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Abstract Carcinogenesis is a multi-step process which could
be prevented by phytochemicals. Phytochemicals from dietary
plants and other plant sources such as herbs are becoming
increasingly important sources of anticancer drugs or com-
pounds for cancer chemoprevention or adjuvant chemother-
apy. Phytochemicals can prevent cancer initiation, promotion,
and progression by exerting anti-inflammatory and anti-
oxidative stress effects which are mediated by integrated
Nrf2, NF-κB, and AP-1 signaling pathways. In addition,
phytochemicals from herbal medicinal plants and/or some
dietary plants developed in recent years have been shown to
induce apoptosis in cancer cells and inhibition of tumor
growth in vivo. In advanced tumors, a series of changes
involving critical signaling molecules that would drive tumor
cells undergoing epithelial–mesenchymal transition and
becoming invasive. In this review, we will discuss the
potential molecular targets and signaling pathways that
mediate tumor onset and metastasis. In addition, we will
shed light on some of the phytochemicals that are capable of
targeting these signaling pathways which would make them

potentially applicable to cancer chemoprevention, treatment
and control of cancer progression.
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1 Introduction

Carcinogenesis is a multi-step process which begins with
initiation followed by promotion and progression. Cancer
initiation, promotion, and progression involve a series of
epigenetic and genetic alterations affecting oncogenes and
tumor suppressor genes [1–4]. Inhibition of each stage of
carcinogenesis has been shown to be achievable by
administering chemical agents. The initiation stage could
be inhibited by chemical agents that can inactivate
carcinogens, function as antioxidant, or induce antioxidant
enzymes, while later stages could be inhibited by agents
that suppress tumor growth or stimulate apoptosis [5].
Cancer chemoprevention is thus described as a strategy to
reverse or suppress the process of carcinogenesis using
chemical compounds [6] and has been described in as
early as the 1960s [7]. Currently, the concept of chemo-
prevention has been expanded to target all stages of cancer
development: apart from prevention of cancer initiation
through DNA repair, detoxification, free-radical scaveng-
ing, and carcinogen metabolism, prevention of tumor
promotion and progression through inhibition of prolifer-
ation and angiogenesis, induction of apoptosis, and
differentiation and reduction of inflammation and increase
immunity [8, 9].

Cancer chemopreventive effects could be induced by
phytochemicals, which includes a wide variety of compounds
produced from plants [10]. Phytochemicals from dietary
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plants, such as selenium in garlic, phenethyl isothiocyanate
(PEITC) in crucifers, and genistein in soy products [11–13],
have been shown to protect against different types of tumor
development. On the other hand, based on their traditional
usage as therapeutic medicines, phytochemicals from non-
dietary plants such as herbs have emerged as a new and
promising source of anticancer remedies or as adjuvant of
chemotherapeutic drugs to enhance their efficacy and to
ameliorate their side effects. In some cases, some of the
phytochemicals from herbs have already been introduced as
single chemical entities in modern medicine [14, 15]. In the
USA, it is estimated that one third of adults use dietary
herbal supplements on a regular basis [15]. The scientific
foundation of this kind of practice has not been soundly
established since, besides the claimed health benefit, many
herbal supplements and botanicals also possess potent
pharmacological activity that may contribute to adverse
effects and drug–botanical interactions [16, 17]. Therefore,
detailed chemical analysis of those botanical medicines and
mechanistic investigation on the related molecular events are
required to define their health benefit and to establish safe
and effective clinical practice.

According to the current knowledge on carcinogenesis,
anti-inflammatory and antioxidant effects and genomic
stability remain to be important primary targets in chemo-
prevention [18, 19]. They are tightly related to induction of
apoptosis and growth inhibition of cancer cells. In this
review, we will summarize some chemopreventive com-
pounds developed in recent years, especially those
extracted from herbs and dietary plants. We will also
discuss some of the common pathways that are mediated by
the chemopreventive compounds, including nuclear factor-
E2-related factor 2 (Nrf2) and Kelch-like erythroid cap'n'
Collar (CNC) homologue-associated protein 1 (Keap1), and
their roles in the regulation of antioxidant system and redox
signaling. We will also discuss NF-κB pathway that could
be regulated by chemopreventive compounds and their
effects on inflammation and cell proliferation, followed by
a description of intrinsic and extrinsic apoptotic pathways.
We will further explore some of the common pathways
regulated by chemopreventive compounds that are associ-
ated with the inhibition of cancer development and
metastasis. In particular, the inhibition of angiogenesis
pathway and the different molecular targets involved will
be discussed in great detail.

2 Phytochemicals and discovery of anticancer drugs

Natural products occupy a large proportion of all available
anticancer drugs. For example, among the drugs developed
between 1981 and 2002, the natural compounds or natural
product-derived drugs comprised 28% and 24%, respec-

tively [14]. Dietary and medicinal plants are major sources
of phytochemicals, and they have played an important role
in the treatment of cancers [20]. Current clinically used
phytochemcials can be categorized into four main classes of
compounds: vinca (or Catharanthus) alkaloids, epipodo-
phyllotoxins, taxanes, and camptothecins [21].

