
CLINICAL

Targeting cellular and molecular drivers of head and neck
squamous cell carcinoma: current options
and emerging perspectives

Simonetta Ausoni1 & Paolo Boscolo-Rizzo2 & Bhuvanesh Singh3
&

Maria Cristina Da Mosto2 & Giacomo Spinato4 & Giancarlo Tirelli4 &

Roberto Spinato5 & Giuseppe Azzarello6

Published online: 18 May 2016
# Springer Science+Business Media New York 2016

Abstract Despite improvements in functional outcomes at-
tributable to advances in radiotherapy, chemotherapy, surgical
techniques, and imaging techniques, survival in head and neck
squamous cell carcinoma (HNSCC) patients has improved
only marginally during the last couple of decades, and optimal
therapy has yet to be devised. Genomic complexity and
intratumoral genetic heterogeneity may contribute to treat-
ment resistance and the propensity for locoregional recur-
rence. Countering this, it demands a significant effort from
both basic and clinical scientists in the search for more effec-
tive targeted therapies. Recent genomewide studies have pro-
vided valuable insights into the genetic basis of HNSCC,
uncovering potential new therapeutic opportunities. In addi-
tion, several studies have elucidated how inflammatory, im-
mune, and stromal cells contribute to the particular properties
of these neoplasms. In the present review, we introduce recent

findings on genomic aberrations resulting from whole-
genome sequencing of HNSCC, we discuss how the particular
microenvironment affects the pathogenesis of this disease, and
we describe clinical trials exploring new perspectives on the
use of combined genetic and cellular targeted therapies.
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1 Introduction

Cancers of the upper aerodigestive tract predominantly ac-
counts for squamous cell carcinomas (SCCs), which develop
in the epithelial linings of the oral cavity, pharynx, and lar-
ynx—the so-called head and neck SCCs (HNSCCs) [1].

HNSCC has been shown to contain unexpected complexity
in terms of etiology, pathogenesis, morphological characteris-
tics, clinical features, and natural history. The disease is
strongly associated with tobacco use, heavy alcohol consump-
tion, chewing of betel quid, and poor oral hygiene [2–4].
However, although these exposures account for the majority
of cases of HNSCC globally, specific oncogenic (high-risk)
types of human papillomavirus (HPV)—most frequently HPV
type 16 (HPV16)—have been shown to be causally related to
a subset of oropharyngeal SCCs (OPSCCs) that arise from the
crypt epithelium of the palatine tonsils and the base of the
tongue [5–8]. Furthermore, cases of HPV-related OPSCC
have been increasing dramatically and now account for
50 % of cases in Europe and 65 % of cases in the US [9].
HPV-positive disease represents a distinct clinical and epide-
miological condition that differs in terms of risk factors,
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molecular genetic alterations, microscopic appearance, and
clinical behavior [10].

Treatment of patients with early-stage HNSCC is relatively
successful and relies on straight single-modality therapy: ei-
ther surgery and/or radiation alone. Unfortunately, at the time
of diagnosis, the majority of patients present with locally ad-
vanced disease and are managed by combined modality treat-
ment strategies that may profoundly affect quality of life [11].

Despite improvements in functional outcomes attributable
to advances in radiotherapy, chemotherapy, and surgical and
imaging techniques [12–14], survival in patients with HNSCC
has not satisfactorily improved during the last couple of de-
cades [15]. Genomic complexity [16], intratumoral genetic
heterogeneity [17], and field cancerization [18] may contrib-
ute to its resistance to treatment and propensity for
locoregional or distant recurrence. Additionally, patients with
HNSCC often have limited options for reirradiation [19] or
salvage surgery [20] and have only modest responses to
second-line systemic therapies [21–23]. Moreover, although
HPV-positive HNSCCs have better clinical outcomes and
more favorable responses to radiochemotherapy, compared
with HPV-negative HNSCCs [24], a subgroup of patients with
HPV-positive HNSCCs experienced high rates of distant fail-
ure after concurrent chemoradiation [25], and contradictory
results in terms of activity have been reported for drugs
targeting the epidermal growth factor (EGF)/EGF receptor
(EGFR) pathway in these patients [26–28].

The generally poor outcomes in patients with HNSCC de-
mand a significant effort from both basic and clinical scientists
in the search for more effective targeted therapies. Recent
genomewide studies [16, 29–33] have provided valuable in-
sights into the genetic basis of HNSCC, opening potential new
targetable biologic pathways. In addition, several studies have
elucidated how inflammatory, immune, and stromal cells con-
tribute to the particular properties of these neoplasms [34, 35].

In the present review, we pursued the following aims: (1) to
discuss the recent findings on genomic aberrations resulting
from whole-genome sequencing of HNSCC, (2) to discuss
how the particular tumor microenvironment affects the path-
ogenesis of the disease, and (3) to describe clinical trials ex-
ploring the use of combined genetic and cellular targeted
therapies.

