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Abstract Platelets serve as Bfirst responders^ during normal
wounding and homeostasis. Arising from bone marrow stem cell
lineage megakaryocytes, anucleate platelets can influence inflam-
mation and immune regulation. Biophysically, platelets are opti-
mized due to size and discoidmorphology to distribute near vessel
walls, monitor vascular integrity, and initiate quick responses to
vascular lesions. Adhesion receptors linked to a highly reactive

filopodia-generating cytoskeleton maximizes their vascular sur-
face contact allowing rapid response capabilities. Functionally,
platelets normally initiate rapid clotting, vasoconstriction, inflam-
mation, andwound biology that leads to sterilization, tissue repair,
and resolution. Platelets also are among the first to sense, phago-
cytize, decorate, or react to pathogens in the circulation. These
platelet first responder properties are commandeered during
chronic inflammation, cancer progression, and metastasis. Leaky
or inflammatory reaction blood vessel genesis during carcinogen-
esis provides opportunities for platelet invasion into tumors.
Cancer is thought of as a non-healing or chronic wound that can
be actively aided by platelet mitogenic properties to stimulate
tumorgrowth. This growth ultimately outstrips circulatory support
leads to angiogenesis and intravasation of tumor cells into the
blood stream. Circulating tumor cells reengage additional plate-
lets, which facilitates tumor cell adhesion, arrest and extravasation,
and metastasis. This process, along with the hypercoagulable
states associated with malignancy, is amplified by IL6 production
in tumors that stimulate liver thrombopoietin production and ele-
vates circulating platelet numbers by thrombopoiesis in the bone
marrow. These complex interactions and the Bfirst responder^ role
of platelets during diverse physiologic stresses provide a useful
therapeutic target that deserves further exploration.
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1 Platelet Bfirst responder^ properties

BFirst responders^ describe platelets as active participants in
the hemostasis, wounding, immune, and metastatic processes
(Fig. 1) [1, 2]. Platelets often remain unheeded during in vivo
experimental studies or pathologic observations. The primary
reason is due to small size/volume (mean platelet volumes
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range is 9.7–12.8 femtoliter or spheres 2 to 3 μm in diameter)
and the lack of a nucleus makes identification more difficult
compared to the typical nucleated cell. Although platelets are
visible by high magnification light microscopy, ultrastructural
analysis is typically done to effectively observe subcellular
morphologic or activational structural changes and newer
methods may prove even more observationally effective
[3–6]. Individual and aggregates of activated platelets can be
detected by immunohistochemistry at the microscopic level
but this is not a routine approach for pathologists.

Biophysically, resting platelets exhibit a plate-like discoid
shape that maximizes planar surface interactions [7–9]. These
physical characteristics facilitate their segregation toward the out-
er fluid shear fields of flowing blood [10–17]. Normal human
platelets range between 150,000–400,000 per microliter (μl) in
numbers with those that concentrate near vessel walls being 2–3
times greater than at the central fluid stream. Platelet flow pat-
terns, near wall excess, and proximity enhance encounters and
recognition of any vascular wall lesions orwounds. These platelet
recognition properties include the exposure of the subendothelial
basement membrane or underlying matrix induced by wounding

or endothelial retraction [18–23]. The rapid formation of filopodia
facilitated by a variety of adhesion receptors linked to a highly
reactive cytoskeleton helps maximize dynamic surface contacts
and the rapid response rate of platelets [24–31].

2 Platelet Bfirst response^ facilitated clot/wound
biology

Normally, platelets serve as Bfirst responders^ during the
wounding process and hemostasis. A lacerated blood vessel
exposes platelets to subendothelial elements that initiate their
first response through receptor-based recognition of extracel-
lular matrix. This recognition triggers platelet activation and
aggregation. Once activated, within a matter of seconds, plate-
lets begin to change shape, degranulate, and release proteins,
growth factors, bioactive lipids, and other factors that recruit
additional platelets and immune cells along with initiating
thrombogenesis and clotting to fill any exposed gaps.

This process occurs in response to an injury that exposes col-
lagen and extracellular matrix proteins, which results in
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interactions with the exposed subendothelium. These first re-
sponderinteractionsaredrivenbyavarietyofplateletglycoprotein
receptors thatcanfail inmanycongenitalplateletdisorders [2,32].
These receptors can bind extracellular matrix factors that include
proteoglycans, laminin, fibronectin, and vitronectin along with
various isoformsof collagen. vonWillebrand factor (VWF)binds
toexposedcollagen I, III, andVI fibers.VWFisalso recruited into
matrix networks by forming tethering fiber strands [33–37].