Some phytochemicals have already been shown to be
effective in cancer treatment. For example, Vinblastine and
vincristine, isolated from Catharanthus roseus (L.) G. Don
(Apocynaceae) [21], have already years of clinical
application; Camptothecin, which was isolated from
Camptotheca acuminata Decne. (Nyssaceae), and it was
found to act by selective inhibition of topoisomerase I,
involved in cleavage and reassembly of DNA [22]; in
addition, paclitaxel was originally isolated from Taxus
brevifolia Nutt. (Taxaceae) and was introduced to the US
market for clinical use in the early 1990s [23].

There are also a large number of phytochemicals subject
to various phases of clinical trial, such as curcumin (extract
from Curcuma longa Linn; colon and pancreatic cancer);
epigallocatechin gallate (EGCG, extract from green tea;
breast and prostate cancer); soy isoflavones (breast and
prostate cancer) etc. (see the website www.clinicaltrials.
gov). These compounds have shown anticancer effects both
in vitro and in vivo (Table 1) [24–26].

Beyond dietary phytochemicals, a number of extracts
from herbs have been tested for their antioxidant effects and
inhibition of cancer cell proliferation in in vitro and animal
experiments. Traditional Chinese medicine, Japanese Chi-
nese medicine (kampo), Korean Chinese medicine, jamu
(Indonesia), ayurvedic medicine (India), and phytotherapy
in Europe and America have been extensively accepted as
“alternative medicine.” Combined with the application of
conventional medicine, they are termed as “integrative
medicine” [27]. Synergistic analysis of anticancer agents is
an important approach to determine the ratio and/or dose of
drugs for clinical combination therapy [28]. The phyto-
chemicals extracted from herbal and dietary plants in recent
years are summarized for their anticancer effect and the
molecular mechanism examined (Table 1). For example,
Evodiamine, a major constituent of the Chinese herb
Evodiae fructus, possesses anticancer activities both in
vitro and in vivo by inhibiting proliferation, invasion, and
metastasis, inducing apoptosis of a variety of tumor cell
lines [15]; Triptolide, a diterpene triepoxide, was isolated
from Tripterygium wilfordii, and its semisynthetic analog,
PG490–88 (12, 14-succinyl triptolide sodium salt), exerts
antiproliferative and pro-apoptotic activities on primary
human prostatic epithelial cells as well as tumor regression
of colon and lung xenografts [29]. In a National Cooper-
ative Drug Discovery Group Project, Dr. Kinghorn and his
group have taken an extensive investigation on thousands
of plants to determine the effect of extracts of plants,
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including anticancer activity. Several selected compounds
are currently undergoing further investigation including
betulinic acid, pervilleine A, and silvestrol [29]. From
higher plants, some compounds including Vinca alkaloid,
Taus diterpenes, camptotheca alkaloids, and podophyllum
lignans and their analogs have also been shown to be
clinically useful anticancer drugs [27].

3 Keap1–Nrf2 axis in redox signaling
for the phytochemical effect as antioxidant

Phytochemicals are promising cancer blocking agents that
could prevent the occurrence of DNA mutation caused by
carcinogens. While some of them directly react with
carcinogens, many of them elicit their chemopreventive
effects indirectly through the modulation of phase I and
phase II metabolizing enzymes existing in the tissues
where carcinogens/procarcinogens are metabolized [30].
Phase I metabolism includes oxidation, reduction, and
hydrolysis of xenobiotics. Phase I reactions, especially
those mediated by cytochrome P450 enzymes, are respon-
sible for the bioactivation of many procarcinogens. During
phase II metabolism, carcinogens and their activated phase
I metabolites are conjugated with amino acids, glucuronic
acid, or glutathione to yield water-soluble derivatives that
are excreted in urine or bile, which is recognized as phase
II detoxifying metabolism. In the promoters of these drug-
metabolizing enzyme genes, there exists xenobiotic
response element (in both phase I and phase II/detoxifying
genes) and antioxidant response element (ARE, in phase
II/detoxifying genes) [31–33]. Under stress conditions,
some detoxifying genes with ARE enhancer identified
such as glutathione S-transferases, γ-glutamylcysteine
synthetase, NADP(H):quinone oxidoreductase 1, UDP:
glucuronosyl transferases and heme oxygenase 1 are
transactivated by a basic leucine zipper transcription factor
NF-E2-related factor 2 (Nrf2, or NFE2L2), which plays a
central role in the mediation of detoxifying and antioxi-
dant enzymes [33–36].

Through sequence comparisons of Nrf2 protein structure in
different species, six Neh domains were identified in Nrf2
protein [37]. The Neh1 domain contains the conserved CNC
and bZip motifs, which are required for DNA binding and
dimerization with small Maf proteins (MafG and MafK),
while the Neh4 and Neh5 domains are involved in the
recruitment of transcriptional coactivators [38]. Two con-
served motifs within the Neh2 domains of Nrf2, 29DLG31,
and 79ETGE82 bind to a single overlapping site in the double
glycine repeat domain of cytoskeleton anchoring protein
Kelch-like ECH-associated protein 1; the binding between
Keap1 and Nrf2 via the high-affinity 79ETGE82 motif of
Nrf2 provides the “hinge”; here Nrf2 still has a relatively free

space to move, while the concomitant binding via the lower
affinity 29DLG3 provides the “hatch” which allows Keap1 to
bind Nrf2 tightly and enables optimal positioning of target
lysine for conjugation with ubiquitin; deletion of this ETGE
motif attenuates the interaction between Nrf2 and Keap1 and
stabilizes Nrf2 expression [39].