2 Genetic abnormalities in HNSCCs

Genome and exome analysis using advanced technical ap-
proaches [16, 29, 30, 32, 33, 36] has provided a comprehen-
sive view of the genetic alterations in HNSCC and has
underlined several significant properties of these tumors.
First, HNSCC tumors have remarkable genetic heterogeneity,
which appears to be significantly wider than that reported by
Chung et al. almost 10 years ago [37]. Second, the gene

expression subtypes in HNSCC correspond to the histopatho-
logical classification of basal, mesenchymal, atypical, and
classical variants and may provide a complementary classifi-
cation tool for HNSCCs [38]. Third, HPV-positive and HPV-
negative HNSCCs have different genetic drivers [33, 34, 36],
although distinct hits may converge to generate common ef-
fects. Finally, HPV-driven tumors have less gross chromo-
somal aberrations and approximately half of the mutation rate
of HPV-negative HNSCCs (30). These findings have not
reached clinical relevance yet, and HPV-negative and HPV-
positive tumors are currently treated the same way.

2.1 The dominant role of cell cycle and survival genes:
TP53/RB pathway

The tumor suppressor genes TP53 and CDKN2A and the
oncogene CCND1 represent the most commonly mutated
genes in HPV-negative HNSCCs [16, 29, 30, 33, 39] and
in premalignant dysplastic lesions [40]. DNA damage and
oncogenic stress activate p53, which translates stress
signals into cell cycle arrest or apoptosis. Three major
mechanisms of p53 inactivation have been detected in
HNSCC cells: (1) TP53 somatic mutations, which do
not cause loss of function but do result in atypical
dominant-negative p53 mutants [41] (this condition,
frequently described as a gain of function, is better
specified as Bsubversion of function,^ as proposed by
Muller and Vousden [42]); (2) p53 degradation mediated
by HPV E6 oncoprotein [43]; and (3) p53 proteasomal
degradation, which requires binding of p53 with the
negative regulator Mdm2 (Hdm2 in humans) [44].

Differentiated cells or basal cells that accumulate defective
p53 protein become susceptible to other genetic mutations,
acquire a propensity for metastasis [45], and create a favorable
environment for the development of multiple independent
transforming events in the same patient [46]. This explains
why mutations of the TP53 gene correlate with worse prog-
nosis and higher risk of recurrence after definitive
locoregional treatment [47]. TP53 mutations in HNSCC are
also associated with poor responses to chemotherapy and
radioresistance [48], possibly via the inhibition of radiation-
induced senescence [49].

Genomic studies have confirmed that other genes involved
in cell cycle regulation, such as CDKN2A and CCND1,
present high frequency of alterations in HPV-negative
HNSCC [16, 29, 30]. Cyclin D1, the protein produced by
CCND1, promotes cell proliferation in association with
kinases CDK4 and CDK6. Extensive research led to demon-
strate that the cyclin D1-CDK4/6 complex phosphorylates
(activates) the retinoblastoma protein (pRB) and allows
progression to mitosis. At the end of cell division, p16-
INK4A (the protein produced by CDKN2A) blocks cyclin
D1-CDK4/6 complex, inhibits pRB phosphorylation, and
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arrests cell cycle in G1 [50]. In the absence of p16-INK4A,
pRB is continuously phosphorylated, and cell proliferation
proceeds [51]. p14-ARF (also called p16-INK4B), an alter-
nate reading frame protein product of the CDKN2A gene, is
also involved in cell cycle regulation. p14-ARF inhibits p53-
dependent cell cycle arrest by interacting with MDM2 and
inducing p53 ubiquitination [52]. p14-ARF block p53
function and deregulates cell cycle control [53]. Structural
abnormalities of the CDKN2A gene in HNSCC patients lead
to less production or loss of p14-ARF and limitless replicative
potential [54]. Similarly, high levels of cyclin D1 due to
amplifications in the CCND1 gene result in an uncontrolled
cell cycle and strongly predict unfavorable outcomes in
patients with HNSCC [55].

Alterations in the p53 and pRB pathways are radically
different in HPV-positive tumors [56], where p53 and
pRB proteins are inactivated by viral oncoproteins E6
and E7, respectively. Specifically, E6 binds to the cellular
protein E6AP, and the E6/E6AP complex is responsible
for ubiquitination and proteasome degradation of p53. E7,
on the other hand, inactivates pRB, which in turn induces
overexpression of p16-INK4A, and cell G1-S phase
transition [57].

Outlook and clinical challenges

The search for a targeted therapy aimed to modulate p53 has been
characterized by limited success, so far. Noteworthy is a single phase
III study with adenoviral p53 gene therapy and methotrexate: wild-
type p53 patients showed better response to gene therapy (probably
related to up-regulation of MDM2), suggesting a role of p-53 profile
as predictive biomarker [58].

Therapeutic strategies targeting p16 have not reached clinical trials yet,
whereas cyclin D1-CDK 4/6 dual inhibitor is currently being tested in a
phase I trial of various advanced cancers (ClinicalTrials.gov identifier:
NCT01394016). Another phase I study of a CDK inhibitor in
combination with radiotherapy has completed recruitment
(ClinicalTrials.gov identifier: NCT00899054). Palbociclib, a target
inhibitor of CDK4/6, recently approved for the treatment of breast cancer
[59], has been evaluated in combination with cetuximab in a phase I
study [60], and a randomized, multicenter, phase II study with
palbociclib and cetuximab in HPV-negative recurrent/metastatic
HNSCC is also ongoing (ClinicalTrials.gov identifier: NCT02499120).

