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Abstract Osteosarcoma is the most common malignant bone
tumor in children and characterized by aggressive biologic
behavior of metastatic propensity to the lung. Change of
treatment paradigm brings survival benefit; however, 5-year
survival rate is still low in patients having metastastatic foci at
diagnosis for a few decades. Metastasis-associated protein
(MTA) family is a group of ubiquitously expressed
coregulators, which influences on tumor invasiveness or me-
tastasis. MTA1 has been investigated in various cancers in-
cluding osteosarcoma, and its overexpression is associated
with high-risk features of cancers. In this review, we described
various molecular studies of osteosarcoma, especially associ-
ated with MTA1.
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1 Introduction

Osteosarcoma (OS) is the most common primary bone sarco-
ma, which tumor cells produce osteoid. It occurs most often in
children and adolescents, accounting for 2.4 % of childhood
cancers, making it the eighth most common malignancies in
the childhood [1]. OS shows a bimodal age distribution with a
peak in the second decade of life (at the age of 15–19 years)
and a secondary peak in older adults age 60 to >85 years [2].

Approximately 900 new OS cases were diagnosed annually in
the USA. It has a slight male predominance (male/female=
1.35:1) [3]. Although the cause of OS is uncertain, there are
some preexisting conditions, such as Paget disease or radia-
tion [4, 5]. OS is the most common radiation-induced sarco-
ma, and 1 % of Paget disease takes a sarcomatous transfor-
mation at the end. There are other assumed predisposing
conditions, which are fibrous dysplasia, hereditary multiple
exostosis, bone infarct sites, and chronic osteomyelitis [5, 6].
OS associated with predisposing conditions shows older age
distribution. Some genetic predisposing conditions are also
known, which are hereditary retinoblastoma, Li-Fraumeni
syndrome, and Rothmund-Thomson syndrome [7, 8].

The goal of treatment is surgical removal of primary tumor
and chemoprevention of metastasis. Local treatment is usually
limb salvage wide resection, and chemotherapy is carried out
preoperatively (neoadjuvant chemotherapy) or postoperative-
ly (adjuvant chemotherapy). Telangiectatic OS is quitely
chemosensitive [9]. Radiation therapy is used in an
unresectable tumor [10]. Conventional OS shows locally ag-
gressive growth and rapid hematogenous metastases, predom-
inantly to the lung. The prognosis is influenced by age, sex,
tumor size/volume, surgical margins, stage, and detectable
metastases at diagnosis and response to preoperative chemo-
therapy [11–15]. Low-grade OS, including low-grade central
OS, parosteal OS, and periosteal OS, reveals relatively favor-
able prognosis than conventional type [16, 17]. They show
about 90 % overall survival at 5 years [17].

Metastasis-associated protein (MTA), a family of cancer
progression-related genes, is a component of the nucleosome
remodeling and histone deacetylation (NuRD) complex. It
includes MTA1, MTA2, and MTA3 and functions as tran-
scription regulation by ATP-dependent chromatin remodeling
and histone deacetylation [18]. Recently, there have been
some reports, which reveal other roles of MTA1 in DNA
damage response, inflammation, and infectious agent-driven
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cancers [19]. MTA1 has a dual function as a transcriptional
coactivator or corepressor of various oncogenes or tumor
suppressor genes and influences on tumor invasion,
epithelial-mesenchymal transition (EMT), and metastasis.
MTA1 expression and its clinicopathologic and biologic rele-
vance have been widely investigated in various cancers in-
cluding breast cancer, gastrointestinal carcinoma, carcinoid,
nonsmall cell lung carcinoma, ovarian cancer, prostatic can-
cer, as well as OS [20–27]. In most human cancers, overex-
pression of that is common and is associated with disease
progression, prognosis, and metastasis.

