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Abstract The clinical efficacy of proteasome inhibitors in the
treatment of multiple myeloma has encouraged application of
proteasome inhibitor containing therapeutic interventions in
(pediatric) acute leukemia. Here, we summarize the position-
ing of bortezomib, as first-generation proteasome inhibitor,
and second-generation proteasome inhibitors in leukemia
treatment from a preclinical and clinical perspective.
Potential markers for proteasome inhibitor sensitivity and/or
resistance emerging from leukemia cell line models and clin-
ical sample studies will be discussed focusing on the role of
immunoproteasome and constitutive proteasome (subunit) ex-
pression, PSMB5 mutations, and alternative mechanisms of
overcoming proteolytic stress.
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1 Introduction

Hematological malignancies comprise of many subgroups in-
cluding chronic and acute leukemia, lymphoma, and multiple
myeloma (MM). In this review, we focus exclusively on acute

leukemia, which can be divided into two major subgroups:
acute lymphoblastic leukemia (ALL) and acute myeloid leu-
kemia (AML). In children, the majority of leukemia cases are
ALL [1], while AML is more prevalent in adults with leuke-
mia [2]. With a 5-year overall survival (OS) of 83–94% [3],
the prognosis of pediatric ALL is considerably better as com-
pared to adults (5-year OS 15–35%, depending on age) [4]. A
similar difference in prognosis between children and adults is
seen in AML with a 5-year OS of, respectively, 65–70% and
10–45% (depending on age) [5]. The main reasons for treat-
ment failure in both children and adults are intrinsic or ac-
quired drug resistance in a subset of leukemia cells that are
responsible for refractory disease or the development of re-
lapse, which have a dismal prognosis. Since the (emergence
of) drug resistance is one of the limiting factors that impacts
long-term efficacy of anti-leukemic drugs, the search for new
anti-leukemic drugs with novel mechanisms of action is an
ongoing challenge.

Most anti-leukemic drugs are targeted against DNA repli-
cation to interfere with abundant cell proliferation (Fig. 1). For
leukemia cells to expand, they also rely on a very high protein
turnover. In normal cells, with normal chromosome numbers
and normal protein balance, protein homeostasis is maintained
mainly by the ubiquitin-proteasome system (UPS) [6].
Besides rapid cell growth, leukemia cells also feature many
chromosomal and molecular aberrations, including chromo-
somal translocations (e.g., t(8:21), Inv(16)), hypo- and hyper-
diploidy, activating mutations (e.g., FLT3/ITD, cKIT), and
splicing defects, the latter leading to many different protein
isoforms [7, 8]. Together, this leads to an aberrant protein
expression, which imposes an inherent heavy burden on the
UPS. These considerations set the stage for therapeutic inter-
ventions of UPS-targeting with proteasome inhibitors (PIs)
[9], of which bortezomib (BTZ) as the first prototypical PI
proved successful in therapy-refractory multiple myeloma
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(MM) [10]. Currently, first line treatment of MM includes
BTZ and extends to clinical evaluations of next-generation
PIs. Updates of PI treatment in MM have been subject of
several recent dedicated reviews [6, 11, 12].

This reviewwill primarily focus on the application of PIs in
acute leukemia, in particular refractory disease. Since many
novel drugs with different mechanisms of action are currently
available, it is crucial to select those patients for certain PI who
will benefit from the treatment. Therefore, it is of clinical
relevance to understand the mechanism of action of PIs in
leukemia and identify parameters that can help to define
(non)-responsiveness to PIs. To this end, this review provides
a comprehensive overview on the molecular mechanisms of
action and resistance to PIs in leukemia as well as current
applications of PIs in clinical trials in leukemia patients.

2 Proteasome inhibitors in leukemia

In the context of hematological cells, it is of importance to
recognize that the proteasome composition is highly skewed
for > 70% towards immunoproteasomes (iP) over constitutive
proteasomes (cP) [13, 14]. The three catalytically active β-
subunits (β1, β2, and β5) of the constitutive proteasome
and the immunoproteasome counterparts β1i, β2i, and β5i
harbor caspase-like, trypsin-like, and chymotrypsin-like pro-
teolytic activity, respectively (Fig. 2).

iP expression is markedly induced upon stimulation by in-
flammatory cytokines such as IFNγ and TNFα [16] (Fig. 2a, b).
One of the primary functions of iP is to broaden the spectrum of
generating antigenic peptides for presentation on MHC class I
molecules [15, 17], but also additional functions for iPs have
been defined, e.g., clearance of polyubiquitinated protein aggre-
gates emerging under inflammatory oxidative stress conditions
[15, 18–23] (Fig. 2c). Given the abundance of iP in leukemia
cells, selective targeting of iP is an attractive treatment option
[24].

BTZ and next-generation PIs [25, 26] have been evaluated
in preclinical and clinical studies as potential anti-leukemia
drugs. An overview of their properties is provided in
Table 1. BTZ is a reversible PI primarily targeting the β5
catalytic active subunit of the proteasome. Next-generation
PIs differ from BTZ by being irreversible inhibitors (e.g.,
carfilzomib (CFZ)), favoring oral administration (e.g.,
ixazomib (IXA)), attenuating hematological and neurological
side effects and overcoming BTZ-associated resistance mo-
dalities [43–45]. Moreover, these next-generation PIs display
selectivity for cP and iP, and subunits other than β5 [27, 28,
46, 47]. Initial ex vivo activity studies of BTZ and next-
generation inhibitors of cP (CFZ, ONX-0912) and iP (ONX-
0914) revealed considerable inter-patient variabilities but
overall greater potency in ALL than AML cells [48].
Moreover, BTZ, CFZ, and ONX-0912 were 3–10-fold more
potent than the iP inhibitor ONX-914. Interestingly, this study

Fig. 1 Overview of cytotoxicity mechanism of chemotherapy drugs commonly used in acute leukemia treatment
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also showed that a higher ratio of immunoproteasome over
constitutive proteasome levels in leukemia cells was a good
indicator for PI sensitivity. An overview of selected preclinical
studies of several PIs in ALL and AML cell lines and primary
cells is summarized in Table 2. Overall, these data show the
relevance of preclinical studies to unravel the individual spe-
cific mechanisms of action of PIs related to apoptosis induc-
tion. In addition, these data reveal promising combination
strategies for improvement of successful PI therapy.