Regarding HPV-positive tumors, preventive and therapeutic anti-HPV
vaccines have been developed in an effort to prevent primary or
established infections [61]. As prophylactic vaccines are based on L1
viral capsid protein, which is unexpressed in HPV-associated
neoplasms and induces only humoral immunity, they are ineffective for
established HPV-driven SCCs. Since it stimulates cytotoxic T
lymphocytes (CTLs) against infected and transformed cells expressing
specific E6 and E7 epitopes specific E6 and E7 epitopes [62],
therapeutic vaccination is, conversely, a promising option [63]. Several
phase I and II clinical trials are currently investigating the safety and
efficacy of therapeutic DNA vaccines (ClinicalTrials.gov identifier:
NCT01493154; NCT0216305), protein vaccines (ClinicalTrials.gov
identifier: NCT00704041; NCT00257738; NCT00019110), and
bacterial vector vaccines (ClinicalTrials.gov identifier: NCT02002182;
NCT01598792) for HPV-positive HNSCC, alone or in combination
with both chemotherapy and radiation therapy [63–65].

2.2 Genes of cell growth as targets for biological therapy:
PI3K/AKT/mTOR pathway

PI3K represents the second most important target gene across
human cancers [66], and alterations of the PI3K pathway are
common drivers in HNSCC [16, 29, 30, 33, 39]. A number of
growth factors relay signals through the PI3K signaling cas-
cade. Activated PI3K phosphorylates the second messenger
phosphatidylinositols PIP2 and PIP3 and turns on downstream
effectors AKT and mammalian target of rapamicin complex 2
(mTORC2). Fine-tuning of PI3K depends on opposing regula-
tors. Phosphatase and tensin homologue (PTEN) shuts off PI3K
signaling, whereas PI3K catalytic subunit alpha (PI3KCA) is
responsible for complex activation [66]. The oncogene product
RAS is also a positive regulator of the PI3K signaling cascade,
resulting in cell survival and cell cycle regulation [67].

Abnormal PI3K pathways in HNSCC are derived mostly
from gain-of-function mutations of PI3KCA and loss-of-
function mutations of PTEN [16, 29, 30, 33, 39]. Because the
global frequency of mutations affecting various components of
the PI3K pathway is very high, and as multiple ligands and
receptor tyrosine kinases rely on PI3K, the PI3K pathway has
become an elective therapeutic target in HNSCC [16].

Being in the crossroad with RAS and PI3K, MEK, ERK-1,
and ERK-2 are also object of several translational studies.

Outlook and clinical challenges

The three major classes of PI3K inhibitors—namely, combined PI3K/
mTORC, Pan-Class I, and alpha-specific—are currently under clinical
evaluation in phase I and II studies, alone or in combination with either
chemotherapy or cetuximab (ClinicalTrials.gov identifier:
NCT00854152; NCT01737450; and NCT01252628). In particular,
some controlled trials employing agents that target PI3K isoforms in
recurrent/metastatic setting are worthy of mention. Two phase II trials
failed to demonstrate benefit when PX-866 (Oncothyreon, Seattle,
WA) was added to either docetaxel or cetuximab. In a phase I trial,
BYL 719 (Novartis Pharmaceuticals), which targets alpha isoform of
class I PI3K, gave only a partial response, and further investigations are
ongoing to ascertain its clinical benefit [68–70]

The mTORC inhibitors everolimus and temsirolimus, which are currently
used to treat breast cancer, renal cell carcinoma, and pancreatic
neuroendocrine tumors, have been also evaluated in combination with
erlotinib in platinum-refractory, recurrent/metastatic HNSCC [71].
Both agents showed modest response rate and low tolerability, raising
some concern in targeting the EGFR and mTOR pathways together
[72, 73] Temsirolimus has been tested as single agent in the same
setting: although no objective response was recorded, a progression-
free survival (PFS) rate of 40 % at 12 weeks has been achieved [74].

Other inhibitors of tyrosine kinase are also under investigation, such as
trametinib, a MEK inhibitor used in combination with AKT inhibitors
(ClinicalTrials.gov identifier: NCT01725100), and sorafenib, a
multiple tyrosine kinase inhibitor. In a phase II study, treatment with
sorafenib has shown poor response rate, but compared favorably with
other phase II single agent trials in terms of progression-free and
overall survival [75]. Moreover, in vitro experiments indicate that so-
rafenib might sensitize head and neck squamous cells to ionizing ra-
diation, suggesting the potential to overcome radioresistance mainly
through the inhibition of DNA double-strand breaks (DSB) [76].

Cancer Metastasis Rev (2016) 35:413–426 415



2.3 EGFR pathway

PI3K signaling is initiated by specific growth factors and
coupled receptors, such as the EGF/EGFR.

EGFR is part of the ERB family of receptor tyrosine ki-
nases, which includes also ERBB2, ERBB3, and ERBB4.
EGF/EGFR complex activates a number of biological func-
tions through downstream PI3K/AKT, Ras/Raf/MAPK, and
JAK/STAT. It is also able to translocate to the nucleus and
activate transcription, thus producing pleiotropic effects in
cellular homeostasis. One of the genes induced by intranuclear
EGF/EGFR is the aforementioned CCND1 [77].

EGFR genetic alterations include amplifications and gain-
of-function mutations that induce high protein overexpression
in a large proportion of HNSCCs and lead to tumor prolifer-
ation, angiogenesis, metastasis, and consequently poor prog-
nosis of the disease [77, 78]. However, EGFR overexpression
has not been found to be a predictive biomarker of activity
with EGFR-targeted therapies [79].