A few decades ago, there was a change of treatment frame
of OS from single surgery to combined therapy of surgery and
chemotherapy [28]. Overall survival at 5 years increased to
70 % in extremity, nonmetastatic OS, and it has not been
significantly changed up to days [29]. Although metastases
at diagnosis are noted in 15–20 % of OS patients, overall
survival at 5 years is still 37 %, and this level is not changed
despite of more intensive chemotherapy protocol [29, 30].
There is a need to understand a mechanism of metastasis,
which is most common cause of treatment failure.We describe
here the genetic and molecular alterations of OS, especially
associated withMTA1, which could be a new treatment target.

2 Genetic and molecular studies

2.1 MTA family

Molecular mechanisms of MTA1 in cancer have been dem-
onstrated by various levels of cancer progression. Toh et al.
identified a gene that is overexpressed in highly metastatic rat
mammary adenocarcinoma cell lines than nonmetastatic cell
lines and named mta1 [31]. Human counterpart was also
cloned, and high expression of MTA1 mRNAwas correlated
with invasive property. In breast cancer, MTA1 could trans-
form into more aggressive phenotype by repression of the
estrogen receptor-α transactivation through chromatin
deacetylation of ER-responsive gene. And, MTA1 also re-
presses BRCA1 tumor suppressor gene in the same
manner [32].

In addition to chromatin histones, MTA also deacetylates
nonhistone proteins such as p53 and hypoxia-inducible factor-
1α (HIF-1α). While acetylated HIF-1α is converted to
deacetylated, and stable form by MTA1, which leads to an-
giogenesis, p53 protein is deacetylated by MTA1 or MTA2,
resulting in inhibition of cell growth arrest and apoptosis [33].

MTA1 expression has been investigated in regard to angio-
genesis in various cancers such as breast cancer, early-stage
nonsmall lung cancer, prostate cancer, esophageal squamous
cell cancer, and histologically node-negative gastric cancer
[34–38]. Overexpression of MTA1 is usually correlated with
intratumoral microvessel density. Kai et al. revealed that

MTA1-expressing tumors secreted higher levels of vascular
endothelial growth factor (VEGF) and silencing MTA1 sup-
pressed the angiogenic activity in vivo [36].

Park et al. reported that MTA1 is strongly expressed in
high-grade OS tissue and metastatic lesion but not in low
grade, and mRNA of MTA1 and MTA2 is increased in high-
grade OS cell lines. MTA might be involved in the progres-
sion of high-grade OS, especially in metastasis of OS [27].
Other study using OS of the jaw revealed similar results that
the high-grade tumors show higher positive rate of MTA
expression [39].

2.2 Angiogenesis

Blood supply is required for delivery of oxygen and nutrients
and removal of waste products via blood vessels in normal
and neoplastic tissue. Cancer cells can induce neovasculariza-
tion for the sustained growth and a way to systemic vascula-
ture. Neovascularization is controlled by the balance between
angiogenic factors and angiogenesis inhibitors. Angiogenic
switch is induced when angiogenic factors are increased or
angiogenesis inhibitors are decreased. Both intrinsic factors
such as tumor cells themselves (oncogene activation or tumor
suppressor gene inactivation) and tumor stromal cells and
extrinsic factors like hypoxia, acidosis, and inflammation
could lead to angiogenesis [40–42]. As tumor angiogenesis
is a condition, which proangiogenic stimuli overwhelmed
antiangiogenic factor, there could also be antiangiogenic fac-
tors such as angiostatin, endostatin, and thrombospondin as a
counterpart [43–45]. There have been many reports, which
show correlation between proangiogenic or antiangiogenic
factors and clinicopathologic parameters [46–48].

HIF-1α is induced by tissue hypoxia, which is known to be
associated with resistance to anticancer therapy, aggressive
phenotype, and poor survival [49, 50]. It stimulates VEGF
and acts as a potent proangiogenic factor. Some authors doc-
umented that MTA1 increases the stability and transcriptional
activity of HIF-1α [51, 52]. It also enhances the expression of
VEGF, which is a downstream target of HIF-1α. Recently,
high expression of HIF-1α is associated with poor prognosis
in various cancers such as ovarian cancer, breast cancer, and
pancreatic cancer [53–55]. It is also highly expressed in OS
cell lines than nonneoplastic osteoblasts in both normoxia and
hypoxia conditions and functions as a protector of apoptosis
[56]. High expression of HIF-1α is associated with signifi-
cantly shorter overall survival and disease-free survival [50].
HIF-1α expression using prechemotherapy samples could be
a good predictor of pathologic response of tumor cells (tumor
necrosis) [57].