Under homeostatic conditions, Nrf2 remains in an
inactive cytoplasmic form and is sequestered in the
cytoplasm by Keap1. Keap1 could also work as an adaptor
that bridges Nrf2 to Cul 3 for protein ubiquitination as well
[40]. Under the oxidative condition, Nrf2 is released from
Keap1 repression, translocates to the nucleus, and forms
heterodimer with small Mafs, and this protein complex
binds to the ARE motif, activating the ARE gene battery.
Meanwhile, the translation of Nrf2 is increased by an
internal ribosomal entry site (IRES)-mediated translation
initiation upon oxidant exposure [36, 41]. This redox-
sensitive regulation makes Nrf2 an important mediator of
detoxifying responses during chemical challenges and
oxidative stress.

In the Keap1–Nrf2 antioxidant axis, Keap1 was pro-
posed to be a primary redox sensor, since the cysteine-rich
structure of Keap1 is sensitive to the presence of electro-
philes and reactive oxygen species (ROS) [42, 43].
Recently, it was proposed that Nrf2 itself can be a redox
sensor because of its NESTA motif, which also plays a role
in the subcellular localization of Nrf2 [44].

The transactivation activity of Nrf2 can be regulated
directly through several kinase pathways, including
mitogen-activated protein kinase (MAPK), PI3K, or
protein kinase C (PKC) [45–48], or indirectly by
changing the ability of activating the transcription of its
target genes [49] with its coactivators, such as cAMP-
response element-binding protein (CREB)-binding protein
(CBP). Extracellular regulated kinase (ERK) and Jun
N-terminal kinase (JNK) increase Nrf2 transactivation
domain activity, while p38 does not, suggesting various
MAPKs may have different regulation on Nrf2 signaling
cascade [50].

Some dietary phytochemicals such as phenethyl iso-
thiocyanate and sulforaphane (SFN) are potent inducers of
phase II/detoxifying genes, and this activation is Nrf2-
dependent [51]. PEITC may induce the phosphorylation of
ERK and JNK and consequently phosphorylate Nrf2 and
induce its nucleus translocation. Attenuated PEITC-
induced ARE activity was observed when ERK and JNK
signaling were inhibited [52]. Curcumin and (−)-epigallo-
catechin-3-gallate have been reported to regulate Nrf2
activity via similar pathway [53, 54], while SFN may
stabilize Nrf2 through the modification of Keap1 and Nrf2
interaction and translocation of Nrf2. Evidence showed
that SFN was able to react with thiols of Keap1 by
forming thionoacyl adducts [55].
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4 Nuclear factor-κB signaling pathways
for the anti-inflammatory effect of phytochemicals

Inflammation may be associated with the alteration of
genetic instability and expression of some oncogenes and
tumor suppressor genes [56]. Persistent inflammation in the
tumor microenvironment promotes proliferation and sur-
vival of malignant cells, angiogenesis, and metastasis [57,
58]. NF-κB may be involved in tumor initiation and
progression. The direct evidence is the deletion of IKKb,
which is tightly related to NF-κB transcription factor, leads
to a dramatic decrease of tumor incidence in a colitis-
associated cancer model [59].

NF-κB is a key orchestrator of innate immunity/
inflammation responses [60]. Over 150 target genes are
activated by NF-κB, including different inflammatory
cytokines and chemokines, immunoreceptors, adhesion
molecules, enzymes in the prostaglandin synthase pathway,
such as cyclooxygenase 2 (COX-2) and nitric oxide (NO)
synthase, angiogenic factors, as well as various stress
response genes [61].

The Rel/NF-κB family of eukaryotic transcription factors
are homodimers or heterodimers of several structurally
related proteins, including six family members NF-κB1
(p50/p105, p50 and its precursor p105), NF-κB2 (p52/
p100, p52 and its precursor p100), RelA (p65), RelB(p68), c-
Rel (p75), and v-Rel. A conserved Rel homology domain in
the N-termini of all these proteins is responsible for
dimerization, DNA binding, nuclear localization, and inter-
action with inhibitory IκB proteins. A transactivation domain
is located at the C-termini of RelA, RelB, and c-Rel. These
different homo- and hetero-dimers bind to distinct kB sites, a
10-bp DNA element GGGRNNYYCC (R, purine; Y,
pyrimidine; N, any base), to regulate the transcriptions of
different genes. In unstimulated cells, NF-κB is retained in
the cytoplasm as an inactive complex with the inhibitor IκBs
(IκBα, IκBβ, IκBγ, and IκBε and Bcl-3). Bound IκB masks
the NF-κB nuclear localization signal and thereby inhibits its
nuclear transport [62]. IκB protein phosphorylation is a
common activation pathway; under various kinds of stimu-
lation, such as TNF-α, IL-1 or lipopolysaccharide (LPS),
IκB proteins will be phosphorylated at serine and threonine
by the upstream IKK complex containing IκB kinase IKKα,
IKKβ, and regulatory protein IKKγ (NF-κB essential
essential modulator, NEMO) [63] or IKK-associated protein
1 [64], followed by ubiquitinylation/proteasome-mediated
degradation. The degradation of IκBs leads to translocation
of NF-κB into the nucleus [62, 65].