Platelet surfaceGPIb formsmultimeric complexes that initiate
catch bond interactions with exposed tethering fiber strands
[33–37].Catch-slip-tetheringbondscauseplatelets tobeginrolling
withinbloodfluidshearstressfields[33–37].Four transmembrane
proteins contribute to functional GPIb complexes including two
20-kDa GPIX subunits, two 26-kDa GPIbβ subunits, two 135-
kDa GPIbα subunits, and one central 82-kDa GPV subunit [38,
39].GPIb receptors belong to theLRR receptor family of proteins
that are uniquely expressed by platelets [38, 39]. Genetic loss of
GPIb expression leads toBernard-Soulier syndromebleedingdis-
orders [40]. GPIb-IX-V glycosphingolipid domain multimeric
complexes interact with VWFmultimers [41]. Tethering can also
occur with ultralarge vonWillebrand factor (ULVWF) and endo-
thelial cells to attract platelets to these protein strands along with
other cells such as leukocytes and potentially tumor cells [42–44]

Platelets contextually encounter numerous circulating ligands,
cells, pathogens, and extracellular matrix ligands in the blood-
stream. Immediate responses aremediated by a variety of integrin
receptors through transmembrane glycoprotein α and β hetero-
dimers once ligands are engaged. Resting platelets express low-
affinity conformation integrins that are bent over protecting bind-
ing sites. Once activated,α andβ subunits protrude forming high
affinity or open binding state that efficiently interact with ligands.
Rolling platelet behavior is initiated bymultimericGPIb-complex
interactions with VWF, which activates a key stabilization
integrin αIIbβ3 [45–48] shifting them from a closed to an open
state. In the open state, transmembrane αIIbβ3 heterodimers that
are very promiscuous and bind multiple RGD-ligand containing
proteins [45–48]. These RGD-ligand containing proteins include:
fibrin, fibrinogen, fibronectin, vitronectin, thrombospondin or
VWF complexes. Abnormal αIIbβ3 integrin receptor expression
is involved in Glanzmann’s thrombasthenia [49–51].

More selective ligand binding integrins also stabilize interac-
tions with the vascular microenvironment. For example, the col-
lagen receptor α2β1 is a key matrix-stabilizing integrin [52, 53].
Once activated, α2β1 stabilizes adhesive contacts and initiates
lamellipodia formation and platelet spreading. In contrast, circu-
lating or extracellular matrix fibronectin is engaged by platelet
α5β1 integrin heterodimers [54]. The α5β1 integrin binding is
activation state dependent, binding more selectively to fibronec-
tin RGDpeptide sites under static conditions. Tyrosine phosphor-
ylation and changes in calcium levels can also facilitate filopodia
formation [55]. Platelets also expressα6β1 integrin receptors that
selectively bind to laminin in the basementmembrane and induce
filopodia formation [56, 57]. The activation of α6β1 integrin

�Fig. 1 Platelet Bfirst responders^ facilitate wound response, threat
recognition, immune function, cancer progression, and metastasis. Platelets
elicit the initial response to any wound or breach in blood vessels. Platelets
respond first by adhering to the perivascular extracellular matrix basement
membrane and collagen. This causes resting platelets to change shape,
aggregate, and release both alpha and dense granule components that attract
and activate more platelets as well as immune cells. Anucleate platelets are
keybonemarrowstemcell-megakaryocyte derived subcellular product that are
attracted to leaky angiogeneic vessels and can invade into perivascular spaces.
The platelet aggregation process is held in check by prostacyclin (PGI2).
Platelets can also slow down in the presence of shear stress of rapidly
flowing blood by forming slip-catch bonds with von Willebrand factor
(VWF) that causes rolling behavior at the endothelial cell surface. A local
inflammatory response that follows involves complement (enzymatically
processed to C3a and C5a), prostaglandin E2 (PGE2), interleukin-6 (IL-6),
IL-1alpha (IL1α), and other inflammatory cytokines. Platelets can also
interact with ultralarge VWF to form tethers. Another first responder
behavior is the recognition of damage by toll-like receptors (TLRs), sialic
acid-binding immunoglobulin-type lectins (Siglecs), damage-associated
molecular patterns (DAMPs), infectious pathogens harboring pathogen-
associated molecular patterns (PAMPs). Other platelet threat receptors
include C-type lectin-like type II transmembrane receptor (CLEC-2),
complement receptor type 2 (CR-2), C–C chemokine receptors (CCR 1,3
and 4), dendritic cell-specific intercellular adhesion molecule-3-grabbing
non-integrin (DC-SIGN), and coxsackie adenovirus receptor (CAR) and
integrins. Primary tumors secrete IL6, which induces thrombospondin
release in the liver and initiates thrombocytosis in the bone marrow.
Platelets also induce physical and molecular wounding damage signals.
This can lead to further platelet activation and cyclic inflammatory release
of tumor and platelet microparticles and exosomes that molecularly and
biologically cross-educate one another along with additional pro-
inflammatory and angiogenic factors. After full intravasation into the blood
stream, direct contact with circulating tumor cells (CTCs) initiate tumor cell
induced platelet aggregation (TCIPA) that causes further platelet activation
and alpha (α) and dense granule release. Alpha granules contain numerous
proteins, growth factors such as platelet-derived growth factor (PDGF) and
vascular endothelial growth factor (VGEF) that stimulate tumor growth and
angiogenesis. Dense granule release includes platelet G-protein coupled
receptor stimulants such as adenosine diphosphate (ADP) and serotonin (5-
HT, 5-hydroxytryptamine). Platelet activation also leads to thromboxane A2