VEGF is one of the most important growth factors, which
are involved in physiologic angiogenesis and tumor angio-
genesis. It also interacts with various growth factors and
signaling pathway, thereby enhancing angiogenesis or cell
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proliferation. Factors, which could upregulate VEGF, are
transforming growth factor-α (TGF-α), basic fibroblast
growth factor (bFGF), platelet-derived growth factor (PDGF),
fibroblast growth factor 2 (FGF-2), TGF-β, and hepatocyte
growth factor (HGF) [58, 59]. Lammli et al. presented that
VEGF expression or level significantly increased in OS serum
or tissues. They also showed that high expression of VEGF is
associated with advanced clinical parameters such as frequent
recurrence or metastasis [47]. However, prognostic value of
VEGF is controversial [60, 61]. Recent study revealed that
MTA1 is more potent angiogenesis inducer than VEGF in
nonneoplastic and neoplastic lesions and upregulates VEGF
and its receptor Flt-1 gene. VEGF also induces phosphoryla-
tion of endogenous MTA1, and this cross talk between them
regulates angiogenesis and metastasis of tumor cells [62].

The Notch signaling pathway is known to be involved in
physiologic angiogenesis, tumor angiogenesis, and tumor me-
tastasis [63]. In physiologic angiogenesis, Notch interacts with
VEGF, thereby blocking excessive sprout formation. Howev-
er, aberrant activation of Notch signaling has been associated
with tumor progression or metastasis. Hughes demonstrated
that high expression of Notch 1, Notch 2, Notch ligand DLL1,
and Notch target gene Hes1 is observed in metastatic OS cell
lines compared to normal human osteoblasts or nonmetastatic
OS cell lines. In murine model of OS with pulmonary metas-
tasis, inhibition of Hes1 and Notch signaling eliminated tumor
spread from the primary tumor. Hes1 expression is inversely
correlated with survival in OS tumor tissues [64]. In other
study using murine OS cell lines, similar results are found that
Notch gene and Notch downstream targets Hes1 and Stat3 are
upregulated in metastatic cell line [65]. Won et al. suggested
that microRNA-199b-5p is upregulated in OS cell lines and is
associated with Notch signaling pathway. Under the
microRNA-199b-5p inhibitor, components of Notch pathway
expression were altered [66].

2.3 Invasion of extracellular matrix

Matrix metalloproteinases (MMPs), a family of zinc-
dependent endopeptidases, primarily act on the extracellular
matrix (ECM) and basement membrane components and de-
grade them. They take part in various physiologic and patho-
logic processes that require ECM or basement membrane
remodeling such as morphogenesis, wound healing, tissue
repair, tumor migration, invasion, and metastasis [67, 68]. In
general, high expression of MMPs is associated with tumor
progression such as invasion and metastasis or prognosis [69,
70]. MMP-9 is reported as a downstream target of MTA1 in
esophageal squamous cell carcinoma and breast cancer cell
lines MDA-MB-231 and MCF-7 [71, 72]. Forced downregu-
lation of MTA1 reduces protein levels of MMP-9 and influ-
ences on the invasiveness. In OS, high-level expression of
MMP-2 and MMP-9 is associated with increased risk of

mortality and shorter overall survival, respectively [73, 74].
Jin J. et al. demonstrated that miR-218 is downregulated in OS
tissues and cell line and functions as tumor suppressor gene by
negatively regulating MMP-2 and MMP-9 [75]. MMP-1, a
kind of collagenases, is overexpressed in OS cell line, espe-
cially which is highly metastatic. Forced downregulation of
MMP-1 reduced an anchorage-independent growth in vitro
and showed smaller primary tumors and decreased foci of
lung metastases in vivo [76]. Recently, there have been a few
reports that MMP-8 could be associated with antitumoral
effect and protective function in breast and murine skin can-
cers [77, 78]. In OS, MMP-8 is expressed in primary tumors
but not in metastatic foci. However, its expression could not
predict patients’ survival [79].