Outlook and clinical challenges

Inhibition of the EGF/EGFR pathway has been the first molecular strat-
egy showing significant prosurvival effect in HNSCC. Inhibitors in-
clude recombinant-chimeric (cetuximab) or humanized
(nimotuzumab) or fully human (panitumumab and zalutumumab) anti-
EGFR monoclonal antibodies. Several controlled clinical studies have
confirmed the efficacy of cetuximab in both locally advanced disease
(in combinationwith radiotherapy) andmetastatic or recurrent HNSCC
(in combination with standard chemotherapy) [14, 21].

In platinum-refractory or ineligible patients, cetuximab has shownmodest
activity as monotherapy [80], but encouraging response rate in com-
bination with paclitaxel in a phase II trial [81]. Benefits achieved with
cetuximab were not confirmed for panitunumab in patients with met-
astatic or recurrent disease [26]. Similarly, disappointing results in
terms of overall survival were reported for zalutumumab compared
with BSC alone in a phase III study in recurrent/metastatic setting.
Nimotuzumab provided survival benefit in inoperable advanced Indian
patients in a randomized phase IIb, 5-year study [22, 78]. Contrasting
these results, inhibitors of tyrosine kinase activity using small mole-
cules, which block the phosphorylation and activation of EGFR
(geftinib and erlotinib), have shown limited antitumor activity [82, 83],
and no additional studies have been planned.

Patients treated with EGFR inhibitors develop high levels of de novo or
acquired resistance to therapy. This may be due to activation of other
ErbB-family receptors, cross-talk with other signaling pathways, nuclear
localization of EGFR, ormutant forms of the receptor [84, 85]. Therefore,
interest is currently shifting to the use of inhibitors that target multiple
ERB-family members. Initially, lapatinib, a reversible tyrosine kinase
inhibitor of EGFR and ERBB2, has shown promising activity, when used
in combination with concurrent chemoradiotherapy in HPV-negative pa-
tients [86]. However, in a large adjuvant post-operative phase III study,
lapatinib added to concurrent chemoradiation and used as long-term
maintenance therapy has failed to improve both disease-free and overall
survival in high-risk HNSCC patients, and has caused additional toxicity
comparedwith placebo [87]. These findings shouldmake us reflect on the
opportunity to have reliable data on the effectiveness of targeted therapies
before programming large controlled studies. At present, investigation of
lapatinib is restricted to a single phase II trial in the advanced setting
(ClinicalTrials.gov identifier: NCT01044433). Another ERB-family
blocker, afatinib, has shown a response rate similar to that of cetuximab in

a phase II randomized trial, with a lack of cross-resistance following
sequential EGFR/ErbB therapy [88]. On the basis of these data, afatinib
hasmoved to a phase III trial in recurrent/metastatic setting, confirming its
efficacy compared tomethotrexate (LUXHead&Neck 1 study), in terms
of progression-free survival and patient-reported outcomes [23]. A new
trial comparing the efficacy of afatinib with placebo as adjuvant therapy
in patients who have received definitive chemoradiotherapy (LUX Head
& Neck 2) is currently recruiting participants (ClinicalTrials.gov identi-
fier: NCT01345669). Table 1 summarizes the results of the most relevant
clinical trials targeting the EGF/EGFR complex.

2.4 Genes of squamous cell differentiation: the NOTCH
pathway

One important finding of the whole-exome sequencing studies
is the high frequency of mutations (up to 15 %) in NOTCH1
gene [29, 30]. TheNOTCH signaling pathway is activatedwhen
one cell expressing the appropriate ligand (Jagged or Delta)
interacts with a neighbor cell expressing a NOTCH1 receptor.
The NOTCH receptor is cleaved by ADAM metalloprotease
and γ-secretase complex, and the intracellular domain translo-
cates to the nucleus, where it activates transcription of target
genes HES1 and HEY1 [89]. In human keratinocytes,
NOTCH1 signaling is essential to promote cell differentiation,
and down-modulation or loss-of-function mutations of
NOTCH1 gene are associated with dysfunctional squamous cell
differentiation and development of carcinoma [90]. Fine-tuning
of NOTCH signaling depends on a number of regulators.
Relevant for cancer development is the reciprocal feedback loop
between NOTCH, p53, and p63, which contributes to the bal-
ance between self-renewing and differentiation of keratinocytes.
Suppression of p53 activity down-regulates NOTCH1, blocks
differentiation, and promotes uncontrolled cell proliferation
[91]. High levels of p63 also inhibit NOTCH1 and suppress
differentiation, whereas low levels of p63 and high levels of
NOTCH1 result in the opposite effect [92].

NOTCH1mutations have been detected in a large proportion
of HNSCCs, making NOTCH1 the second most frequently
mutated gene after TP53 in these tumors [29, 30, 39]. Several
mutations result in NOTCH1 inactivation, suggesting a tumor
suppressor function rather than an oncogene function. Only a
small subset of patients with HNSCC present with gain-of-
function mutations [29, 30, 93], which are similar to those
associated with the leukemia cluster [94]. Mutations of other
genes of the NOTCH1 pathway, in the presence of wild-type
NOTCH, have also been detected in patients with HNSCC [93].