(TxA2) synthesis and release. Direct platelet-tumor cell contact glycoproteins
such as P-selectin and tissue factor (TF) or via microparticles bearing
procoagulants stimulate thrombin production and fibrin clot formation. The
heterotypic platelet-tumor cell aggregates help protect them from vascular
shear forces and may mask them from other immune cells along with
providing a reservoir for growth factors. Following hematogenous spread
additional platelets are engaged at secondary sites facilitating and stabilizing
the adhesion and arrest of heterotypic emboli prior to extravasation. Released
molecules also recruit granulocytes by bone marrow derived cell induction
and immune cell differentiation. Transforming growth factor beta (TGF-β)
fromplatelets and PGE2 release stimulatemarrowderived stem cells (MDSC)
and T-cell differentiation or inhibition, which includes cell cluster of
differentiation 8 positive (CD8+) cytotoxic T-cells, T-helper1 (TH1), and T-
helper17 (TH17) T-regulatory cells (Treg). Concurrently, bonemarrow derived
dendritic cells (BMDC) induction can occur in response to cytokines, C-X-C
motif chemokine 5 (CXCL-5), and CXCL-7. Secreted TGF-β induces
epithelial-mesenchymal-transition (EMT) genes and also facilitates myeloid
polarization of macrophages and neutrophils toward immunosuppressive
phenotypes. This may occur within the tumor or in the circulation at
platelet facilitated arrest sites during the establishment of metastasis. Thus,
these platelet-tumor cell microenvironmental niches may direct tumor-
associated macrophages (TAMs) toward a protumor (M2) from an
antitumor (M1) phenotype. Similarly, tumor-associated neutrophils (TANs)
TANs may acquire a protumor phenotype (similar to M2), largely driven by
TGF-β to become BN2^ neutrophils
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receptors typically involves crosstalk with platelet collagen re-
ceptor glycoprotein VI (GPVI) to achieve stable adhesion.

Additional receptors are involved in biologic responses of
platelets such as GPVI, which belongs to the Ig receptor su-
perfamily and is found exclusively in platelets [58, 59]. GPVI
is a major collagen receptor that recognizes the quaternary
structure of collagen, and activates platelets [60, 61]. Platelet
GPVI monomers shift from low affinity and signal transduc-
tion potential to multimers that gain high affinity collagen
periodic structure [41, 62–65].

Platelet C-type LECtin-like receptor (CLEC-2/aggrus) is an-
other platelet receptor that initiates platelet activation through
molecular multimerization [41, 62, 66–68]. CLEC-2 binds to
mucin glycoprotein podoplanin [69–71]. Podoplanin is
expressed on cells of the lymphatic endothelia, type I lung epi-
thelia, choroid plexus epithelia, kidney podocytes, lymph node
stroma along with cancer cells and potentiates migration and
invasion [69–72]. Podoplanin is a transmembrane sialomucin
glycoprotein [41, 69, 73, 74], which interacts with platelet
CLEC-2 receptors triggering signal transduction [41, 67, 68, 75].

Platelet P-selectin is also known asmembrane glycoprotein
GMP-140 [76, 77]. P-selectin binds to P-selectin glycoprotein
ligand (PSGL)-1 [78], neutrophil leukocyte-endothelial cell
adhesion molecule 1 (LECAM-1) [79], endothelial cell-
leukocyte adhesion molecule 1 (ELAM-1) [80], and sialyl
Lewis(x) oligosaccharide [81]. P-selectin interaction with a
variety of immune cells and endothelial cells is important in
mediating inflammation, autoimmunity, and wound healing
[82–84]. P-selectins along with L- and E-selectins help teth-
ering and rolling of cells flowing past the vascular luminal
surfaces during the initial phases of intravascular adhesive
interactions that are stabilized by other receptors [85–91].