The Wnt proteins, a family of secreted cysteine-rich glyco-
proteins, activate intracellular signaling cascades by binding
to Frizzleds and LRP-5/6 on target cells. Both the canonical
and noncanonical Wnt pathways are involved in various bio-
logic processes, especially embryogenic development and
oncogenesis [80]. MTA1 and MTA1s could play a role on
cell proliferation, invasion, and epithelial-mesenchymal tran-
sition by stimulation of Wnt/β-catenin pathway [81–83]. In
OS, expression of Wnt components is widely investigated,
and overexpression of Wnt ligands and Frizzled and LRP
receptors is commonly observed. Guo et al. showed that E-
cadherin expression is upregulated in Saos-2 cells with a
dominant-negative, soluble LRP-5 [84]. They also demon-
strated that LRP-5 promotes tumor invasion and metastasis
via expression of Slug and Twist, transcriptional repressor,
and MMP-2 and MMP-14 [85]. Ma et al. presented that β-
catenin is overexpressed in OS cell line Saos-2 cells and its
expression level is correlated with invasiveness of OS. Phar-
macologic inhibition of Wnt/β-catenin and Notch pathway
increased the chemosensitivity of Saos-2 cells [86].

The Snail family, zinc finger-containing transcription fac-
tor, includes Snail1 and Snail2 (also known as Slug) and
functions as transcriptional repressors. Snail/Slug is also in-
volved in EMT by downregulating E-cadherin, which causes
migration, invasion, and metastasis of tumor cells [87].
Cagatay et al. reported that MTA1 enhances the expression
of Snail1 and Slug, and silencing of MTA1 results in de-
creased recruitment of Snail and Slug to the promoter of E-
cadherin. They showed that overexpression of MTA1 in co-
lorectal cancer cells enhances proliferation, migration, inva-
sion, and anchorage-independent growth [88]. Yang et al.
reported that overexpression of Snail1 is associated with OS
invasion and metastasis through suppression of E-cadherin
expression [89]. Snail2 expression was investigated in long
bone OS and was significantly correlated with tumor grade
[90]. Same group revealed that overexpression of Snail2 in-
crease cell motility, remodeling of the actin cytoskeleton,
cellular protrusions, and expression of promigratory nonca-
nonicalWnt pathway components [91]. E-cadherin, which is a
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well-known adhesion molecule and a downstream target of
Snail, has been investigated in association withMTA1. Down-
regulation of E-cadherin using small interfering RNA led to
overexpression of MTA1, decreased cohesiveness, and en-
hanced motility and invasion in prostate adenocarcinoma cell
lines [92]. Wang et al. showed that silencing of MTA1 using
siRNA results in the upregulation of E-cadherin [93]. Con-
trary to MTA1, MTA3 functions as repressor of EMT by
regulating Snail. Upregulation of MTA1 could repress MTA
3 expression, resulting in promotion of EMT.

Twist, a member of the basic helix-loop-helix transcription
factor family, is involved in embryogenic skeletal develop-
ment and remodeling as well as cancer biology, especially
EMT [87, 94]. There are various signaling pathways associ-
ated with Twist in both upstream and downstream directions
[94]. In OS, there are few reports that reveal association
between Twist and other signaling pathways such as
endothelin-1/endothelin A receptor and β-catenin signaling
[95, 96]. Both pathways were associated with OS cell survival
against cisplatin, which was decreased by Twist. Recent study
also demonstrated that miR-33a promotes OS cell resistance
to cisplatin by downregulating Twist [97]. Yin et al. showed
that positive Twist expression has significantly poor overall
survival and disease-free survival and independent prognostic
factor in OS [98].