3 Markers for PI (BTZ) sensitivity/resistance
in leukemia cell lines

As with any new treatment strategy, selection of patients who
will benefit from the treatment is essential.With respect to PIs,
studies with leukemia cell lines can help to define markers for
response, long-term efficacy, and emergence of resistance to
PIs. Resistance mechanisms often reveal critical processes
such as targeted and compensatory mechanisms that leukemia
cells harbor to overcome the effects of PIs. A large number of
studies have followed the approach of exposing leukemia cells

to stepwise increasing concentrations of PIs (mostly BTZ) and
characterize cells with acquired resistance [68–71]. Figure 3
depicts an overview of molecular mechanisms of resistance in
PI/BTZ-resistant leukemia cell lines [44, 46, 72]. The most
common mechanisms are discussed below.

3.1 Upregulation of proteasomal subunits

Upregulation of the primary target is a well-known response of
cells exposed to drugs. Likewise, upregulation of proteasomal
subunits, and the β5 subunit in particular, is frequently ob-
served in BTZ-resistant leukemia cell lines (reviewed in [44,
46]) indicating its role in BTZ resistance. Consistently, CGH
analysis of BTZ-resistant cell lines revealed amplification of
the PSMB5 gene with variability in size and extent of the
amplification of chromosome 6 [73]. Remarkably,
immunoproteasome subunit levels are often found to be de-
creased in BTZ-resistant leukemia cell lines [16, 68, 71]. The
resulting decrease in immuno- / constitutive proteasome ratio
and alterations in subunit composition has been linked to a
diminished BTZ sensitivity [74, 75]. Interferon gamma
(IFNγ) is an efficient inducer of immunoproteasome

Fig. 2 Subunit composition and inhibitors targeting of constitutive and
immunoproteasomes. a 20S core proteasome and b fully assembled
immunoproteasome with various cap proteins. c Clinically active and

experimental inhibitors of constitutive- and/or immunoproteasome.
Adapted from Verbrugge et al. 2015 [15]
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expression and partly restored BTZ sensitivity in BTZ-resistant
leukemia cells [16]. Beyond BTZ-resistant cells, IFNγ also
enhanced BTZ sensitivity in a panel of B cell lines by 50%
[76]. Together, these data underscore the importance of
immuno- and constitutive proteasome subunit composition in
BTZ sensitivity and resistance in leukemia cells.

3.2 PSMB5 mutations

Molecular analysis of the proteasome subunits of PI-resistant
leukemia cell lines revealed several mutations in exon 2 of the
PSBM5 gene encoding the highly conserved binding pocket
region for PIs within the β5 subunit of the proteasome. This
highly conserved region appears to be a mutation Bhot spot^
when cells are exposed to BTZ for a prolonged period.
Figure 4 shows an overview of PSMB5 mutations in PI-
resistant cell lines, including non-hematological malignancies.

All mutations result in amino acid alteration in, or in the
close vicinity of, the PI binding pocket [82]. In fact, except for
the A247G mutation which introduces a Thr21Ala substitu-
tion, all mutations result in amino acid alterations in the S1
pocket of the β5 subunit with Ala49 being the most affected
amino acid. This specificity pocket is a highly conserved part
of the subunit and responsible for recognizing the peptide
bond of the substrate. It is also the site that has to be cleaved
and determines the specificity as well as facilitates the binding
of the P1 side chain of BTZ [82]. In silico analysis provided
evidence for hindered binding of BTZ by the majority of the
mutations, including the Thr21Ala amino acid alteration po-
sitioned outside of the S1 pocket but within the BTZ binding

pocket [82]. The only exceptions were the Met45Ile and
Met45Val substitutions, which do not directly interact with
BTZ. However, Met45 is known to contribute to the specific-
ity of the S1 pocket and upon binding, Met45 undergoes a
conformational change and shifts the direction of its side chain
towards Cys52 vicinity. Alterations in this amino acid might
therefore hinder this conformational change and contribute as
well to decreased BTZ binding. Docking the LLVY-AMC
substrate in silico in the crystal structure of the β5 subunit
supported the hypothesis of decreased binding of the substrate
in the mutated binding pocket.

There are two strong indications that PSMB5mutations are
related to PI resistance. First, from marine biology studies,
characterization of proteasome subunits of the PI
Salinosporamide A (NPI-0052, Marizomib) producing
actinobacterium Salinispora tropica revealed the same
Ala49Val and Met45Phe mutations in the β5 subunit homo-
logue as in BTZ-resistant leukemia cells. In S. tropica, these
mutations conferred Bself-resistance^ to Salinosporamide A
[80]. Second, acquired resistance to the immunoproteasome
inhibitor in PR-924 was not associated with anymutation(s) in
immunoproteasome subunits, but rather provoked PSMB5
mutations, i.e., Met45Ile, Ala49Thr, and Met45Val [29].
Taken together, inhibition of the β5 subunit is essential for
the anti-leukemia effect of PIs and PSMB5 mutations emerg-
ing after prolonged PI treatment attenuate the inhibitory po-
tency and confer resistance in leukemia cells. PSMB5 muta-
tions have thus far not been identified in patients receiving
PI therapy and it has been challenged whether these muta-
tions hold clinical relevance for PI resistance. However, until

Table 1 Overview of current proteasome inhibitors

Class Compounds Binding to
proteasome

Specificity and mechanisms

Peptide aldehydes MG-132, ALLnL, ALLnM, LLnV, PSI Reversible Interact with the catalytic threonine
residue of the proteasome.

Peptide boronates Bortezomib, MG-262, PS273
CEP-18770 (delanzomib)
MLN9708/MLN2238 (ixazomib citrate/ixazomib)

Reversible Selective proteasome inhibitors. Interact
with the catalytic threonine residue of
the proteasome.

Peptide vinyl sulfones NLVS, YLVS Irreversible Interact with β-subunits of the proteasome.

Peptide epoxyketones Dihydroeponemycin
Epoxomycin
PR-171 (carfilzomib)
PR-047 (ONX 0912, oprozomib)

Irreversible Selective proteasome inhibitors. Bind
specifically to β5-subunit of the
proteasome.