NF-κB pathway is important in driving cancer-related
inflammation, such as in gastrointestinal and liver cancer
[59, 66]. Aberrant activation of NF-κB is frequently
observed in many cancers, and suppression of NF-κB
limits the proliferation of cancer cells [67, 68]. It has also

been shown that NF-κB is an important pathway in tumor-
associated macrophages for the integration of signals from
the tumor microenvironment that promote carcinogenesis.
There are two particular macrophage phenotypes: the
“classical” M1 macrophages are pro-inflammatory and
increase the production of pro-inflammatory cytokines,
reactive nitrogen, and oxygen intermediates, while the
“alternative” M2 macrophages are immunosuppressive
and produce anti-inflammatory cytokines such as IL-10
and transforming growth factor β (TGFβ) [69, 70]. Tumor-
associated macrophages represent a phenotype of M-2 type
and are associated with increased angiogenesis and metas-
tasis and with high level expression of IL-10 and TGF, as
well as vascular endothelial growth factor (VEGF), COX-2,
epidermal growth factor receptor (EGFR), and matrix
metalloproteinases (MMP) [71–73].

Potential crosstalk between the NRF2 and NF-κB path-
ways has been examined. After pretreatment with an
inducer of Nrf2 pathway sulforaphane, the anti-
inflammation effect of Nrf2 (−/−) primary peritoneal
macrophages was attenuated compared with the Nrf2
(+/+) macrophages upon LPS stimulation. Compared with
Nrf2 (−/−) peritoneal macrophages, inflammation-related
signals such as tumor necrosis factor (TNF), IL-1, COX-2
and iNOS have much less expression in Nrf2 (+/+)
peritoneal macrophages, suggesting a potential cross talk
between Nrf2 and inflammation regulation [74]. In addi-
tion, Nrf2-deficient mice are more sensitive to dextran
sulfate sodium-induced colitis and colorectal carcinogene-
sis, and the decreased expression of downstream phase II
detoxifying enzymes is highly associated with the increased
expression of pro-inflammatory cytokines/biomarkers.
However, the involved mechanisms are subjected to further
investigation [36].

As listed in Table 1, a wide variety of phytochemicals
from dietary plants target NF-κB pathway: PEITC has
been shown to target NF-κB signaling by stabilizing
IκBα; both of them have been shown to inhibit transcrip-
tional activity and p65 nuclear translocation and therefore
down-regulate the expression of NF-κB target genes such
as iNOS and COX-2 [51]; Curcumin also inhibits NF-κB
activity by blocking IκB degradation [75, 76]. Phyto-
chemicals from the herbal plants such as bisacurone block
NF-κB p65 nuclear translocations [77]; and evodiamine
inhibits the phosphorylation of IκBα etc. [78].

5 Intrinsic and extrinsic apoptosis pathways

Deficiency in apoptosis is one of the key hallmarks of
cancer [79]. Apoptosis is induced by both intrinsic
(mitochondrial) and extrinsic (death receptor) pathways.
The intrinsic pathway involves mitochondrial outer-
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membrane permeabilization and release of pro-apoptotic
factors, including cytochrome c, apoptosis inducing factor
(AIF), and smac-DIABLO and endonuclease G (endoG)
from the mitochondria into cytoplasm [79–81], and subse-
quently promotes caspase activation through the cyto-
chrome c/Apaf-1/caspase-9 cascade [82]. The BCL-2
superfamily constitutes a critical intracellular checkpoint.
This intrinsic pathway involves complex interactions
among pro- and anti-apoptotic members of the Bcl-2 family
of proteins. BH3-only proteins, including Bid, Bad, Bim,
Bmf, PUMA, and NOXA, act as upstream sentinels of
cellular damage and derangement. These proteins activate
the pro-apoptotic multi-BH domain proteins Bax and Bak
by operating in both the endoplasmic reticulum (ER) and
mitochondria [83]. In non-apoptotic cell, Bax and Bak exist
in the cytosol or attach loosely to the membrane as
monomers. When the death signals are received, these
two proteins together form a requisite gateway by inserting
into the mitochondria outer membrane as homo-
oligomerized multimers [84, 85]. For the extrinsic pathway,
the cell death is activated through the binding of extracel-
lular ligands of tumor necrosis factor family of proteins to
pro-apoptotic death receptors (DRs) by forming a death-
inducing signaling complex to activate caspases 8 and 10,
followed by the activation of caspases 3, 6, and/or 7, the
same caspase machinery of intrinsic pathway [86, 87]. The
well-known death receptors are CD95/Fas and DR4/DR5
(TNFRSF10A/TNFRSF10B) with their ligands as CD95L/
FasL and Apo2L/TRAIL (Apoptosis ligand 2 TNF-related
apoptosis-inducing ligand). Other DRs identified include
TNFR1 (TNFRSF1A), DR3 (TNFRSF12) and DR6
(TNFRSF21) [88, 89]. Some other ligands of the TNF
superfamily include TNFα and lymphotin and have been
tested in clinical research. The FAS receptor–ligand
complex allows the adaptor molecule Fas-associated death
domain (FADD) to bind the death domain of Fas so that
FADD can recruit pro-caspases 8 and 10 into the complex.
c-FLICE inhibitory protein has been reported to be able to
block the caspase activation by interacting with death
effector domain of FADD and finally abrogate pro-
apoptotic receptor stimulation [90, 91]. Different cell types
may have different response to stimulation of ligands. In
type 1 cells, such as H9 SKW6.4 and SW480, extrinsic Fas
pathway without help from mitochondria is sufficient to
induce complete apoptosis, while in type 2 cells, apoptosis
relies on the cleavage of the BH3-only protein Bid and
stimulation of Bak and Bax mitochondrial translocation
induced by caspase 8 activation. This type 2 program
affords a crosstalk between the extrinsic and BCL2 family
of protein-controlled intrinsic pathways [92].