Thrombus formation relies on platelet Bfirst responder^ me-
diated rolling, adherence, spreading,migration, aggregation, and
stabilization. Nitric oxide, prostacyclin (PGI2), and CD39-
mediated reduction of local purine nucleotides help maintain
the resting state of circulating platelets [92–96]. Injury-induced
exposure of subendothelial matrix occurs transient tethering
bonds are made between matrix-bound VWF and platelet
GPIb-IX-V receptor complexes [33–37, 39]. Transient tethers
support rolling and slow platelet movement. Slower movement
permits more intimate interactions between collagen fibers and
plateletGPVI surface receptors shift integrins fromaclosed to an
open state [58, 59]. Activated α2β1 binding with collagen and
αIIbβ3 binding to fibrinogen stimulate platelet shape change and
degranulation[45–48].Releaseofα-granulesanddensegranules
amplifies secondary platelet responses and initiates tissue repair.
Activation forms platelets prothrombotic nucleation centers for
tissue factor initiated coagulation [97]. Platelets interact with
nearby platelets through αIIbβ3 receptors and bind fibrinogen
and fibrin fibers [45–48]. Progressive cycles of platelet activa-
tion, adherence, spreading, migration, aggregation, and stabili-
zation form a thrombus that builds a fibrin network and entraps

other blood cells. Thrombotic plug formation is stabilized and
counterbalanced by the disaggregationof platelets and fibrinoly-
sis. Platelets migrate and initiate tissue repair [98–102].

First responder reactions are rapidly enhanced by activating
molecules such as thrombin or ADP that are triggered at the cell
surface or as a result of the release reaction. Activation results in
release of granular contents or molecular export, which include
proteins andmolecules such as thromboxaneA2 (TXA2) that am-
plify the local platelet response to recruit additional platelets to the
forming clot and accelerate the thrombogenesis/clotting process
[103, 104]. The production of TXA2 alongwith other lipids initi-
atesvasoconstriction[105,106].Asaprimarystimulantofplatelet
recruitment and aggregation, TXA2 is among the shorter-lived
prostaglandins due tomolecular epoxide bond strain in the active
partof themolecule that isprone tohydrolysis in<30s [107,108].
These rapid changes accelerate over amatter ofminutes and gen-
erate a fibrinnetwork that trapsandactivatesmoreplateletswithin
the formingclot in a cyclic fashion and limits blood loss.This first
responder amplification process occurs over approximately a 20-
minute time frame or less and clot maturation and solidification
continues for an hour or so and initiates immune cell recruitment
andinflammationover thenext fewdays toweeks.Recruitmentof
fibroblasts and immunecells throughplatelet-initiatedangiogenic
repairmechanisms stimulateswoundhealing and resolution [99].
Proliferation, tissue remodeling, and wound repair that resolves
normally over a month to a year timeline.

The release of platelet dense granule components influences
thevascularmicroenvironment.The releaseof calciumandmag-
nesium ions promotes platelet activation and aggregation. The
release of nucleotides such as ADP activates platelets through
P2Y1 and P2Y12 receptors [109, 110] and stimulates vasocon-
striction[111].Thedensegranule releaseorengagementofmem-
brane tetraspanins, CD9, CD63, CD151, Tspan9, and Tspan32,
regulates cell surface interactions [112, 113]. CD9 is the most
abundant platelet tetraspanin and engages Fc RIIA, a low-
affinity receptor for IgGorGPVIcollagen receptorsduringplate-
let interactions [112–114]. Platelet dense granule membranes
also contain lysosomal associated membrane proteins
(LAMPs), which aid in the breakdown cellular debris [115,
116].The releaseofneurotransmitters serotonin (5-hydroxytryp-
tamine; 5-HT), epinephrine, and histamine can potentiate ADP-
induced platelet activation and aggregation [109, 110, 117].