Src, a member of the Src family of kinases, is a nonreceptor
tyrosine kinase encoded by the c-Src proto-oncogene. Src
kinase activity is regulated by various tyrosine receptor ki-
nases including epidermal growth factor receptor kinase,
PDGF tyrosine kinase, and integrin receptor [99–101]. Src
activation also affects downstream signaling pathways such as
transcription factor STAT-3 and focal adhesion kinase (FAK)
[102, 103]. Hingorani et al. revealed that dasatinib, a dual Src-
Abl kinase inhibitor, effectively inhibits the adhesion and mi-
gration of OS cells. However, it does not inhibit the growth of
primary tumor and pulmonary metastases even though Src
activation is blocked in vivo. Although Src is involved in tumor
progression such as invasion and metastasis, Src kinase activa-
tion is not a primary pathway for pulmonary metastasis [104].

2.4 Anoikis resistance

When cells lose contact with the adjacent cells or ECM, they
undergo a specific cellular apoptosis termed anoikis. Although
anoikis plays a role in regulating cell homeostasis during
development or tissue remodeling, many transformed cells
and tumor cell lines reveal anoikis resistance [105]. Tumor
cells, entering into the circulation, should acquire the resis-
tance to anoikis to survive and metastasize. Anoikis could be
induced by transfection with Src oncogene or epidermal
growth factor receptor (EGFR) activation [106–108], and
inhibitors of Src and EGFR have been investigated [109].
Mahoney et al. reported that forced expression of MTA1

increases survival in forced suspension culture of immortal-
ized keratinocytes, collaborating with EGFR [110]. Molecules
or molecular pathways involved in anoikis resistance in OS
are Src, PI3K/Akt signaling pathway, caveolin-1, c-met, and
ezrin/β4 integrin interaction [111–113].

Integrin is a family of cell adhesion receptors, which are
involved in important biologic processes such as adhesion,
signaling, proliferation, and metastasis. Among them, β4
integrin is often upregulated in malignant tumors, and high
expression level of that is sometimes associated with poor
prognosis.β4 integrin is also highly expressed in OS cell lines
and OS patient samples. Wan et al. presented that anchorage-
independent growth is significantly decreased in β4 integrin
shRNA cell line, and lung metastases are also markedly de-
creased in mice injected with β4 integrin-shRNA cells com-
pared to the control-shRNA group. They also revealed that β4
integrin associates with ezrin, which is required for the main-
tenance of its expression at RNA and protein levels [113].

Caveolin-1 (Cav-1) is major protein of caveolae, which
involves signaling pathway. Cav-1 functions as a tumor sup-
pressor gene or an oncogene depending on the cell type. Its
expression is decreased in met-transformed osteoblasts and
OS tissues. Forced overexpression of Cav-1 inhibited
anchorage-independent growth, migration, and invasion in
OS cell lines by inhibiting c-Src activity and met signaling.
In vivo, Cav-1 overexpression reduced the metastasis in ex-
perimental conditions [112]. Diaz-Montero et al. demonstrat-
ed that Src-dependent activation of the PI3K/Akt pathway is
observed in anoikis-resistant SAOS-2 cells and pharmacolog-
ic inhibition of Src or PI3K/Akt activity recovers sensitivity to
anoikis [111].