Outlook and clinical challenges

The NOTCH1 pathway represents a potential new target in cancer
therapy, although a therapeutic approach is complicated by the dual
nature of tumor suppressor and oncogene of NOTCH1. There are
currently no available targeted drugs for this pathway. Inhibitors or
activators of the NOTCH1 pathway via block of γ-secretase and his-
tone deacetylase, respectively, are developing.

416 Cancer Metastasis Rev (2016) 35:413–426



2.5 MicroRNA in HNSCC

Compelling evidence indicates that the human genome is reg-
ulated by microRNAs (miRNAs). miRNAs are short, noncod-
ing RNAs that regulate transcription and translation of their
target genes by binding to the highly evolutionarily conserved
3′-untranslated regions of mRNAs [95]. Altered expression of
miRNAs correlates with human cancers [96], and several
miRNAs are either up-regulated or down-regulated in
HNSCC [97].

Up-regulated miRNAs, such as miR-21 (negatively corre-
lated with PTEN) and miR-205 (which targets PTEN), pro-
mote cell proliferation by blocking cell cycle inhibitors,
whereas down-regulated miRNAs, such as the let-7 family,
negatively regulate KRAS [98]. miRNA are also involved in
chemoresistance as revealed by levels of expression in resis-
tant HNSCC cell lines [99].

Outlook and clinical challenges

Further studies are warranted to investigate the use of miRNAs as
diagnostic, prognostic, or therapeutic markers of HNSCC, but the high
rate of abnormalities detected by genomic studies points to a
previously unexpected role of these molecules in HNSCC. The tumor
suppressor let-7c has been found to be altered in 40 % of HPV-
negative and 17 % of HPV-positive HNSCCs [16], and specific
miRNAs have also been associated with a propensity for metastasis
and poor outcomes [100].

3 A new perspective in cancer treatment: targeting
the tumor microenvironment

3.1 The tumor microenvironment in HNSCC

Numerous studies have demonstrated the essential role
that the tumor microenvironment plays in the acquisition

of hallmark capabilities [101]. The particular properties
of the tumor microenvironment play a prevalent role in
progression of HNSCC and represent potential targets
for new therapeutic approaches, along with conventional
or new molecular-driven therapies. The mucosa of the
nasopharynx, oropharynx, and hypopharynx progressive-
ly changes from pseudostratified respiratory epithelium
to a nonkeratinized stratified squamous layer. The oro-
pharyngeal trait contains tonsillar lymphoid follicles in
which the mucosa extends deep into crypts and alter-
nates stratified squamous cells and reticulated sponge-
like layers [102]. Reticulated patches associated with
discontinuous basement membrane collect pathogens
hiding in the crypts [103]. The mucosa is also enriched
with basal cells localized near the basal lamina. Under
normal conditions, these cells contribute to the slow
turnover of the epithelium, but they may convert into
cancer stem cells (CSCs) responsible for tumor initiation
and progression (see [104, 105] for an exhaustive re-
view of CSCs in HNSCC).

The tumor microenvironment of HNSCC, particularly the
oropharyngeal trait, contains a predominance of nonepithelial
cells, which provide support for growth factors, cytokines, and
chemokines to promote invasiveness and chemoresistance
(Fig. 1). These cells include lymphocytes, macrophages, den-
dritic cells, vascular cells, and stromal cells. Hereafter, we will
discuss how some of these cells exert a suppressive role in the
antitumor immune response (Fig. 2).

3.2 ROS, inflammation, and immunity

Tobacco use, alcohol consumption, and HPV infection trigger
inflammatory and immune activation. Oxidative stress is a
major effector in this process, as chemical carcinogens pro-
duce such a high level of reactive oxygen species (ROS) and
reactive nitric species (RNS) that scavenging by antioxidants
is always inefficient. Compelling experimental and clinical

Table 1 Relevant controlled clinical trials targeting EGF/EGFR pathways

Agent Phase II–III trials Clinical setting Main results Reference(s)

Cetuximab (chimeric
human anti-EGFR)

Phase III plus RT
Phase III plus CT (extreme)

Locally advanced
Recurrent/metastatic

Improved OS
Improved OS

Bonner et al. 2010 [8]
Vermorken et al. 2008 [15]

Panitunumab (fully human
anti-EGFR mAb)

Phase III plus CT
(spectrum)

Recurrent/metastatic Negative study, but improved OS in
post-hoc analysis in HPV negative

Vermorken et al. 2013 [20]

Nimotuzumab
(humanized anti-EGFR mAb)

Phase IIb plus CRT or RT Locally advanced Improved survival (median not reached
for nimotuzumab plus CRT arm)

Reddy et al. 2014 [67]

Zalutumumab (fully human
anti-EGFR mAb)

Phase III plus BSC/MTX Platinum-refractory
recurrent/metastatic

Improved PFS Machiels et al. 2011 [16]

Lapatinib (EGFR/HER2 inhibitor) Phase II plus CRT Locally advanced Increased CRR and median PFS
in p16-negative disease

Harrington et al. 2013 [72]

Afatinib (irreversible ERBB-family
blocker)

Phase III trial vs. MTX Recurrent/metastatic Improved PFS Machiels et al. 2015 [17]

BSC best supportive care, CRR complete response rate, CRT concurrent chemoradiotherapy, CT chemotherapy, mAb monoclonal antibody, MTX
methotrexate, OS overall survival, PFS progression-free survival, RT radiotherapy
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evidence indicates that ROS produce a broad range of effects,
from genomic instability and changes in signaling pathways to
activation of inflammation, tissue repair, controlling cell pro-
liferation, and survival; affect cell motility and invasiveness;
and activate inflammation, tissue repair, de novo angiogenesis
[106], and differentiation of basal stem cells [107].