3 BThreat response and damage control^

Also, aspartof their first respondercharacteristics,plateletsactive-
ly transmigrate across any leaky or inflamed vessel wall in re-
sponsetoavarietyofstimuli toaidinwoundsterilizationandtissue
regeneration[118–124].Stromalcell-derivedfactor-1(SDF1orC-
X-Cchemokineligand12:CXCL12)actsasaverypotentstimulus
that triggers platelet migration into extravascular spaces
[125–130]. In addition to CXCL12, platelets release many
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transmigration stimulating chemokines and cytokines, CXCL1
(GRO-α), CXCL4 (platelet factor 4, PF4), CXCL5 (epithelial-
derived neutrophil-activating peptide-78; ENA-78), CXCL7
(pro-platelet basic protein, PPBP; β-thromboglobulin, βTG),
and CXCL8 (interleukin-8; IL8) among numerous others from
storage granules. Once released from platelets, these factors can
initiate themigration and invasion of additional platelets, immune
cells (neutrophils macrophages and leukocytes), as well as bone
marrow progenitor and endothelial progenitor cells or tumor cells
[131–134].ThenotionofBfirst responders^ is furtherstrengthened
by thediscoveryofC-X-Cchemokine receptor 4 and7 (CXCR-4,
CXCR7) the cognate receptors for SDF1: CXCL12 on platelets.

As part of their immune surveillance properties, platelets
can recognize foreign bodies or invading pathogens [1,
135–137]. Additional inflammation and pathogen defense me-
diating receptors on platelets and pathogen signals, include
toll-like receptors (TLRs), sialic acid-binding immunoglobu-
lin-type lectins (Siglecs), damage-associated molecular pat-
terns (DAMPs, e.g., alarmins), infectious pathogens harboring
pathogen-associated molecular patterns (PAMPs), platelet C-
type lectin-like type II transmembrane receptor (CLEC-2),
complement receptor type 2 (CR-2), C–C chemokine receptors
(CCR 1,3 and 4), dendritic cell-specific intercellular adhesion
molecule-3-grabbing non-integrin (DC-SIGN), and coxsackie
adenovirus receptor (CAR) [121, 138–149]. Self-associated
molecular patterns (SAMPs) that can be mimicked by patho-
gens have also been proposed but their disposition and influ-
ence on platelets remains to be fully determined [150].

Platelets exhibit optimal tissue migration properties. Utilizing
these immediate-threat sensing receptors to rapidly initiate migra-
tion during potential first responses, platelets are ideally suited for
movement because of the highly active cytoskeletal responses
linked to activation, adhesion, and aggregation [1, 18, 36,
151–153]. Platelets are more streamlined and suited for vascular
transmigration, not only because they are small in size and mini-
mal displacement volume coupled with their highly active cyto-
skeleton [154–156]. An even greater vascular transmigration ad-
vantage may arise from being unencumbered by the presence of
nuclei, which limits the migration of other immune cells [127,
154–157]. The absence of nuclei may also limit the distance that
platelets can move into tissue. Due to limited protein synthesis
capabilities, they cannot indefinitely maintain the replacement of
proteins [158, 159]. All of these immune surveillance and rapid
response properties facilitate speedy sterilization along with the
ability to quickly initiate the repair process during the wound
response.

4 Platelet mediated thrombogenesis, inflammatory,
and resolution responses

Platelets release membrane fragments with bioactive molecules
in the form of platelet microparticles (PMPs) on activation,

permitting distant effects [160–164]. Platelet cytoskeletal rear-
rangement results in budding of PMPs, which exposes
phosphatidylserine (PS), membrane antigens (Ag), and cyto-
plasm components. The exposure PS-Ag-Cyto complexes on
the outer leaflet of PMP creates surface for assembly of a factor
V and factor Xa catalytic complexes that generate thrombin.
Thrombin-mediated cleavage of fibrinogen leads to fibrin clot
formation and entrapment of additional platelets at wound sites
[165–168]. Fibrinolysis then ensues to control clot growth [165,
166]. PMPs also interact with immune cells via adhesion mole-
cules such as selectins that selectively bind carbohydrate mole-
cules associated with immune function [121, 142, 144, 169].
Aggregates can have additional immune functions such as
neutrophil-ensnared traps (NETs), which are collections of
DNA and anti-microbial biomolecules [145, 170].

Platelets help initiate or coordinate the immune responses
as key subcomponents of systemic biology [121, 144–147,
169]. They initiate inflammation by releasing a heterogeneous
mix of protein molecules that include, transforming growth
factor beta (TGF-β), P-selectin, CD40L, and RANTES [121,
171–173]. These molecules include an assortment of cyto-
kines and adhesion molecules that directly bind or activate
or elicit homing responses for monocytes, neutrophils, and
even T-lymphocytes as chemoattractants to the endothelium;
inhibit apoptotic signals; and promotes extravasation into af-
fected sites [121, 142, 144, 169]. Platelets can also activate the
complement system of which C3a and C5a are potent
anaphylatoxins that amplify inflammatory responses.