PR-957 (ONX 0914)
PR-924

Selective immune proteasome inhibitors. Bind
to immune β-subunits of the proteasome.

β-Lactones Lactacystin Irreversible Relatively specific but weak proteasome
inhibitors. Binds to β-subunits of the
proteasome.

NPI-0052 (marizomib) Irreversible Binds to β-subunits of the proteasome.

Abbreviations: MG-132 Carbobenzoxy-L-leucyl-L-leucyl-leucinal, ALLnL N-acetyl-L-leucyl-L-leucyl-L-norleucinal, ALLnM N-acetyl-L-leucyl-L-
leucyl-Lmethioninal, LLnV N-Carbobenzoxy-L-leucyl-L-norvalinal, PSI N-carbobenzoxy-L-isoleucyl-L-γ-t-butyl-L-glutamyl-L-alanyl-L-leucinal,
Leu-Leu-vinyl sulfone, MG-262N-benzyloxycarbonyl-L-leucyl-L-leucyl-L-leucyl boronic acid. See for details [13, 27–42]
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Table 2 Selection of preclinical studies of proteasome inhibitors in leukemia

Proteasome inhibitors Leukemic cells Study results and mechanisms involved Refs.

Several AML cell line HL60 Induction of apoptosis. Increase of p27Kip1.
Activation of cysteine proteases.

[49]

PSI CML, AML, and ALL cell lines Induction of apoptosis in all cell lines. Enhanced
taxol and cisplatinum cytotoxicity. PSI was
more active on leukemic than on normal CD34+

bone marrow progenitors.

[50]

Lactacystin AML cell line U937 Lactacystin combined with PKC activator bryostatin
enhanced apoptosis.

[51]

Lactacystin, MG-132 Primary CLL cells Induction of apoptosis in both GC sensitive and
resistant cells. Activation of cysteine proteases.
Apoptosis is blocked by caspase antagonist
zVADfmk. Inhibition of NF-κB.

[52]

MG-132, LLnL, lactacystin AML and ALL cell lines, primary AML cells Synergistic interactions between PI and cyclin
-dependent kinase inhibitors flavopiridol and
roscovitine. Downregulation of XIAP, p21CIP1,
and Mcl-1.

[53]

Bortezomib Primary CLL cells Induction of apoptosis associated with release
of SMAC and cytochrome c.

[54]

Bortezomib CML, AML, and ALL cell lines Synergistic with flavopiridol. Blockade of the IκB/NF
-κB pathway. Activation of the SAPK/JNK cascade.
Reduction in activity of STAT3 and STAT5.

[55]

Bortezomib Primary CLL cells Dose-dependent cytotoxicity of bortezomib. Additive
effect with purine nucleoside analogues cladribine
and fludaribine. CLL cells more sensitive than
normal lymphocytes.

[56]

Bortezomib AML and ALL cell lines, primary pediatric
AML and ALL cells

Lymphoblastoid, CML and AML cell lines. Bortezomib
induced apoptosis and acted at least additive with
dexamethasone, vincristine, asparaginase, cytarabine,
doxorubicin, geldanamycin, HA14.1, and trichostatin A.

[57]

Bortezomib AML cell lines Synergistic with tipifarnib. The combination overcomes
cell adhesion-mediated drug resistance.

[58]

Bortezomib Pediatric ALL xenocraft model In vitro and in vivo activity of bortezomib against primary
pediatric ALL cells in a xenocraft mouse model.

[59]

Bortezomib, PSI CML and AML cell lines PSI enhanced toxicity of daunoblastin, taxol, cisplatinum,
and bortezomib. PSI and bortezomib suppressed
clonogenic potential of AML and CML more than
that of normal bone marrow (NBM) progenitors.
Bortezomib inhibited the clonogenic potential of
CML and NBM more effectively.

[60]

Carfizomib Primary AML and ALL cells Inhibits proliferation and induces apoptosis AML,
inhibits proliferation in ALL.

[61]

Carfilzomib, bortezomib AML cell lines and primary AML cells Synergistic effect on proteotoxic stress together with
the protease inhibitors ritonavir, nelfinavir, saquinavir,
and lopinavir.

[62]

Carfilzomib, bortezomib ALL cell lines in vitro and in xenograft model Proteasome inhibitors evoke latent tumor suppression
programs in pro-B MLL leukemia through MLL-AF4.

[63]

Carfilzomib MM, AML, Burkitt’s lymphoma cell lines Induces proapoptotic sequelae, including proteasome
substrate accumulation, Noxa and caspase 3/7 induction,
and phospho-eIF2α suppression.

[13]

Marizomib ALL, AML, and CML cell lines and in
xenograft model

Induces caspase-8 and ROS-dependent apoptosis alone
and in combination with HDAC inhibitors.

[64, 65]

Marizomib, bortezomib AML and ALL cell lines Anti-leukemic activity, synergistic in combination
with bortezomib.

[31]

ONX 0914 AML and ALL cell lines Growth inhibition, proteasome inhibitor-induced apoptosis,
activation of PARP cleavage and accumulation of
polyubiquitinated proteins.

[16]

PR-924 AML and ALL cell lines Growth inhibition, immune proteasome inhibition,
apoptosis, activation of PARP cleavage.

[29]

Ixazomib Primary CLL cells Annexin-V staining, PARP1 and caspase-3 cleavage
and an increase in mitochondrial membrane
permeability, apoptosis was only partially blocked
by the pan-caspase inhibitor z-VAD-fmk.

[66]

Updated from Franke et al. [67]

Abbreviations: PSI N-carbobenzoxy-L-isoleucyl-L-γ-t-butyl-L-glutamyl-L-alanyl-L-leucinal, LLnV N-Carbobenzoxy-L-leucyl-L-norvalinal, LLnL N-
acetylleucylleucylnorleucinal, MG-132 Carbobenzoxy-L-leucyl-L-leucyl-leucinal, GC glucocorticoid, PKC protein kinase C
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now, longstanding treatment with the first-generation PI was
hardly applied in clinical practice. This may change with the
introduction of second-generation and oral PI’s allowing for
long-term treatment.

