributes of mucins, like extensive glycosylation, diffi-
culty in their purification, secretion, or cleavage of immuno-
genic epitopes, lack of antigen-specific neutralizing antibod-
ies, and the unavailability of appropriate genetically
engineered mouse models, pose a major challenge in under-
standing their role in immune modulation. The success in
generation of MUC1 and MUC4 knockout murine models,
humanization of mucin-specific antibodies, discovery of im-
munogenic potential of MUC16-specific neo-antigenic T-cell
clones in long-term patient survival, and clinical trials using
MUC1-specific chimeric antigen receptor T-cell (CAR-T
cell)-based therapeutic modalities are among the major ad-
vances in establishing the therapeutic suitability of mucins in
cancer. Along these lines, cell-surface targeting by antibody–
drug conjugate using humanized mAb 3D1 against non-shed
membrane-retained MUC1 C-terminal subunit conjugated to
MMAE demonstrated the efficacy of this antibody in success-
ful delivery of payload to the cancer cell both in vitro and in
vivo [146]. Recently developed high-throughput technologies,
such as single-cell RNA sequencing, analysis of gene
expression-specific molecular signatures associated with
anti-tumor immune response, whole-exome sequencing, and
in silico neo-antigen prediction, will provide more in-depth
understanding regarding the appropriate utilization of mucins
in immunotherapy. This will also provide better understanding
regarding highly immunogenic mucin-specific epitopes that
can be utilized as vaccines either in conjunction with check-
point inhibitors or CAR-T cell therapy.
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