The first responder role to threats is thought to be the reason
why platelets evolved to have both hemostatic and immune
properties [2, 163, 174–176]. This is best highlighted in the
wound response model whereby platelets have a unique role
in recognizing tissue damage and stimulating more specialized
immune cells to infiltrate and initiate the sterilization of the
area, particularly where a pathogen may have been introduced
past physical barriers. In studies of skin injury, these phases
have been described crudely into hemostasis, inflammation,
proliferation, and resolution. Platelets with a primary role in
hemostasis are uniquely poised to initiate inflammation syner-
gistically with resident cells within damaged tissues such as
macrophages. Other non-immune resident cells that platelets
stimulate include fibroblasts. These evolve into myofibroblasts
as they enter the granulomatous tissue that leads to resolution
and retraction [177–179]. Platelet release of TGF-β coordinates
with extracellular matrix (ECM) tension help drive fibroblasts
to transition into a myofibroblast phenotype that help with re-
pair [180, 181]. TGF-β systemic release also enhances mesen-
chymal stem cells (MSCs) differentiation and functions as a
mechano-stimulatory factor to improve wound closure [182].
Platelet TGF-β also helps neutrophils infiltrate into wounds
that are replaced by macrophages. These immune cells initially
to acquire a pro-inflammatory phenotype duringwound inflam-
mation and proliferation phases and then facilitate myeloid

Cancer Metastasis Rev (2017) 36:199–213 203



polarization of macrophages and neutrophils toward immuno-
suppressive phenotypes during tissue repair and resolution
phases [183–186]. Platelets are thereby intrinsically linked to
the immune and wound repair system.

5 Platelet Bfirst response^ facilitated cancer
progression

Cancer is generally considered as a chronic or non-healing
wound [187–189] that can continuously engage platelets any
time exposure to tumor components occurs. As a part of the
metastatic process, platelet receptors recognize complexes of
tumor cell receptors surface bound matrix proteins or cellular
products as they invade blood vessels due to platelet-tumor
cell first response interactions [2, 130, 190]. Extensive mem-
brane changes occur at bilayer interfaces between platelets
and tumor cells [1, 2, 191, 192]. Tumor cells form extensive
membrane/cytoskeletal processes that heavily interdigitate
with a central platelet aggregate and involves the uptake of
platelet fragments and mitochondria [1, 2, 191, 192]. These
interactions are thought to result in the suppression of immune
recognition/cytotoxicity or the promotion of cell arrest at the
endothelium, or entrapment in the microvasculature. These
responses all support survival and spread of cancer cells and
the establishment of secondary lesions. Additional mecha-
nisms of the platelet-metastasis relationship may include the
production of platelet exosomes or extravascular migratory
behavior of platelets helping to drive cancer progression or
preconditioning of secondary metastatic sites [1, 2, 191,
192]. In contrast to the many mechanisms involved in
platelet-metastasis relationships, little is known about the role
of platelets in precancerous lesion development. This paucity
of knowledge exists despite numerous large randomized clin-
ical trials illustrating the cancer preventive effects of non-
steroidal anti-inflammatory drugs (NSAIDs), particularly as-
pirin in reducing the cancer incidence, mortality, and metasta-
sis [193–195]. Additional aspirin studies also reduced cancer
incidence and all-cause mortality [196–199]. In the case of
prior colorectal cancer [200] or colorectal adenomas [201],
those taking aspirin showed fewer new adenomas compared
to controls. In The Colorectal Adenoma/Carcinoma
Prevention Programme (CAPP) trial, aspirin reduced adeno-
mas in Lynch syndrome patients [202]. In the ASPirin
Intervention for the REDuction of colorectal cancer risk
(ASPIRED) trial, the effects of aspirin will also be examined
using various biomarker endpoints [203]. The ASPIRED
study will determine how aspirin influences adenoma biology.

Aspirin covalently acetylates and inactivates platelet cyclo-
oxygenase 1 and thereby eliminates all downstream prosta-
glandin production from arachidonic acid (AA) by platelets
[193]. This includes the key bioactive lipid involved in platelet
activation, TxA2, which can be counterbalanced by PGI2 and

its analogs that inhibit platelet activation [192, 204, 205].
Metabolically, the genesis of TxA2 and other bioactive lipids
are also impacted byω-3 polyunsaturated fatty acid substrate
substitution for AA [193]. Although not well studied, this
places platelets not only at the center of the metastasis discus-
sion but also the progression of pre-malignancies. Since
neoangiogenesis produces leaky blood vessels during early
cancer progression, it stands to reason that platelets are the
Bfirst responders^ to extravasate, activate, and release their
stroma stimulating, proangiogenic, chemoattractive, and im-
munomodulatory contents [1, 2]. These normal platelet func-
tions and products undoubtedly promote precancerous lesion
progression as a series of cyclic amplification events. Platelets
are suspected to have a key role within the full spectrum of the
cancer progression continuum, which makes limiting their
first response an important target for both prevention and
therapy.