In HNSCC, the cross-talk between tumor and inflammato-
ry cells is multifaceted, as demonstrated by the effect pro-
duced by tumor-associated macrophages (TAMs) and
myeloid-derived suppressor cells (MDSCs) in tumor develop-
ment. TAM subpopulation M1 promotes inflammation and
exerts an antitumor function, whereas TAM subpopulation
M2, the predominant variant in malignant proliferations, acti-
vates angiogenesis and tissue remodeling and sustains tumor
progression [108]. Thus, concomitant to inflammation,
monocyte-derived macrophages create a favorable environ-
ment for tumor growth by secreting EGF, PDGF, and

TGF-β [109]. Macrophages also synthesize the chemotactic
factor macrophage inflammatory protein-3α, which drives
HNSCC cell migration and invasion [110]. HNSCC patients
with high levels of expression of M2 markers CD68 and
CD163 present with significantly worse clinical outcomes
[111], a finding that provides a rationale for targeting M2
depletion in HNSCC. M2 can also be generated by MDSCs.
MDSCs are an intrinsic part of the myeloid lineage and are
characterized by the capacity to suppress T cell responses in
various ways. MDSCs also produce factors that support tumor
growth and angiogenesis, stimulate M2 differentiation, and
contribute to the production of an immunosuppressive milieu
that favors tumor survival [112].

Head and neck tumor cells are actively eliminated by tumor
antigen (TA)-dependent and TA-independent host immune
responses. However, immune surveillance breaks down when
tumor cells harbor escape mechanisms that allow them to
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Fig. 1 Genetic heterogeneity and
the immunosuppressive
microenvironment characterize
HNSCCs. Genes regulating cell
cycle and survival, cell growth,
and differentiation are frequently
mutated or amplified in HNSCC.
Epigenetic changes have also
been identified as drivers of tumor
progression. Cancerogenesis
produces a bulk of heterogeneous
cells, including cells with
invasion and metastatic capacity.
The tumor microenvironment is
characterized by an abundance of
cytokines and growth factors
produced by tumors cells (escape
mechanisms) and inflammatory,
stromal, and antigen-presenting
cells. Collectively, these cells
provide an unfavorable milieu
that inhibits the immunological
response and promotes tumor
growth and survival. CAF cancer-
associated fibroblast, CSC cancer
stem cell, CTL cytotoxic T lym-
phocyte, DC dendritic cell,
MDSC myeloid-derived suppres-
sor cell, NK natural killer, TAM
tumor-associated macrophage,
Treg regulatory T lymphocyte
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avoid or inhibit the immune system. For example, tumors
can co-opt certain immune checkpoint pathways used
by the immune system to maintain self-tolerance, mod-
ulate the duration and amplitude of the immune re-
sponses, and avoid collateral tissue damage. Many of
the immune checkpoints are initiated by ligand-receptor
interactions, such as cytotoxic T lymphocyte-associated
antigen 4 (CTLA4) and programmed cell death protein
1 (PD1).

CTLA-4 receptor is expressed on T cells and attenuates T
cell immune response through its ligands CD80 and CD84.
PD-1 receptor is also expressed in activated Tcells, APCs, and
NK cells, and inhibits T cell activation through its ligands PD-
L1 and PD-L2 [113]. The ligands PD-L1 and PD-L2 have
broad expression ranging from T, B, and NK cells to some
tumor cells, including those of HNSCC [34, 114]. PD-L1/2-
Pd-1 interaction results in progressive exhaustion of the im-
mune response. Ultimately, tumor immune evasion is mainly
due to PD-1-positive T cells that infiltrate tumor bulks ex-
pressing high PD-L1 levels.

In HPV-positive HNSCC, immunosuppression is in-
creased further by viral infection, which may explain
why, paradoxically, these tumors commonly develop

within the immune tissue of tonsillar lymphoid follicles,
an anatomic site that should favor immunologic antitumor
response. Here, HPV blocks interferon-alpha, inhibits
CTLs, activates suppressor T lymphocytes, and down-
regulates expression of MHC complex I [115]. The immu-
nosuppressive milieu produced by inflammatory cytokines
maintains latent infection and favors tumorigenesis, which
is initiated when the viral DNA integrates into the host
genome and drives genomic instability. Once infected and
transformed by HPV, tumor cells activate additional mech-
anisms to escape the immune system by preventing expo-
sure of tumor antigens and promoting apoptosis of effector
T lymphocytes and down-regulation of NK cells [116].

Outlook and clinical challenges

In principle, many of the immune checkpoints can be blocked or
modulated by monoclonal antibodies in order to release cytotoxic T
cells from anergy and tolerance [113].

Ipilimumab, a monoclonal antibody against CTLA-4, was the first
biological drug of this class to obtain FDA approval for its relevant
clinical benefit in metastatic melanoma [117]. Since then, a number of
immunotherapies have been also proposed for HNSCC, although the
prognostic and predictive role of the expression of immune checkpoint
biomarkers in HNSCC is still under debate [118–120].