2.5 Homing of tumor cells, extravasation, and attachment

The lung is a preferential site for OS metastasis, which com-
prises more than 80 % [114]. This site-specific metastasis
could be explained by chemokine axis such as C-X-C motif
chemokine receptor 4 (CXCR4) and its ligand C-X-C-motif
chemokine ligand 12 (CXCL12) [115–117]. CXCL12 is
abundantly expressed in the lung and bone marrow and a
potent chemoattractant for CXCR4 and CXCR7 expressing
cells [118]. CXCR4 is highly expressed in malignant cells
including prostatic cancer, breast cancer, and OS cells as a
result of high expression of HIF-1α or VEGF [119, 120]. In
OS, high mRNA expression of CXCR4 is adversely correlat-
ed to overall survival, event-free survival, and metastasis-free
survival [115]. As interactions of CXCR4 or CXCR7 and
CXCL12 make tumor cells to adhere and extravasate in pul-
monary metastasis, CXCR4 and CXCR7 are considered as a
target of an anticancer therapy [121]. Brennecke et al. pre-
sented CXCR4 antibody inhibits lung micrometastases in
mice with intratibial human OS xenografts [122].
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Ezrin, a cytoskeleton linker membrane protein, mediates
interaction of cells and surrounding microenvironment and
facilitates signal transduction [123]. Khanna et al. presented
that significantly diminished metastases could be induced by
blocking ezrin with antisense ezrin or a dominant-negative
inhibitor in murine OS models [124]. They also found that
ezrin suppression results in decreased activity of Akt and
MAPK. Akt signaling pathway is involved in OS metastasis
through MMPs. High ezrin expression is associated with
aggressiveness and a worse survival in OS patients
[125–127]. MiR-183, markedly downregulated in OS cell lines
and tissues, is inversely correlated with ezrin [128]. Combined
miR-183 downregulation and ezrin upregulation were signifi-
cantly associated with high tumor grade, poor response to
chemotherapy, recurrence, and overall survival [129].

2.6 Inactivation of tumor suppressor genes

TP53 functions as a blocker of neoplastic transformation in
various cancers. When DNA damage occurs, it binds to DNA
and induces and maintains cell cycle arrest until DNA is
repaired. Unless DNA is recovered, TP53 activates pro-
grammed cell death (apoptosis). MTA1 is also known as a
DNA damage-responsive protein; it could control p53 stabil-
ity by destabilizing constitutive photomorphogenic protein 1
(COP1) and mouse double minute 2 (MDM2), thereby regu-
lating p53-dependent transcription of p53R2, a gene for sup-
plying nucleotides for DNA repair [130]. It also transcription-
ally suppresses p21WAF1, consequently leads to PCNA-
dependent DNA repair in p53-independent mode [131]. Since
MTA1 promoter has two p53 response elements, poly(ADP-
ribosyl)ation of p53 could induce transcriptional repression of
MTA1 [132]. TP53mutation is a common genetic alteration in
OS, and it is found in up to 50 % of OS patients [133–135].
Germline TP53 mutation is observed in Li-Fraumeni syn-
drome, which is known as a predisposing condition for OS,
and shows higher incidence for OS. Some authors revealed
that TP53 mutation is not a prognostic marker for chemother-
apy response [136]. Recently, systematic review articles dem-
onstrated that TP53 mutation is associated with poor overall
survival and prognostically significant [137, 138]. TP53 func-
tion can be blocked by other mechanisms such as MDM2.
MDM2 is frequently amplified, which is known as a major
inhibitor of TP53 [139, 140]. It induces a degradation of
TP53, and similar functional results as mutation. Amplifica-
tion ofMDM2 is commonly observed in low-grade OS, which
usually does not have TP53 mutation [141].

RB1 gene is located on human chromosome 13q14, which
is known as a common loss area by cytogenetics in OS tissue.
Inactivation of RB1 gene is one of the most common genetic
alterations in OS, which is found in up to 70 % of OS patients
[142]. Patients with bilateral retinoblastoma have higher risk
of subsequent OS [143], and both of them are associated with

RB1 gene. RB1 gene is an important regulator of cell cycle,
especially G1/S cell cycle transition. When there is a mito-
genic signaling, RB1 is phosphorylated by cyclin D/CDK4,
cylin D/CDK6, and cyclin E/CDK2 complexes, and it releases
E2F transcription factors. Chromatin-remodeling proteins,
such as histone deacetylases and histone methyltransferase,
which are recruited at hypophosphylated RB state are also
released, and promoters become more sensitive [144]. Func-
tional loss of RB1 gene causes persistent transcriptional acti-
vation and tumorigenic effect. However, prognostic value of
loss of heterozygosity at the RB gene is uncertain [145, 146].
P16 is cyclin-dependent kinase inhibitor and activator of RB
dephosphorylation. Deletion of p16 was detected in 7∼16 %
OS patients, and loss of p16 expression is correlated with
decreased survival [147, 148]. Recently, Borys et al. demon-
strated that p16 expression could be used as a predictor of
chemotherapy response [149]. Cyclin-dependent kinase 4
(CDK4) and cyclin D1 are negative regulators of p16 [150].
CDK4 and MDM2 are coamplified or overexpressed in low-
grade OS including parosteal OS and dedifferentiated type of
high-grade OS [151, 152].