6 Platelets as Bfirst responders^ in cancer metastasis

BFirst responders^ describes platelets as active participants in
metastatic processes [1]. Platelets are thought to facilitate can-
cer and metastasis by various mechanisms [1, 192, 206, 207].
Due to these combined properties, during metastasis, circulat-
ing platelets can also elicit a first response to the exposure,
sloughing or active invasion of tumor cells into the blood
stream at primary tumor sites. Obstruction of blood flow and
angiogenesis associated with primary tumor growth is likely
to further enhance the probability of platelet/tumor cell en-
counters through membrane interactions [208–210]. The net
result is likely to be platelet activation either to subdue cells at
the primary site or generate tumor cell-platelet emboli in cir-
culation [1, 19, 191]. Based on such significant numbers in
circulation, small size, biophysical shear properties, adhesion,
aggregation, and streamline migration properties, platelets are
well suited to serve as Bfirst responders^ to a variety of path-
ologic stimuli, including metastasis.

7 Tumor cell migration, invasion, and intravasation

The proliferation and migration of cancer cells within primary
tumors drives a number of events that can impact metastasis
[211–215]. Direct impact can occur by shedding, sloughing,
or active entry of tumor cells into the blood vessels. Based on
single cell profiling of circulating tumor cells (CTCs), there is
a large diversity of cells found in the circulation that reflect
tumor heterogeneity [216, 217]. Within the diversity spec-
trum, CTCs also frequently exhibit stem cell properties
[218]. A variety of triggers can initiate entry of CTCs into
the circulation. For example, decreased availability of blood
vessels can increase the induction of hypoxia as tumors
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outgrow their blood supply and release of angiogenesis or
wounding related factors [219–221]. These factors stimulate
the formation of new blood vessels that are typically abnormal
and leaky, enabling entry of tumor cells into the blood stream
[222–224]. Although not extensively studied, there is also
potential for leakage or migration of platelets into the tumor
that may further enhance the angiogenesis/leaky blood vessel
genesis cycle [125, 225–227]. More aggressive tumor cells
that enter the circulation often undergo epithelial-
mesenchymal transition EMT [228]. In fact, direct signaling
between platelets and cancer cells induces an EMT and pro-
motes metastasis in vitro and in vivo [229–231]. Cells with
EMT characteristics are more fibroblastic in morphology and
are typically much more motile and invasive as a result [229,
230]. These EMT cells are prone to actively invade blood
vessels by using matrix metalloproteinase (MMP) to digest
the extracellular matrix and basement membrane of blood
vessels [232, 233]. As a part of the invasion process interac-
tions between platelets and tumor cells increase the production
of MMP-9 [230]. This tumor cell invasive process is termed
intravasation and is considered an early dissemination step of
the hematogenous metastatic cascade [234].

8 Hematogenous spread, extravasation,
and secondary site metastasis

Billroth in 1878was the first to identify cancer-cell-containing
thrombi with the spread of tumors [235]. Wood first observed
real-time arrest and formation of platelet thrombi along with
tumor cell migration into the perivascular spaces [207, 236].
Baserga and Safi-Otti observed the intravascular arrest and
proliferation of anaplastic carcinoma (T1SO) cells prior to
extravasation. Both studies identified thrombus formation
and tumor cell arrest in small arterioles [207, 236, 237].
When tumor growth occurred intravasculary, it resulted in
the destruction of the vessel then tumor cell extravasation.
Jones et al. observed the formation of tumor cell-platelet em-
boli and fibrin using electron microscopy and immunofluores-
cence after tail vein injection in rats [238]. Early stage emboli
formation revealed neutrophils and lymphocytes followed by
fibrin formation even after the disappearance of platelets [239]
confirmed by others [240]. The release of platelet vesicles and
adhesion to vessel walls was observed in vitro [241] along
with tumor cell migration through the endothelial layer from
the adherent embolus [242]. Rat AH-130 ascites hepatoma
cells also revealed tumor cell-platelet emboli in microvessels
of the lung [243]. Gastpar also performed intravital capillary
microscopy in the mesentery of rats to test sulfinpyrazone
inhibition of lethal pulmonary tumor cell emboli [244].