3.3 Alternative protein disposal

Gene expression profiling of BTZ-resistant leukemia cells
identified myristoylated alanine-rich C-kinase substrate
(MARCKS) as being highly upregulated. MARCKS is an
80-kDa protein that is involved in multiple exocytosis path-
ways (reviewed in [83]). In fact, in BTZ-resistant leukemia
cells, MARCKs protein co-localized with intracellular vesi-
cles that contained polyubiquitinated proteins and which were
formed upon exposing cells to increasing concentrations of
BTZ. The ubiquitin-containing vesicles have been described
before [84], and in co-cultures, it was shown that after extru-
sion of the vesicles, they were taken up in proteasome-
proficient acceptor cells [73]. MARCKs may thus contribute
to BTZ resistance by facilitating exocytosis-mediated extru-
sion of polyubiquitinated proteins to overcome proteolytic
stress imposed by BTZ. MARCKs upregulation is not restrict-
ed to BTZ-resistant leukemia cells, but was also observed in
leukemia cells with acquired resistance to second-generation

Fig. 3 Overview of known molecular mechanisms involved in BTZ
resistance. a Proteasome related resistance: relative down regulation of
immunoproteasome as compared to constitutive proteasome (1) together
with absolute upregulation of the constitutive proteasome (2) and mutation
in the β5 subunit of the proteasome (3). b Alternative stress handling:
upregulation of heat shock proteins (4) or changes in redox metabolism
(5) which can prevent oxidative stress. Alternative handling ubiquitinated
protein: exocytosis of ubiquitinated proteins in MARCKS-associated vesi-
cles (6), and protein degradation through autophagy (7). c Activation pro-

survival signaling: intrinsic activation of pro-survival pathways, e.g., AKT,
NFκB, orMET (8) or through stimulation by direct interaction with stromal
cells (9) or indirectly through soluble growth factors or interleukins (10). d
Decreased apoptosis: downregulation (11) or mutation (12) of pro-
apoptotic proteins. Finally, e, extrusion of BTZ via multidrug resistance
efflux pump MDR1/Pgp (minor effect, more pronounced in CFZ resis-
tance) (13). CP, constitutive proteasome; IP, immunoproteasome; MDR1,
multidrug resistance protein 1; HSP, heat shock proteins; IGF1, insulin-like
growth factor 1; IL, interleukin

Fig. 4 Clustering of PSMB5 mutations in several BTZ-resistant in vitro
model systems [68–71, 77–81]
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PI, e.g., Salinosporamide A (Marizomib) and the
immunoproteasome inhibitor PR924.

Another alternative protein disposal that is often related to
drug resistance is autophagy. This process has been linked to
BTZ resistance in several tumor models [85–91], although it
was not indicated in MARCKs overexpressing PI-resistant
leukemia cells [73]. Inhibition of autophagy through different
mechanisms including calpain inhibitor [86], downregulation
of heat shock protein B8 (HSPB8) [87], B cell lymphoma 2-
interacting mediator of cell death (BIM) upregulation [90],
tipifarnib [85], or (hydroxy)chloroquine [92, 93] increased
BTZ sensitivity in a MM model. In addition, histone
deacetylase (HDAC) inhibitors can block autophagy by
disrupting aggresome formation, the process that precedes au-
tophagy [94, 95]. Interestingly, the E3 ligase, TRAF6, links
the NFkB pathway to autophagy [96] and it was shown that
BTZ-resistant AML cells were sensitized by downregulating
TRAF 6 [97]. Despite the potential impact of autophagy on
BTZ resistance, the extent of involvement of this process in
leukemia cells needs further exploration.

3.4 Activation of pro-survival pathways

Analogous to resistance to many anti-leukemia drugs, PI re-
sistance has also been associated with the activation of pro-
survival pathways. The most extensively described is the as-
sociation with the NFκB survival pathway (for AML
reviewed in [98]). As PI result in the stability of the inhibitor
of NFκB (IκB), this survival pathway is inhibited by exposure
to PI. Intrinsically resistant leukemia cells (e.g., stem cells)
have a constitutively activated NFκB pathway and the com-
bination of BTZ with NFκB inhibition by the IKK inhibitor
BMS-345541, enhanced the kill of AML stem cells [99].
Although the interaction between NFκB and PI resistance is
clearly established for MM and other tumor types [100–104],
the data of relevance for leukemia is limited. Besides NFκB,
the pro-survival pathways via AKT/mTOR [105–107] and
insulin-like growth factor 1 (IGF-1) [108–110] have also been
described to confer BTZ resistance and may affect the inter-
action of leukemia cells with (stromal) cells in their micro-
environment.

3.5 X-box binding protein 1 (XBP1)

X-box binding protein 1 (XBP1) is a transcription factor in-
volved in the unfolded protein response. In addition, it is im-
portant for the differentiation of plasma cells. In this respect,
XBP1 expression has been linked to BTZ resistance [111] and
survival [112] in MM. In leukemia, this pathway may also be
related to PI resistance; however, data are currently lacking.
Due to the role of XBP1 in B cell differentiation, this factor
may be particularly relevant for B-ALL and warrants further
study.

3.6 Drug efflux transporters

Drug efflux transporters of the ATP-binding cassette protein fam-
ily have been explored for their role in PI resistance. P-
glycoprotein (Pgp, ABCB1), as one of its main representatives
only marginally contributes to BTZ efflux [68, 113], but is of
relevance for second-generation PIs such as CFZ and the
immunoproteasome inhibitor ONX-0914 as these PIs are bona
fide substrates for Pgp [114, 115]. Notably, BTZ can downregu-
late Pgp expression and this manner indirectly attenuate drug
resistance [116]. There is no evidence that BTZ and other
second-generation PIs are substrates for other drug efflux trans-
porters, e.g., multidrug resistance-associated protein 1–5 (MRP1–
5, ABCC1–5) or breast cancer resistance protein (BCRP,
ABCG2); hence, a role in PI resistance is not anticipated [114].

4 Markers for PI (BTZ) sensitivity/resistance
in primary leukemia samples

Although in vitromodels are valuable tools to identify possible
mechanisms of BTZ resistance, assessment of the relevance for
the clinic requires validation in ex vivo studies using primary
patient samples. Preferably, this is studied in add-on studies of
clinical trials that include BTZ in the treatment protocol. The
potential role of three markers for PI (BTZ) sensitivity and/or
resistance in leukemia samples is discussed below.