Among the 33 phytochemicals listed in Table 1, most of
them have shown effects on induction of apoptosis except
lichchalcone, which has been reported to induce apoptosis

weakly [93]. A large number of them are through
modulation of the expression level of Bc2 family proteins,
activating the extrinsic apoptosis pathway, while some of
them, such as ganoderic acid T and polyphyllin D (PD),
induce apoptosis via mitochondrial dysfunction and/or
activation of tumor suppressor gene p53 [94–97].

Apol2/TRAIL induces apoptosis of many malignant cells
but not normal cells, and its anti-tumor capability has been
tested in many tumor types, tumor xenografts mouse models,
and clinical investigations [98, 99]. More importantly, TRAIL
in combination with conventional therapy, such as 5-
fluorouracil (5-FU) or CPT-11 (irinotecan hydrochloride),
[100] was able to cause synergistic activation of apoptosis
and reduce drug resistance in cancer cells, therefore
sensitizing cancer cells to immune system-mediated cytotox-
icity [101]. Retinoids have been used successfully in
treatment of acute myeloid leukemia alone or in combination
with chemotherapeutic agents, through induction of TRAIL
[102]. The combination of TRAIL and all-trans-retinyl
acetate induces apoptosis of antigen-presenting cell (APC)-
deficient premalignant cells, dramatically reduce tumor
growth in APCmin mice and promote cell death in human
polyps [103]. Benzyl isothiocyanate (BITC), a component of
cruciferous vegetables, has also been reported to be able to
sensitize pancreatic adenocarcinoma cells to TRAIL and
activate both extrinsic and intrinsic apoptotic pathways [104].
Wogonin, a component from Scutellaria baicalensis, also
enhances TRAIL-induced cytotoxicity in LNcaP cells [105].

6 Phytochemicals on suppression of metastasis

Invasion and metastasis have been described as the sixth
hallmark of cancer, besides immortality, abnormal growth
regulation, self-sufficient growth, evasion of apoptosis, and
sustained angiogenesis [79]. Tumor cells could disseminate
into blood, lymphatics, or even across body cavities, giving
rise to secondary tumors. However, not all tumors are
metastatic, and even in a metastatic tumor, not all cells
within it are capable of metastasizing [106]. Therefore, how
a subpopulation of tumor cells acquires metastatic potential
has always been a hot topic of research.

Metastatic tumor cells possess several distinctive char-
acteristics: they undergo epithelial–mesenchymal transition
(EMT) and become invasive, become resistant to apoptosis
and anoikis, and acquire the ability to disseminate and
colonize secondary sites [107]. The “seed and soil” concept
that was first proposed by Stephen Paget in 1889 still holds
true today since metastasis depends on cross talk between
the selected cancer cells (seeds) and the microenvironment
(soil) [108]. This concept could exemplify itself in different
steps of metastasis: acquisition of invasive phenotype
depends on the tumor cellular context as well as signals
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from the stromal cells [109], and finally dormancy or
growth of the tumors cells on secondary sites also depends
on the microenvironment [110, 111]. With the advancement
of technology, different genes and signaling pathways have
been shown to be involved in the regulation of these
processes. Some of the processes and the possible use of
phytochemicals for intervention targets are discussed
below.

7 Epithelial–mesenchymal transition

A recent review paper has described the classification of
three different EMT subtypes, each with very different
functional consequences [112]. Type 1 EMT is encountered
during normal physiological processes such as implanta-
tion, embryogenesis, and organ development. Type 2 EMT
is associated with tissue regeneration and organ fibrosis.
Type 3 EMT is related to cancer progression and metastasis.
Though it has been questioned whether EMT really
happens in human cancers [113], the role of EMT as a
critical mechanism for acquisition of malignant phenotype
by epithelial cancer cells has been proposed and confirmed
in some studies [114].

Carcinoma cells can acquire mesenchymal phenotype
and express mesenchymal markers such as α-SMA, FSP1,
vimentin, and desmin [115]. These cells are usually found
in the invasive fronts of cells in tumor and are capable of
subsequent intravasation, circulation in blood, extravasa-
tion, and eventually colonization. One interesting observa-
tion is that EMT-transited cells form tumors at secondary
sites which resemble the primary tumor, with the disap-
pearance of mesenchymal phenotype. The shedding of
mesenchymal phenotype during the course of secondary
tumor formation is termed as mesenchymal–epithelial
transition (MET). This EMT-MET mechanistic model could
be important in explaining metastasis of cancer cells: EMT
induces change in cell phenotype which allows the escape
of epithelial cancer cells from their structural constraints
imposed by tissue architecture, while MET reverses these
changes and facilitates colonization in secondary sites
[116].