Pembrolizumab, an anti-PD-1 monoclonal antibody, has been tested in
the phase Ib Keynote 012 trial in recurrent/advanced HNSCC ex-
pressing PD-L1. In this study, response rate was nearly 20 % based on
RECIST criteria, regardless of HPV status, and clearly correlated with
PD-L1 expression level [121]. In an expansion cohort of the same
study, tumor shrinkage was reported in 57 % of the patients with a
response rate of nearly 25 % and acceptable toxicity [122]. Responses
were durable, remarking the novelty of these results, compared to
earlier experiences with cetuximab; longer follow-up is needed to as-
sess survival.

Two phase III trials have been planned to compare pembrolizumab as
single agent (or in combination with chemotherapy) with standard
treatment in recurrent/metastatic HNSCC (ClinicalTrials.gov identifi-
er: NCT02252042–NCT02358031).

Another phase III trial of nivolumab (a fully human antibody targeting the
PD-1 receptor) in comparison to standard treatment in recurrent/
metastatic HNSCC has been prematurely discontinued for the evidence
of a superior survival for the nivolumab arm (ClinicalTrials.gov iden-
tifier: NCT02105636).

Promising results have been also reported in a multiarm dose expansion
study employing the PD-L1 inhibitor durvalumab (MEDI4736). In 54
metastatic HNSCCs, not preselected for PD-L1 expression, the re-
sponse rate was 14 %, reaching 50 % in the subset of PD-L1 ex-
pressing tumors [123]. A phase III open label study of durvalumab
with or without tremelimumab (fully human monoclonal antibody
targeting CTLA-4) versus standard of care in recurrent/metastatic
HNSCC is ongoing (ClinicalTrials.gov identifier: NCT0255159).

To sum up, important and innovative features make the checkpoint
inhibitors the current most promising therapeutic strategy in HNSCC
for the relative high percentage of durable responses and the favorable
toxicity profile.

Other immunotherapies have been designed to target immunological
mechanisms involved in tumor progression. This is an area of intensive
translational research with both promising successes and persistent
disappointments. Besides the already illustrated line of research on
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checkpoint inhibitors, four other major strategies have been translated
from basic research to clinical trials (Table 2) [124–126, 128, 129, 131,
132, 138–144]: (1) conventional therapies that display immunomodu-
latory effects; (2) targeted therapies that, beyond the function of
targeting oncoproteins, may play a role in tumor-mediated immuno-
suppression; (3) therapeutic vaccines used to stimulate an active im-
mune response against a specificMHC-bound TA-derived peptide; and
(4) autologous T cells engineered to produce special receptors (chi-
meric antigen receptors) that allow the T cells to recognize specific
proteins on tumor cells.

3.3 Invasion and metastasis

HNSCCs are characterized by their propensity to spread via
direct infiltration through lymphatic, haematogenous, or

perineural routes. Neckmetastatic lymph nodes are quite com-
mon at presentation, with survival reduced nearly by half
when they are present [136]. Metastatic dissemination in-
volves several steps, most of which are coordinated by epithe-
lial mesenchymal transition (EMT) and remodeling of the
extracellular matrix. Cells undergoing EMT shift protein syn-
thesis to overexpress cytoskeletal proteins that detach and in-
vade the extracellular matrix through actin-rich protrusions
and focal adhesions. In addition, the invasive borders of
HNSCCs are enriched with cells that express matrix metallo-
proteinases (MMPs)—mainly MMP-9 and MMP-2—and
actin-rich structures, called filopodia and invadopodia, that
mediate ECM proteolysis [130]. The TGF-β pathway is a
key molecular player in EMT. TGF-β, in cooperation with

Table 2 Selected basic science and clinical evidence on immunotherapy for HNSCC

Therapeutic approach Major evidence Reference(s)

Conventional therapies
Cisplatin Collateral immunomodulatory effects: up-regulation of MHC

class I, recruitment of T cells and TAMs, down-regulation
of TREGs and MDSCs

de Biasi et al. 2014 [124]

Taxanes Collateral activation of DCs, NK cells, CTLs; up-regulation
of mannose-6-phosphate tumor cell receptors with increase
of permeability to granzyme-B

Chang et al. 2013 [125]

5-Fluorouracil Collateral increase of IFN-gamma production by CD8 T cells Tsuchikawa et al. 2012 [126]
Radiotherapy Increase in type I IFNs with enhancement of both intratumor

concentration of CXCR3 chemokine and activity of
CD8 T cells

Lim et al. 2014 [127]

Targeted therapies
Cetuximab Collateral up-regulation of MHC II and costimulatory

factors on DCs.
Increase of immune responses: complement-dependent

cytotoxicity, NK-mediated antibody-dependent
cytotoxicity, macrophage-mediated antibody-dependent
cellular phagocytosis.

Vannemann & Dranoff 2012 [128]
Srivastava et al. 2013 [129]
Kumai et al. 2014 [130]

Bevacizumab Collateral enhancement of differentiation of DCs and
blockade of MDSCs

Alfaro et al. 2009 [131]

Sunitinib Blockade of secretion of IL-10 and TGF-b and enhancement
of production of IFN-gamma by tumor T cells

Alfaro et al. 2009 [131]
Ozao-Choi et al. 2009 [132]

Cancer vaccines
Multiagent vaccines Specifically target TAs: Ly6k (lymphocyte antigen 6 complex

locus), CDCA1, IMP3 (insulin-like growth factor II
m-RNA-binding protein).