4.1 Proteasome levels and subunit composition

Add-on studies of clinical trials in leukemia are limited andmost
data for PIs are obtained from MM studies. These studies dem-
onstrated besides proteasome expression levels, the proteasome
subunit composition is important for response [117, 118].
Although upregulation of the proteasome was not related to
resistance in mantle cell lymphoma (MCL) patients [119], stud-
ies in leukemia indicated a possible correlation between higher
20S protein expression and BTZ sensitivity [120]. In particular,
studies by Niewerth et al. (2013) showed that lower β5 subunit
expression correlated with increased ex vivo sensitivity for pro-
teasome inhibitors in pediatric AML and ALL samples. In ad-
dition, the sensitivity for BTZ in AML cells inversely correlated
with the ratios between immunoproteasome subunits over con-
stitutive subunits, specifically β1i/β1 and β2i/β2, and a trend
for β5i/β5. ALL cells showed higher sensitivity to BTZ as
compared to AML cells. Although for ALL no significant cor-
relations were revealed with BTZ sensitivity, they featured a
higher β2i/β2 ratio and trends of a higher β1i/β1 ratio as com-
pared to AML samples. Together, these data support the notion
that a relative high immuno- / constitutive proteasome ratio pro-
motes BTZ sensitivity. These data were confirmed in AML and
ALL samples obtained from two pediatric clinical COG trials
(AAML07P1 and AALL07P1) in which BTZ treatment was
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incorporated [14, 48]. After further validation in larger studies,
assessment of immunoproteasome over constitutive proteasome
ratios may be used as biomarkers of response to PIs.

4.2 PSMB5 mutations

PSMB5 mutations observed in BTZ-resistant hematological
cell lines were as yet not identified in clinical samples. The
mutations found in the cell line models do not represent
SNPs found in the general population. Wang et al. sequenced
the PSMB5 gene in a large cohort of healthy persons and 61
MM patients after BTZ treatment [121]. No SNPs were found
in the exon 2 of the PSMB5 gene neither in the general popu-
lation nor in MM patients. Of interest, polymorphisms that
influenced PSMB5 gene expression were observed, but these
did not correlate with BTZ response. It should be taken into
account that sequence analysis in one third of the MM patients
was performed only on whole blood and not on isolated ma-
lignant plasma cells, which may have influenced the sensitivity
of the analysis. In addition, it was not stated howmany resistant
patients were included. More recently, Lichter et al. sequenced
the PSMB5 gene in blood samples of MM patients included in
the APEX trial in which patients were treated with either BTZ
or dexamethasone [122]. No PSMB5mutations were identified
in this group. Although sample size of this group was limited,
the data suggest that PSMB5mutations do not represent a lead-
ing cause of acquired BTZ resistance in investigated MM pro-
tocols. Whether this holds true for leukemia or MM with long-
term BTZ maintenance therapy is yet to be determined. Lastly,
as a preliminary account, Barrio et al. (2016) reported PSMB5
mutations in subclones of CD138+ cells of a singleMMpatient
after a therapy [123]. Since the subclonal frequencies were low,
this poses analytical challenges to detect these subclones. Also
in leukemia, it is established that there is substantial
oligoclonality in mutational status of cells within the leukemia.
The cells with the specific mutations tendering growth advan-
tage are probably selected to grow out and develop a (drug
resistant) relapse [124], so also in leukemia patients subclonal
analysis may reveal additional mutations.

4.3 MARCKS

Upregulation of MARCKs protein expression emerged as a
marker for BTZ- and second-generation PI-resistant leukemia
cell lines [73]. To test whether this upregulation might be a
prognostic marker for clinical BTZ resistance, MARCKs ex-
pression was examined in 44 primary ALL patient samples
obtained from the clinical COG trial AALL07P1 using com-
bination chemotherapy including BTZ. A trend (p = 0.07) was
seen in the inverse correlation between MARCKS expression
and clinical response. Since the samples were obtained in the
setting of a clinical trial using combination therapy, a direct
correlation between BTZ response and MARCKS expression

cannot be made. However, these findings are consistent with
data from Micallef et al. who showed MARCKS protein up-
regulation in a small group of BTZ-resistant MM patients
[125] and Yang et al. who identified MARCKS upregulation
as a resistance marker in primary MM samples [126]. These
studies encourage a prospective validation of the possible
prognostic role of MARCKS in leukemia.

5 Clinical trials with proteasome inhibitors
in leukemia

The efficacy and safety of PIs in MM have already been ex-
tensively reviewed [127]. For leukemia, an overview of phase
I/II clinical studies of PI as single agent and combination
therapy in adult and pediatric leukemia is presented in
Table 3. An overview of ongoing phase II/III clinical trials
with BTZ (combination) therapy involving pediatric leukemia
patients and adult leukemia is shown in Table 4 and Table 5,
respectively. In addition, ongoing clinical trials with second-
generation PIs (mainly CFZ and IXA) are depicted in Table 6.
The outcome for clinical efficacy included stable disease, pro-
gressive disease, complete/partial remission, and mortality. In
all studies, infections and neutropenia were common adverse
drug reactions (ADRs). Neurologic ADRs were also common
in all studies with BTZ, including neuropathy. Interestingly,
BTZ might also have some protective effects as well, as it has
been reported to prevent muscle wasting [148], which can be
induced by cancer cachexia [149] but this has not yet been
reported in a clinical setting. Two studies were conducted with
CFZ [143, 144] and less ADRs were found in these studies
including the absence of neurologic ADRs. Moreover, no
dose-limiting toxicities (DLT) were found indicating a better
safety profile. Importantly, the clinical response to CFZ in
these studies was also better than reported for BTZ treatment.

6 Future perspectives

This overview of results of PI in leukemia reveals that treat-
ment with PI as monotherapy may not give satisfactory clin-
ical responses. To improve the employability of PI in leuke-
mia, several factors are implied to be considered.

6.1 Combination strategies

For leukemia, chemotherapy commonly consists of cocktails
of different drugs with different mechanisms of actions and
different side effects to exert optimal treatment response with
achievable dosages. For novel drugs, it is therefore essential
that they can be combined with the most effective drugs cur-
rently used. Based on the mechanism of action, glucocorti-
coids are good candidate drugs to be combined with PI.
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Table 3 Published clinical studies of proteasome inhibitors in leukemia

Study drugs Cohort Number Phase Study results and mechanisms involved Refs.