There is increasing evidence supporting the notion that
tumor–microenvironment interactions are important in the
development of metastasis. For instance, fully malignant
breast cancer cells could be reverted to a normal phenotype
by exposing them to non-permissive stroma [117]. There-
fore, apart from the cellular context, the microenvironment
(tumor-associated stroma) could provide signals that induce
EMT. These signals include hepatocyte growth factor
(HGF), epidermal growth factor, platelet-derived growth
factor, and TGFβ and have been shown to be responsible
for the induction or activation of EMT-inducing transcrip-

tion factors such as Snail, Slug, zinc-finger E-box binding
homeobox 1 (ZEB1), Twist, Goosecoid, and FOXC2.
Intracellular signaling molecules such as MAPK, PI3K-
Akt, Smads, RhoB, β-catenin, lymphoid enhancer binding
factor, Ras, c-Fos, and cell surface proteins such as β4
integrins, α5β1 integrins, and αVβ6 integrin are also
shown to be mediating the EMT program [118].

8 Invasion, migration, and angiogenesis—VEGF
and MMPs

Angiogenesis is essential for both tumor growth and
metastasis. The expression of VEGF in carcinoma is highly
correlative to angiogenesis. VEGF is generally highly
expressed in carcinoma cells. Immunohistochemistry and
in situ hybridization on specimens from hepatocellular
carcinoma (HCC) patients revealed that VEGF was highly
expressed in HCC and played an important part in
angiogenesis and metastasis [119]. In head and neck
cancers, COX-2 was shown to have higher expression in
primary tumor sample and lymph node metastasis samples.
VEGF expression was correlated with COX-2 expression
and tumor angiogenesis and metastasis [120]. Samples from
esophageal squamous cell carcinoma patients also showed
overexpression of VEGF and was correlated with de-
differentiation of tumors and lymph node metastasis
[121]. Down-regulation of VEGF expression by
adenoviral-mediated p16 overexpression in breast cancer
cells inhibited tumor angiogenesis and metastasis in a
spontaneous metastasis model [122]. The administration of
antihuman VEGF antibody also inhibited tumor angiogen-
esis and metastasis in xenograft model of human fibrosa-
coma HT1080 cells [123], providing direct evidence of
VEGF-induced tumor angiogenesis in metastasis and that
VEGF could be a good target for intervention.

Apart from VEGF, MMPs such as MMP-2 and MMP-9
play a critical role in invasion and metastasis of gastric
carcinoma. Expression of these markers correlates with
depth of invasion of carcinoma, lymphatic and venous
invasion, and lymph node metastasis [124]. The ability of
MMPs to degrade the extracellular matrix may be important
for the metastasis of primary oral squamous cell carcinoma
patients [125]. In different types of cancers, different
signaling pathways have been found to increase expression
of MMPs. α3β1 integrin signaling is necessary for MMP-9
expression and mammary carcinoma migration and inva-
sion [126]. MMP-2 and MMP-9 have been associated with
intrahepatic metastasis and vascular invasion in HCC
patients. In particular, PI3K/PTEN/AKT/mTOR pathway
is probably involved in the up-regulation of MMP-9 in this
type of tumor [127]. MMP13 signaling has also been
shown to be important in mediating metastasis. Complete
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inactivation of MMP13 in stromal cell of mice significantly
suppressed melanoma tumor growth and metastasis to
various organs [128]. In laryngeal and hypopharyngeal
squamous cell carcinomas, up-regulation of MMP13 could
be mediated through CXCL12/CXCR4 activation and
subsequent ERK/c-Jun pathway [129]. Different MMPs
inhibitors have been shown to suppress tumor metastasis.
For example, BMS-275291 is a potent inhibitor (nM) of the
activities of MMP-1, MMP-2, MMP-7, MMP-9, and MMP-
14 and inhibits tumor angiogenesis and metastasis in
experimental models [130]. Another MMP-2 and MMP-9
inhibitor, FYK-1388, has also shown the same anti-
metastatic effect [131]. Inhibition of MMP-1 using RNAi
approach also reduces melanoma angiogenesis and metas-
tasis [132]. Taking these results together, inhibitors of
MMPs have generally been shown to be effective to reduce
angiogenesis and metastasis in experimental model. Pre-
vention of metastasis by phytochemicals that target MMPs
is therefore highly feasible.

9 Carotenoids

Lycopene and β-carotene both have been shown to inhibit
metastasis in experimental setting. The inhibition of lung
metastasis by β-carotene has been shown with B16F-10
melanoma cells in C57BL/6 mice. After tumor induction,
administration of β-carotene reduced formation of tumor
nodule, collagen hydroxyproline in the metastasized lung,
lung hexosamine content, uronic acid, serum sialic acid,
and gamma glutamyl transpeptidase. These end points
correlated with the improved histopathology of lung tissue
with administration of β-carotene [133]. Another study
highlights the efficacy of lycopene in the inhibition of lung
metastasis. Human hepatoma SK-Hep1-1 cells were injected
into athymic nude mice via the tail vein, and it was found
that lycopene decreased the tumor number and cross-
sectional area in the lung. Lycopene also decreases the level
of vascular endothelial growth factor and metalloproteinase
[134]. It has been commented that β-carotene appears to
have a higher efficacy than lycopene in the inhibition of lung
metastasis, taking into consideration the net increase of the
two phytochemicals in the lungs and the factors associated
with tumor invasion, proliferation, and angiogenesis [134,
135].