RECQL4 gene, a member of RecQ family DNA helicases,
mutation is found in Rothmund-Thomson syndrome, which
has a higher incidence in OS [8]. Deficiencies of RecQ family
helicases result in increased levels of recombination and chro-
mosomal aberrations [153]. However, RECQL4 gene muta-
tion is not common in sporadic OS, and its prognostic value is
also limited [154]. Some cytogenetic studies revealed recur-
rent deletion or loss of heterozygosity at 3q13 in OS, which
contains LSAMP gene [155, 156]. Kresse SH et al. presented
that low expression of LSAMP gene is associated with poor
survival [157].

2.7 Activation of protooncogene

Activator protein-1 (AP-1) is a transcription factor complex
containing c-jun, c-fos, and activating transcription factor
family. Increased activity of AP-1 is observed in more aggres-
sive OS cell line. Inhibition of AP-1 activity by TAM67,
dominant-negative mutant of c-jun, suppresses the migration,
invasion, and pulmonarymetastasis in experimental murine OS
[158]. c-jun and Fra-1, components of AP-1, regulate tumor
invasion by controlling the matrix metalloproteinase (MMP)-1
in 143B OS cells [159]. c-fos also induce podoplanin and
thereby control cell migration in OS cell lines [160].

Human epidermal growth factor receptor 2, also known as
ErbB2/Her2/neu, is overexpressed in various tumors, includ-
ing breast cancer [161]. In OS, there have been conflicting
results of HER-2 status [162–164]. Recent papers suggested
that HER2 amplification or overexpression is rarely observed
in OS, and differences in the results between studies are due to
interpretation of immunohistochemical results based on the
poor methodology [165].
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RUNX2, a member of transcription factor Runx fam-
ily, is associated with osteoblast differentiation, and its
expression is oscillates during the cell cycle [166, 167].
Although there are some reports of RUNX2 function,
which is associated with RB, p53-MDM pathway, and
cell cycle regulators, the role of that in OS is uncertain
[168–170]. However, its level is elevated in OS cell
lines and tissues, and increased expression is associated
with metastases, poor response to chemotherapy, and
poor prognosis [171, 172].

2.8 MicroRNAs in tumorigenesis

MicroRNAs, small noncoding RNAs, regulate gene expres-
sion posttranscriptionally. They function as a tumor suppres-
sor or oncogene [173, 174]. There are several microRNA
expression profiling studies, which compared nonneoplastic
osteoblast and OS cells [175, 176]. Differentially expressed
microRNAs could be involved in OS tumorigenesis and be
therapeutic targets. Liu et al. reported that miR-125b is down-
regulated in OS cell lines and its upstream regulator is
STAT3 [177]. MTA1 is known to be another upstream
regulator of miR-125b, and it promotes the migration
and invasion of nonsmall cell lung cancer cells. miR-
199a-3p, miR-143, and miR-145 are also downregulated
in OS cell lines and function as tumor suppressor
[178–181]. miR-21 is overexpressed in OS tissues and
negatively regulates RECK gene [182]. miR-199b-5p
plays a role in Notch signaling in OS [66].

3 Conclusion

Despite of chemotherapeutic advance, survival rate of OS has
stagnated for a few decades. New treatment strategies using
molecular targets are required to patients who are unrespon-
sive to current therapy. The aforementioned diverse molecular
studies have advanced knowledge of OS pathogenesis and
roles of MTA1 in OS. Since MTA1 influences on not only
various levels of tumorigenesis or tumor progression, but also
DNA damage repair, it could be a possible therapeutic target
in high grade or metastatic OS. More comprehensive research
and investigations are needed to refine and definitize MTA
roles in OS pathogenesis.
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