BTZ Several hematologic
malignancies

27 I Bortezomib was given twice weekly for 4 weeks every
6 weeks. The MTD was 1.04 mg/m2. CR in 1 MM
patient. PR in 1 patient with MCL and 1 with FL.

[128]

BTZ Refractory or relapsed acute
leukemia

15 I Bortezomib was given twice weekly for 4 weeks every
6 weeks. The MTD was 1.25 mg/m2. No ≥grade 3
toxicities. 5 patients showed hematological
improvement. No CR achieved.

[129]

BTZ, PegLD AML, MM, and NHL 42 I Bortezomib was given on days 1, 4, 8, and 11 and PedLD
on day 4. MTD of BTZ 1.3 mg/m2. No significant
pharmacokinetic and pharmacodynamic interactions
between bortezomib and PegLD. 16 of 22 MM patients
achieved CR, near-CR or PR. 1 CR and 1 PR in NHL
patients. 2 of 2 AML patients achieved a PR.

[130]

BTZ Recurrent childhoodALL, AML,
blastic phase CML, M3

12 I Bortezomib was administered twice weekly for 2 weeks
followed by a 1-week rest. MTD of bortezomib was 1.3
mg/m2/dose. 5 patients were fully evaluable. DLT’s
occurred in 2 patients at the 1.7 mg/m2 dose level. No
OR achieved.

[131]

BTZ, IDA, AraC AML 31 I Addition of BTZ to AML induction chemotherapy.
Bortezomib added on days 1, 4, 8, and 11. 19 CR,
3 CRp, 2 PR and 7 no response. BTZ was well
-tolerated up to 1.5 mg/m2.

[132]

BTZ, VCR, DEX, PegAspa,
DOX

Recurrent childhood ALL 10 I Combination of bortezomib (1.3 mg/m2) with ALL
induction therapy is active with acceptable toxicity.
6 patients achieved CR.

[133]

BTZ, VCR, DEX, PegAspa,
DOX

Recurrent childhood ALL 22 II 14 patients achieved CR, and 2 achieved CRp, 3 patients
died from bacterial infections, 2 of 2 included T cell
ALL patients did not respond.

[134]

BTZ, tipifarnib Relapsed or refractory ALL(26)
or AML (1)

27 I Combination well tolerated. 2 patients achieved CRp
and 5 SD.

[135]

BTZ, DNR, AraC AML (age > 65) 95 I/II Combination was tolerated. 62 patients achieved CR
and 4 patients CRp.

[136]

BTZ, 17-AAG Relapsed or refractory AML 11 I The combination of 17-AAG and BTZ led to toxicity
without measurable response in patients with relapsed
or refractory AML.

[137]

BTZ, DAC Poor-risk AML 19 I Combination was tolerable and active in this cohort of
AML patients; 7 of 19 patients had CR or CRi. 5 of 10
patients > 65 years had CR.

[138]

BTZ, LEN 14 MDS/CMML
9 AML

23 I MTD of BTZ 1.3 mg/m2 was tolerable in this regimen.
Responses were seen in patients with MDS and AML.
Two fatal infections occurred.

[139]

BTZ, IDA Relapsed AML (7) or AML
> 60 years (13)

20 I 4 patients achieved complete remission. 1 treatment-related
death. Overall the combination was well tolerated.

[140]

BTZ, AZA Relapsed or refractory AML 23 I Dose of 1.3 mg/m2 BTZ was reached without dose-limiting
toxicities. 5 out of 23 patients achieved CR.

[141]

BTZ, MIDO vs BTZ, MIDO,
DHAD, etoposide, AraC

Relapsed/refractory AML 21 I 56.5% CR rate and 82.5% overall response rate (CR + CR
with incomplete neutrophil or platelet count recovery).
Combination is active but is associated with expected
drug-related toxicities. DLTs were peripheral neuropathy,
decrease in ejection fraction and diarrhea.

[142]

CFZ + dexamethasone Refractory or relapsed acute
leukemia

18 I CFZ was given twice weekly for 4 weeks with a maximal
of 6 cycles. Prior to CFZ dexamethasone was given. The
MTD was not established, because no DLTs were observed
(36–46 mg/m2). PR in 2/10 patients and 4/10 SD.

[143]

CFZ + dexamethasone Previously treated patient with
CLL or SLL

19 I CFZ was given twice weekly for 3 weeks in a 28-day cycle.
Prior to CFZ dexamethasone was given. No DLTs observed
and all available patients for evaluation had SD (including
patients with Del(17p13.1) and fludarabine-resistant disease.

[144]

BTZ, cytarabine, idarubicin vs
BTZ, cytarabine etoposide

Children with relapsed,
refractory, or secondary AML

37 II BTZ, 1 or 1.3 mg/m2, was given at days 1, 4, and 8 in
combination with idarubicin and cytarabine (arm A) or
with etoposide and high dose cytarabine (arm B).
Hypokalemia incidence was high, 17%. Four deaths
occur, 3 infectious deaths and one from PD. Both arms
failed to meet predetermined efficacy thresholds (CRi
was not included). Arm A: CR = 21.4%, CRp + CRi =

[145]
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Table 3 (continued)

Study drugs Cohort Number Phase Study results and mechanisms involved Refs.

35.6%, PR = 14.3%. Arm B: CR = 34.8%, CRp +
CRi = 13% and one death.

BTZ Relapsed/refractory ATL 15 II BTZ, 1.3 mg/m2, was given at days 1, 4, 8, and 11.
After stage 1, all patients discontinued treatment
(PD = 11, AEs = 3) and the study was terminated
because BTZ was not considered promising enough
as a single agent. 12 patients had Gr 3/4 drug-related
AEs of which 2 Gr3/4 peripheral neuropathy. Overall
responses: PR = 1, SD = 5. ORR = 6.7%, PFS = 38
days (8–122).