Phase II trial: improvement in OS in HLA*24:02+
advanced HNSCC patients

Yoshitake et al. 2015 [133]

DC-based wild-type p53
peptide vaccine

Induction of antitumor response by T cells.
Phase I trial: treatment safe, with promising

clinical outcome

Schuler et al. 2014 [134]

CAR therapies
Targeted CAR therapy LMP1/CAR (latent membrane protein)

CSPG-4 CAR (chondroitin sulfate proteoglycan-4).
Promising results in preclinical evaluations.

Tang et al. 2014 [135]
Geldres et al. 2014 [136]

Immune checkpoint target therapies
Monoclonal antibodies Anti-PD1–anti-PD-L1

Treatment safe. Remarkable results in preliminary phase I
studies. Up to date, no definitive results in terms of
clinical outcome in HNSCC. Pembrolizumab and
nivolumab under evaluation in a phase III trial.

Swanson et al. 2015 [137]
Seiwert et al. 2014 [138]
Seiwert et al. 2015 [139]
Segal et al. 2014 [140]

CAR chimeric antigen receptor, CTLs cytotoxic T lymphocytes,DCs dendritic cells, IFN interferon, IL interleukin,MDSCsmyeloid-derived suppressor
cells, MHC major histocompatibility complex, NK natural killer, OS overall survival, TA tumor antigen, TAMs tumor-associated macrophages, TGF
tumor growth factor, TREGs regulatory T cells
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its cognate receptors and transducers (SMAD2, SMAD3, and
SMAD4), activates genes of cell motility and down-regulates
epithelial genes [127]. TGF-β is secreted by tumor cells and
by a number of cells of the tumor microenvironment, includ-
ing cancer-associated fibroblasts and TAMs.

Another pathway associated with proliferation and migra-
tion of tumor cells involves Src, a cytoplasmic tyrosine kinase,
activated by a number of growth factors, including EGFR,
FGFR, and VEGFR [134].

Outlook and clinical challenges

Clinical evidence supporting the targeting of metastatic dissemination in
HNSCC has been elusive. Studies using sarcatinib (AZD0530), a small
molecule inhibitor of Src, in combinationwith either the phospholipase
C inhibitor U73122 or the EGFR inhibitor gefitinib found reduced cell
invasion in vitro [135, 137], but clinical trials have failed to
demonstrate any significant benefit [133]. Broad-spectrum MMP in-
hibitors have also been used, with very limited success in most cancers
[145].

3.4 Angiogenesis

Angiogenesis is a well-known factor that is necessary for
nourishing tumor cells and CSC niches and for promoting
metastatic progression [146]. Angiogenesis is supported by
hypoxic response or inflammation [147] as well as a variety
of factors in the tumor microenvironment, such as VEGFR
and NF-kB. VEGF enhances endothelial growth, migration,
and differentiation. Its overexpression has been detected in up
to 40 % of cases of HNSCC and is associated with poor prog-
nosis [148].

Outlook and clinical challenges

Targeted therapies to inhibit angiogenesis include monoclonal antibodies
anti-VEGF and multikinases inhibitors, such as sunitinib and the
aforementioned sorafenib. Bevacizumab, an anti-VEGFR
monoclononal antibody, has been tested in phase II trials in combina-
tion with other molecular targeted therapies or chemotherapy and has
shown interesting levels of activity [149–151]. Unfortunately, a sig-
nificant number of bleeding events (some of which were fatal) have
been reported, suggesting that evaluation on the dose to be used and
patients’ selection has to be reconsidered. Results are also anticipated
from trials investigating multiple tyrosine kinase inhibitors. At present,
phase II studies have reported stable disease as better response, with an
encouraging PFS and toxicity profile for sorafenib [75, 152]. Two
controlled trials with chemotherapy associated with bevacizumab
(ClinicalTrials.gov identifier: NCT00588770) or sorafenib
(ClinicalTrials.gov identifier: NCT02035527) are ongoing.

4 Conclusions

HNSCC is an extremely heterogeneous disease with distinct
patterns of presentation and biological behavior. Patients with
HNSCC are frequently treated with aggressive treatment

strategies that may strongly affect quality of life and elicit
unpredictable results. The success of EGFR-targeting thera-
pies combined with radiation or chemotherapy covers a limit-
ed number of cases. For this reason, it is essential both to
explore new multi-strategy approaches, by the use of com-
bined genetic and cellular targeted new therapies, and to in-
vestigate potential predictive biomarkers for treatment re-
sponse. To date, only HPV is likely to be a prognostic indica-
tor and a predictive marker of response to treatment. Recent
whole-exome sequencing studies have provided a comprehen-
sive view of the genetic alterations and the complexity of gene
mutations underlying this malignancy. Although few driver
genes are currently targetable, and although the predominance
of tumor suppressor gene alterations presents a challenge for
the treatment of HNSCC, these investigations, as well as new
insights into the tumor microenvironment, have provided a
deeper and comprehensive understanding of HNSCC biology
establishing a basis for potential molecular recognition-based
customized therapeutic approaches. In particular, the immune
checkpoint inhibitors represent the most promising strategy
for HNSCC in the next future.
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