Advancements in time-lapse, deep-tissue imaging using
intravital microscopy have demonstrated the importance of
tumor cell migration in vivo [245]. Invasion through the

genesis of invadopodia illustrate a dependence on prostaglan-
din signaling [246]. Intravital fluorescence microscopy has
also revealed dynamic platelet-melanoma cell interactions in
mice [247]. Platelet depletion significantly reduced melanoma
cell adhesion to the injured vascular wall in vivo [247]. Platelet
interactions andmetastasis of B16melanoma cells to the lungs
were decreased after treatment with mAb blocking the αIIbβ3

or αvβ3 integrin [247]. Platelets from the perivascular space
can also migrate into extravascular tissues in support of tumor
cell invasion and formation of metastases [1, 125–129, 230].
Nonetheless platelet migration may exhibit certain constraints,
the lack of nuclei and protein synthesis may limit the distance
that platelets migrate because they cannot indefinitely sustain
the replacement of proteins [158, 159]. Thus, platelets may
potentially prepare or enable extravasation at secondary met-
astatic sites [2, 67, 130, 248–251]. The use of intravital mi-
croscopy coupled with fluorescent platelets is expected to re-
veal even more details of this rapidly occurring process.

Enzymatic digestion of minced tumor fragments using col-
lagenase, and trypsin inhibitors followed by counterflow cen-
trifugal retained the representative receptor expression profile
and other intrinsic properties that are closer to the native tumor
state. Tail vein injections of these pure tumor cell preparations
into syngeneic mice enabled accurate characterization of the
resulting intravascular biology in vivo [191, 252]. In these
experiments, platelet-aggregating activities of Lewis lung car-
cinoma, B16 amelanotic melanoma and 16C mammary ade-
nocarcinoma resulted in tumor cell-platelet emboli formation
in the lungs [191]. Platelets aggregated with tumor cells as
early as 2 min followed by biphasic association with arrested
tumor cells that peaked at 10–30 min and 4–24 h [191].
Ultrastructurally, tumor cells formed processes that extended
into the platelet aggregate. At early time intervals (2–10 min),
intravascular platelet degranulation in association with tumor
cell processes. Tumor cells also engulfed platelet fragments
in vivo [191]. Follow-up studies using the same models fo-
cused on tumor cell interactions with endothelial cells and the
subendothelial matrix [19]. Mitoses were observed after 24 h
with cell division and the development of intravascular tumor
nodules. The final step in the extravasation sequence was dis-
solution of the basement membrane by the attached tumor
cells [19]. In other mouse studies, platelet adhesive glycopro-
tein receptors and their counterparts expressed by tumor cells
participated in tumor cell induced platelet aggregation
(TCIPA) as an early step in the development of metastatic
lesions [253].

9 Thrombocytosis

Cancer induces thrombocytosis resulting in elevated circulat-
ing platelets linked to Trousseau’s syndrome [254–256]. A
multicenter study of epithelial ovarian cancer revealed
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mechanistic associations between platelet counts and disease
outcome [130]. Thrombocytosis associated with tumor
interleukin-6 (IL-6) and liver generated thrombopoietin has
been associated with shortened survival in ovarian cancer pa-
tients [130]. Orthotopic ovarian mouse models revealed
tumor-derived IL-6 stimulated hepatic thrombopoietin synthe-
sis and paraneoplastic induction of thrombocytosis [130].
These studies showed a paracrine link between cancer and
thrombocytosis. More CD63-positive platelet microparticles
were also found in the circulation of ovarian cancer patients
compared to those with benign tumors [257]. Procoagulant
microparticles were found along with venous thromboemboli
in cancer patients [258, 259]. The impact of IL6 on
thrombocytosis has been observed elsewhere and in other
cancers [260, 261].

10 Next response?

This overview illustrates the importance of platelet Bfirst
responder^ characteristics to hemostasis wound repair, cancer
immune function, and cancer biology. Thrombocytosis and
thrombogenesis remain key areas of interest for biologic and
prognostic characteristics of cancer. The critical nature of
platelets to carcinogenesis as well as platelet-tumor cell het-
erotypic emboli to metastasis will continue to advance.
Advancements in intravital microscopy coupled with fluores-
cent platelets are expected to facilitate elucidation of the rapid
process of platelet-tumor cell invasion. The impact of platelets
on tumor immunity is an exciting new field of interest with a
bright rapidly responding future.
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