[146]

BTZ, DEX, DOX vs BTZ, DEX,
cyclophosphamide

Newly diagnosed primary
plasma cell leukemia

39 II Four alternating cycles of BTZ (1.3 mg/m2 on days 1,
4, 8, and 11), DEX plus DOX, or cyclophosphamide
was given. 35 patients completed the 4 cycles. ORR
= 69%, CR = 10%, VGPR = 26%, PR = 23%. 10
were refractory to the induction phase, and 2 deaths
due to sepsis occur. 25 patients underwent HDM/ASCT
and 1 a syngeneic allograft. After ASCT: ORR = 92%
CR = 34%, VGPR = 38%, PR = 16%, PD = 8%. In the
intention-to-treat population, the median PFS = 15.1
months and overall survival = 36.3 months.

[147]

Updated from Franke et al. [67]

Abbreviations: Study outcome:MTDmaximum tolerated dose,DLT dose-limiting toxicities,CR complete response,CRi incomplete remission,CRpCR
with incomplete platelet recovery, PR partial response,OR objective response, SD stable disease, PFS progression-free survival, EFS event-free survival,
OS overall survival. Malignancies: MCL mantle cell lymphoma, FL follicular lymphoma, NHL non-Hodgkin lymphoma. Drugs: 17-AAG 17-N-
Allylamino-17-Demethoxygeldanamycin, AraC cytarabine, AZA azacitidine, BTZ bortezomib, CFZ carfilzomib,DAC decitabine,DEX dexamethasone,
DHAD mitoxantrone, DNR daunorubicin, DOX doxorubicin, IDA idarubicin, LEN lenalidomide, PegLD pegylated liposomal doxorubicin, PegAspa
pegylated L-asparaginase, VCR vincristine

Table 4 Ongoing and unpublished clinical trials of bortezomib in acute leukemia which include pediatric patients

Study drugs Time
period

Number Phase Cohort Age Sponsor Clinical trial
identifier

BTZ + intensive
reinduction
chemotherapy

Mar 2009
Sept 2014

60 II Relapsed ALL 1–31 National Cancer Institute (USA) NCT00873093

BTZ, DEX, VCR, MTX Sep 2009
Jul 2014

24 II Relapsed/refractory ALL 0.5–19 Erasmus Medical Center
(Rotterdam, The Netherlands)

NTR1881a

BTZ, ATO May 2013
May 2018

30 II Relapsed acute promyelocytic
leukemia (APL)

1–75 Christian Medical College
(Vellore, India)

NCT01950611

Standard leukemia
chemotherapy
± BTZ

Apr 2014
Feb 2019

1400 III T cell ALL or stages II–IV T cell
lymphoblastic lymphoma

2–30 National Cancer Institute (USA) NCT02112916

BTZ, SAHA +
reinduction
chemotherapy

Apr 2015
Apr 2019

30 II Refractory or relapsed MLL
rearranged leukemia

< 21 St Jude Children’s Research
Hospital (Memphis, TN, USA)

NTC 02419755

BTZ, PANO +
reinduction
chemotherapy

Dec 2015
Apr 2019

40 II Relapsed T cell leukemia or
lymphoma

< 21 St Jude Children’s Research
Hospital (Memphis, TN, USA)

NCT02518750

BTZ + induction
chemotherapy

Oct 2015
Oct 2020

50 I/II Infant leukemia and lymphoblastic
lymphoma

< 1 St Jude Children’s Research
Hospital (Memphis, TN, USA)

NCT02553460

BTZ + reinduction
chemotherapy

July 2015
Apr 2019

20 II Refractory or relapsed leukemia
and lymphoblastic lymphoma

1–39 Children’s Mercy Hospital
(Kansas City)

NCT02535806

BTZ + HR reinduction
chemotherapy

Aug 2015
Aug 2018

250 II High-risk (HR) relapsed ALL < 18 Charité - Universitätsmedizin
(Berlin, Germany)

EudraCT number:
2012–000810-12a

Updated from Franke et al. [67]

Abbreviations: Drugs: ATO arsenic trioxide, BTZ bortezomib, DEX dexamethasone, MTX methotrexate, PANO panobinostat, SAHA vorinostat, VCR
vincristine
a Source: www.clinicaltrials.gov and www.skion.nl
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Table 5 Ongoing and unpublished clinical trials of proteasome inhibitors in adult acute leukemia

Study drugs Time
period

Number Phase Cohort Age Sponsor Clinical trial
ID

BTZ, DHAD, VP16, AraC Jan 2006
Sept 2016

55 I/II Relapsed/refractory acute
leukemia

> 18 Thomas Jefferson University
(PA, USA)

NCT00410423

BTZ, FLAG, IDA Apr 2008
Jan 2013

40 I/II Refractory or relapsed AML > 18 PETHEMA Foundation NCT00651781

BTZ, SAHA, SFN Feb 2010
Sept 2016

38 I/II Poor-risk AML > 18 Indiana University (IN, USA) NCT01534260

BTZ, BEL May 2010
Feb 2014

24 I Relapsed/refractory acute
leukemia

> 18 Virginia Commonwealth University
(VA, USA)

NCT01075425

BTZ, NFV July 2010
Mar 2013

18 I Relapsed or progressive
advanced hematologic
cancer

> 18 Swiss Group for Clinical Cancer
Research (Switzerland)

NCT01164709

BTZ, DHAD, VP16, AraC July 2010
May 2014

34 I Relapsed/refractory AML 18–70 Case Comprehensive Cancer Center
(OH, USA)

NCT01127009

Several drugs in randomization
arms ± BTZ

June 2011
June 2017

1250 III Initial AML > 29 National Cancer Institute (USA) NCT01371981

DAC vs BTZ, DAC Nov 2011
June 2015

172 II AML > 60 National Cancer Institute (USA) NCT01420926

BTZ, DOX, PegAspa, VCR,
DEX, AraC, MTX

Mar 2013
July 2017

17 II Relapsed/refractory ALL > 18 National Cancer Institute (USA) NCT01769209

BTZ, SFN, DAC July 2013
Dec 2016

30 I AML > 60 National Cancer Institute (USA) NCT01861314

BTZ, DOX Mar 2015
Mar 2017

30 II AML 18–80 University of California, Davis
(CA, USA)

NCT01736943

BTZ, LEN Mar 2015
Aug 2018

24 I Relapsed AML and MDS
after Alllo SCT

> 18 Massachusetts General Hospital
(MA, USA)