10 Alkaloids

Caffeine is a major phytochemical which belongs to the
alkaloid class. Using the B16F-10 melanoma cell-induced
experimental metastasis model, caffeine administered orally
and intraperitoneally (i.p.) significantly reduced the tumor

volume [136]. Further investigation using a spontaneous
transgene-induced mammary tumor model has yielded
more definite evidence in determining the inhibition of
metastasis by caffeine. It has been shown that caffeine
reduced primary tumor burden. More importantly, when
caffeine was exposed after tumor appearance, metastasis is
specifically suppressed possibly through an up-regulation
of mRNA expression of multiple extracellular matrix genes,
including Fbln1, Bgn, Sparc, Fbn1, Loxl1, Colla1, Col3a1,
Col5a1, ColS5a2, ColSa3, Col6a1, Col6a2, and Col6a3.
This indicates that caffeine could suppress metastatic
activity through inhibition of malignant transformation of
mammary epithelial cells, inhibition of conversion of
dormant tumor cells to micrometastases, micrometastases
to macrometastases, or inhibition of tumor cell adhesion
and motility [137].

11 Polyphenols

EGCG and resveratrol belong to the flavonoids. The effect
of EGCG in inhibition of metastasis was demonstrated
recently. It has been shown that EGCG blocked HGF-
induced invasion and metastasis of hypopharyngeal carci-
noma cells. In hypopharyngeal carcinoma cells, HGF was
shown to promote the autophosphorylation of c-Met and
HGF receptor, activate Akt and Erk pathway, and enhance
the activity of matrix metalloproteinase (MMP)-9 and
urokinase-type plasminogen activator. These combined
effects eventually lead to cancer cell proliferation, colony
dispersion, migration, and invasion of tumors. It is
noteworthy that EGCG at physiologically relevant concen-
tration (1 μM) suppressed the molecular tumor motility and
the molecular changes induced by HGF described. These
results suggest that EGCG may serve as a therapeutic agent
to inhibit HGF-induced invasion in hypopharyngeal carci-
noma patients [138]. Another study has demonstrated
EGCG inhibited cell proliferation (Ki-67 and PCNA
staining), angiogenesis (vWF, VEGF, and CD31, circulat-
ing endothelial growth factor receptor 2 (VEGF-R2)
positive endothelial cells), and metastasis (MMP-2, MMP-
7, MMP-9 and MMP-12, reduced ERK activity) in AsPC-1
xenografted tumors, suggesting the use of EGCG in the
prevention and treatment of pancreatic cancer growth,
invasion, metastasis, and angiogenesis [139].

Resveratrol inhibited tumor-induced neovascularization
in lung metastasis model (mice bearing highly metastatic
Lewis lung carcinoma (LLC) tumor). At concentrations of
10–100 μmol/L, resveratrol significantly inhibited the
binding of vascular endothelial growth factor to human
umbilical vein endothelial cells (HUVEC) and inhibited the
formation of capillary-like tube from HUVEC, suggesting
that the anti-metastatic activities of resveratrol might be due
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to the inhibition of LLC-induced neovascularization and
tube formation (angiogenesis) of HUVEC by resveratrol
[140]. In a more physiologically relevant model, colorectal
adenocarcinoma CT26 cells were injected into BALB/c
mice via tail vein, and pulmonary metastasis was observed.
Resveratrol was shown to reduce metastasis incidence and
increase percentage of survival of the mice. The surviving
mice have no tumor lumps or nodules detected in the lungs,
indicating resveratrol possibly increases survival rate
through prevention of metastasis [141]. Restriction of
HIF-1 alpha protein expression and stabilization through
inhibition of VEGF and MMP-9 mRNA expression could
be one possible molecular mechanism for resveratrol's anti-
metastatic action. It has been shown that Lovo cells (colon
carcinoma cell) cultured under normoxia and hypoxia
treated with resveratrol showed restricted migration, adhe-
sion, invasion, and MMP-9 and MMP-2 secretion [142].

12 Isoflavones from soy

Soy and its active compound genistein have long been
studied for their anti-metastatic effect. Increasing intake of
dietary soy has been shown to increase the size of the
mammary fat pad tumors after MDA-MB-435 human breast
cancer cell was transplanted in nude mice to form solid
tumors but interestingly reduced the severity of macroscop-
ic lung metastasis [143]. Later studies also showed that
dietary supplementation with isolated soy protein decreased
metastasis measured by various end points (incidence,
number, cross-sectional area, volume of mice with macro-
scopically visible tumors, and number of microscopically
detectable tumors) [144] and had an even greater inhibitory
effect when combined with high-selenium [145]. In one
study of bladder tumor growth and metastasis, isoflavone-
rich soy phytochemical concentrate (SPC) was shown to
have superior anti-metastatic effect compared to genistein.
Specifically, SPC but not genistein significantly inhibited
lung metastases by 95% (P<0.01). This observation was
associated with significant down-regulation of NF-κB
expression in tumor tissues and reduction of circulating
insulin-like growth factor-I levels [146].