NCT023121

Updated from Franke et al. [67]

Source: www.clinicaltrials.gov

Abbreviations: Drugs: 17-AAG 17-N-Allylamino-17-Demethoxygeldanamycin, AraC cytarabine, BEL belinostat, BTZ bortezomib, DAC decitabine,
DEX dexamethasone, DHAD mitoxantrone, DNR daunorubicin, DOX doxorubicin, IDA idarubicin, FLAG fludarabine, Ara-C cytarabine, G-CSF
granulocyte colony-stimulating factor, LEN lenalidomide, MTX methotrexate, NFV nelvinavir, PegLD pegylated liposomal doxorubicin, PegAspa
pegylated L-asparaginase, SAHA vorinostat, SFN sorafenib, VCR vincristine, VP16 etoposide

Table 6 Ongoing clinical trials of second-generation proteasome inhibitors in acute leukemia

Study drugs Time
period

Number Phase Cohort Age Sponsor Clinical trial
ID

CFZ Sept 2010
Jul 2015

18 I Relapsed/refractory
ALL and AML

> 18 Washington University School of
Medicine (MO, USA)

NCT01137747

IXA, DHAD, VP16, AraC May 2014
Nov 2017

30 I Relapsed/refractory
AML

18–70 Case Comprehensive Cancer Center;
National Cancer Institute (NCI)

NCT02070458

IXA Mar 2014
Mar 2016

16 II Relapsed/refractory
AML

> 18 Stanford university/National Cancer
Institute (NCI)

NCT02030405

IXA, DHAD, VP16, AraC Oct 2014
Nov 2018

30 I Relapsed/refractory
AML

18–70 Case Comprehensive Cancer Center
(USA)

NCT 02070458

CFZ, DEX, DHAD, PegAspa, VCR Dec 2014
Jul 2017

39 I/II Relapsed/refractory
AML

< 18 Onyx Therapeutics Inc. (CA, USA) NCT02303821

CFZ, CYCLO, VP16 Jul 2015
Dec 2017

50 I Relapsed leukemia
and solid tumors

6–29 Phoenix Children’s Hospital
(AZ, USA)

NCT 02512926

IXA + induction and consolidation
chemotherapy

Nov 2015
Feb 2022

54 I AML > 60 Massachusetts General Hospital
(MA, USA)

NCT02582359

Updated from Franke et al. [67]

Source: www.clinicaltrials.gov

Abbreviations: Drugs: AraC cytarabine, CFZ carfilzomib, CYCLO cyclophosphamide,DEX dexamethasone,DHADmitoxantrone, IXA ixazomib, VCR
vincristine, VP16 etoposide
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BTZ and dexamethasone showed synergy in ex vivo combi-
nation studies in primary pediatric ALL samples [48] clinical-
ly BTZ was combined with induction therapy including dexa-
methasone, vincristine, PEG-asparaginase, and doxorubicin in
relapsed pediatric ALL, showing promising CR rates [133,
134]. Currently, several clinical trials are ongoing (Tables 4
and 5), combining BTZ with several chemotherapy protocols
which include the standard chemotherapeutics and novel strat-
egies (heat shock protein inhibitors, HDAC inhibitors, and
autophagy inhibitors). Based on preclinical data and expected
toxicity profiles of the different drugs, the addition of PI to
other chemotherapeutics seems a fruitful strategy. In addition,
recently the nuclear transport (XPO1) inhibitor selinexor has
been combined with BTZ [150] and is currently in a clinical
trial for MM (NCT03110562). Whether this is also a relevant
strategy for leukemia still has to be established.

6.2 Second-generation proteasome inhibitors

Despite the successful introduction of BTZ, several draw-
backs such as resistance and toxic side effects led to develop-
ment of second-generation proteasome inhibitors which are at
several stages of clinical development (Table 6). Due to prom-
ising preclinical studies, the irreversible proteasome inhibitor
CFZ has advanced rapidly into the clinic for MM as well as
leukemia, and is supposed to be a promising alternative for
BTZ and might even overcome BTZ resistance.

Recently, an oral formulation resembling BTZ, ixazomib
(MLN9708), has emerged into the clinic, with two clinical
trials investigating the efficacy of ixazomib in AML
(NCT0230405 and NCT 02070458).

PR-957 (ONX 0914) and PR-924 represent members of a
new class of proteasome inhibitors being directed specifically
against the immunoproteasome [27, 30]. PR-924 demonstrated
preclinical efficacy in leukemia and MM [29, 30]. In addition,
ex vivo cytotoxicity of PR-957 was shown in primary leukemia
samples [29]. Since leukemia cells, especially ALL cells, express
high levels of immunoproteasome, it might be a good candidate
for further clinical development in hematological malignancies.

Development of acquired resistance to the second-
generation PIs [29, 31] has to be taken in account as well.
Hence, combination therapy is also recommended for the
treatment of leukemia with these novel PIs in order to circum-
vent toxicity and resistance.

6.3 Biomarkers of clinical response to proteasome
inhibitors

The combination of preclinical research and ongoing clinical
studies (e.g., add-on studies) will be needed to identify and
confirm determinants of resistance and markers for clinical
response in order to further personalize the treatment of
acute leukemia with PI. Based on accumulating data,

prediction of effectivity of PI lies in the composition of the
proteasome, in particular the ratio between constitutive- and
immunoproteasome subunits. This can either be assessed by
measuring protein expression of the different subunits [14,
121] or their specific catalytic activities for which several
assays are available [151, 152]. In addition, the activity as-
says can be used for pharmacodynamic monitoring of PI
inhibition and duration of inhibition in PBMC’s [152, 153].

Since mutations in the genes encoding proteasome subunits
have not been found in primary MM and acute leukemia pa-
tient samples either before or after treatment with PI, they are
currently not considered potential biomarkers for resistance to
proteasomes. However, when patients are treated for
prolonged time periods such as the maintenance treatment of
elderly MM patients with IXA, they might be acquired.
Therefore, add-on studies measuring the mutational status in
samples during treatment are currently performed. If muta-
tions are identified, they may be used to monitor acquired
resistance to PI. Selecting the patients that benefit from PI
treatment and the recognition of PI resistance is indispensable
for the optimal implementation of PI in acute leukemia
treatment.
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