Interestingly, genistein but not daidzein was shown to be
effective in inhibition of lung metastasis induced by B16 F-
10 melanoma cells in C57BL/6 mice, indicating not all
dietary soybean isoflavones are anti-metastatic [147].
Besides reducing the metastasis of breast cancer cell to
lung [148], studies have also suggested that genistein may
be a useful chemotherapeutic agent to inhibit the growth
and metastasis of accessory sex gland cancers such as those
derived from the prostate [149], and to decrease the
incidence of metastasis of intestinal tumor to the peritone-
um by inhibiting cancer cell invasion into lymphatic vessels

[150]. Genistein may also be a promising agent for
prevention of prostate cancer to bone metastasis. Growth
of PC3-cells on bone was inhibited with the inhibition of
expression of various metalloproteinases (MMPs) such as
MMP-9 [151]. Other genes targeted by genistein in early-
stage breast cancer cells include TFPI-2, ATF3, DNMT1,
and MTCBP-1, which inhibit invasion and metastasis, and
MMP-2, MMP-7, and CXCL12, which promote invasion
and metastasis [152]. A study by El Touny et al. revealed a
novel gene targeted by genistein. Loss of a metastasis gene
kangai-1 (KAI1) has been shown before to directly
correlate with poor prognosis in human prostate and other
cancer. The study demonstrated that genistein-enriched diet
could reverse the age-dependent down-regulation of KAI1
in the TRAMP model. The induction of KAI1 by genistein
is a critical mechanism in decreasing the invasiveness of
prostate cancer cells (TRAMP-C2) since the knockdown of
KAI1 abrogated the observed decrease of invasiveness of
TRAMP-C2 treated with genistein [153].

Genistein also inhibited the activation of focal adhesion
kinase [154, 155] and p38 mitogen-activated protein
kinase–heat shock protein 27 (HSP27) pathway [155],
which were shown to regulate cancer cell detachment and
invasion, respectively.

13 Vitamin D3

Vitamin D has been recently shown mechanistically to boost
immune system. In fact, the anti-metastatic effect of Vitamin
D has been discussed in many articles. Vitamin D3 treatment
has been shown in the metastatic Lewis lung carcinoma (LLC-
LN7) tumor model to reduce granulocyte/macrophage-colo-
ny-stimulating factor (GM-CSF) secreted by the tumor and
interrupt the myelopoiesis-associated immunosuppressor cas-
cade stimulated by GM-CSF, leading to a prominent reduction
in tumor metastasis [156]. 1,25-Dihydroxycholecalciferol
(1,25-D3) has also been shown to reduce the number and
size of lung metastases in highly metastatic Mat-lylu prostate
cancer rat model [157]. Another possible mechanism for the
suppression of metastasis could be through the inhibition of
Stat3. Phosphorylation of Stat3 has been associated with
TGFβ-mediated metastasis in pancreatic cancer cells. In fact,
tyrosine phosphorylation of Stat3 induced by interleukin 12
(IL-12) has been shown to be inhibited by vitamin D3,
suggesting blocking Stat3 by vitamin D3 possibly reduces
metastasis [158]. Therefore, vitamin D3 is generally consid-
ered as anti-metastatic. A deficiency of vitamin D3 in the
diet could promote metastasis. The effect of vitamin D
deficiency was studied on the intraskeletal growth of the
human breast cancer cell line MDA-MB-231-TxSA in a
murine model. Osteolytic lesions appeared earlier and were
significantly larger in vitamin D-deficient mice. These effects
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could be due to the change of bone microenvironment
mediated by vitamin D3 [159]. Although VitD3 has potent
anti-invasive properties, its calcemic effect in vivo has
limited its therapeutic application. Its analog EB1089 has
low calcemic effect and still retains potent anti-metastatic
activity in a breast cancer cell–bone metastasis model [160].

14 Concluding remarks

With increasing molecular mechanistic evidences coupled
with considerations of quality, safety, and efficacy, phyto-
chemicals from dietary and medicinal plants have emerged
as very promising sources of potential anticancer agents
and new chemotherapy adjuvants [161].

Current strategy for the evaluation of anticancer phyto-
chemicals are based in part on: (1) cell cycle and apoptosis
regulation; (2) anti-oxidative stress and anti-inflammatory
activities; (3) drug resistance of cancer cells; and (4)
specific molecular targets targeting carcinogenesis and
metastasis. Some phytochemicals listed in this review were
developed in recent years, and they have already been
shown to possess potent anticancer capability. With more
detailed investigations of their potential molecular targets in
different tissues and tumor types, in vitro cellular signaling
mechanisms coupled with in vivo animal models, the final
clinical applications of these phytochemicals in cancer
chemoprevention and suppression of tumor onset and
metastasis will be forthcoming.

In summary, it is highly plausible that in “asymptomatic”
individuals having extremely microscopic tumors undetect-
able by today’s imaging or other diagnostic tools, relatively
non-toxic phytochemicals found abundantly in vegetables,
fruits and herbs could block cancer initiation through the
Nrf2-antioxidative stress/anti-inflammatory pathways, induce
apoptosis/cell cycle arrest/autophagy in pre-initiated/initiated
tumor cells, while inmore advanced tumors, these compounds
could block tumor progression and metastasis. The major
questions will be what type of phytochemicals, how much to
give and what will be the appropriate combinations, will
require further studies.
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