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Abstract Advances in high-throughput, genome-wide
profiling technologies have allowed for an unprecedented
view of the cancer genome landscape. Specifically, high-
density microarrays and sequencing-based strategies have
been widely utilized to identify genetic (such as gene dosage,
allelic status, and mutations in gene sequence) and epigenetic

(such as DNA methylation, histone modification, and micro-
RNA) aberrations in cancer. Although the application of these
profiling technologies in unidimensional analyses has been
instrumental in cancer gene discovery, genes affected by low-
frequency events are often overlooked. The integrative
approach of analyzing parallel dimensions has enabled the
identification of (a) genes that are often disrupted by multiple
mechanisms but at low frequencies by any onemechanism and
(b) pathways that are often disrupted at multiple components
but at low frequencies at individual components. These
benefits of using an integrative approach illustrate the concept
that the whole is greater than the sum of its parts. As efforts
have now turned toward parallel and integrative multidimen-
sional approaches for studying the cancer genome landscape in
hopes of obtaining a more insightful understanding of the key
genes and pathways driving cancer cells, this review describes
key findings disseminating from such high-throughput, inte-
grative analyses, including contributions to our understanding
of causative genetic events in cancer cell biology.
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1 Introduction

In the past decade, advancements in genome profiling
technologies have greatly improved our ability to
understand the landscape of cancer genomes. From the
emergence of array-based comparative genomic hybrid-
ization (CGH) and spectral karyotyping (SKY) to the
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current state of next generation sequencing, the improve-
ment in resolution at which the genome can be described
has been over a million fold [1–6]. Likewise, the recent
development of integrative platforms to relate multiple
dimensions of DNA features (such as copy number, allelic
status, sequence mutations, and DNA methylation) to gene
expression patterns has dramatically improved our ability
to identify causal genetic events and decipher their
downstream consequences in the context of gene networks
and biological functions [7, 8] (Table 1). Landmark events
in cancer genomics, from the launch of Cancer Genome
Anatomy Project at the beginning of the decade to the
recent publications of complete cancer genome sequences,
are highlighted in Fig. 1 [3–6, 8, 11–45].

Multiple levels of genetic and epigenetic disruption are
instrumental to cancer development, whereby specific
genes may be altered by a variety of mechanisms. For
example, the tumor suppressor CDKN2A can be inactivated
through copy number loss, DNA hypermethylation, or
sequence mutation. These mechanisms of disruption can
occur in a tumor-specific manner or may occur concurrently
in the same tumor, i.e., a two-hit scenario. Moreover, in the
former situation, if a given gene or pathway's frequency of
alteration is low when examined by one mechanism or
dimension, it is likely that the gene/pathway would be
overlooked by the analysis. However, when multiple
dimensions of disruption are considered in the analyses,
alteration of the gene in question may be detected at a high
frequency, albeit at low frequencies by any one mechanism.
This illustrates the need for and the benefit of integrative
analytical approaches. In this article, we discuss the impact
of multidimensional genomic analyses on our view of the
cancer genome landscape and the contribution of such new
knowledge to our understanding of cancer progression and
metastasis.

2 Genomic alterations

2.1 Chromosomal aberrations

Chromosomal aberrations and rearrangements, such as
translocations and gains/losses of whole or portions of
chromosome arms, are detected through direct examination
using molecular cytogenetic techniques such as G-banding,

Table 1 List of software for integrative analysis

Software Source: commercial
(C) or academic (A)

Genome Epigenome Transcriptome Integrative Citation Website (http://www.)

Agilent Genomic
Workbench 5.0

C X X X X N/A chem.agilent.com/en-us/products/
instruments/dnamicroarrays/

dnaanalyticssoftware/pages/
default.aspx

SIGMA2 A X X X X [7] flintbox.com/technology.
asp?page=3716

Integrative Genomics
Viewer

A X X X N/A broadinstitute.org/igv/

Nexus Copy Number C X X X N/A biodiscovery.com/index/nexus

CGH Fusion C X X N/A infoquant.com/index/cghfusion

ISA-CGH A X X X [9] isacgh.bioinfo.cipf.es

VAMP A X X X X [10] bioinfo-out.curie.fr/projects/vamp/

Partek Genomics Suite C X X X X N/A partek.com/partekgs

2009

2007

2004

2002

2005

2006

CGAP launched [44,45]
First human genome sequences [42,43]
Concept of oncogene addiction [40,41]
BeadArray genotyping platforms [39]
The human genome browser at UCSC [38]
The Ensembl genome database project [37]
Cancer Biomedical Informatics Grid (caBIG) launched [8]
Tiling path analysis of human transcribed sequences [36]
Whole genome tiling path CGH microarrays [35]
Large scale copy number variation in humans [33,34]
Cancer Gene Census published [32]
Large scale RNAi-based screens [30,31]
Catalogue of somatic mutations in cancer (COSMIC) [29]

First human genome haplotype map [27]
Methylome map by MeDNA immunoprecipitation [26]
NIH Cancer Genome Atlas (CGA) initiated 

The RNAi Consortium (TRC) [24]
Exome sequencing mutation detection [23]
5-Azacytidine re-expression of methylated cancer genes [22]
Copy number variation maps [20,21]
Next generation, massively parallel sequencing technologies
2nd generation human haplotype map with >3M SNPs [19]
Genome RNAi database established [11,12]
Integrative study of glioblastoma [18]
1000 genomes project launched [17]
International Cancer Genome Consortium initiated
Acute myeloid leukemia genome sequenced [15,16]
Human methylomes sequenced [14]
Breast, lung & skin cancer genomes sequenced [4-6,13]
DNA nanoballs sequencing technology [3] 

Bead Arrays for bisulfite DNA methylation [25]

MicroRNA expression profiles classify cancers [28]

Fig. 1 Advances in cancer genomic landscape post Y2K. The
timeframe of events are estimated based on time of publication
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SKY, fluorescence in situ hybridization (FISH), and CGH
[2, 46–50]. The manifestation of such alterations is
generally attributed to mitotic errors, where centrosomal
aberrations and telomere dysfunction play key causative
roles [51–55].

Aberrations such as gains and losses have been further
refined using technologies such as microarray CGH (see
below). While primarily associated with different types
of leukemia and lymphomas, recent genomic studies
have identified translocations in epithelial tumors such as
prostate and lung cancer [56–63]. A compilation of

cumulative cytogenetic data from three main sources—
NCI/NCBI SKY/M-FISH & CGH Database, NCI Mitel-
man Database of Chromosome Aberrations in Cancer, and
NCI Recurrent Aberrations in Cancer—is now integrated
into NCBI’s Entrez system as Cancer Chromosomes [64]
(Table 2).

2.2 Gene dosage, allelic imbalance, and mutational status

Gene dosage Genomic DNA copy number alterations are a
prominent mechanism of gene disruption that contributes to

Table 2 List of genomic resources and databases

Name Description Citation Website (http://www.)

ArrayExpress Gene Expression Atlas Gene expression analysis of
public datasets

[65] ebi.ac.uk/gxa

BioDrugScreen Protein/small molecule
interaction database

[66] biodrugscreen.org

Catalogue of Somatic Mutations
in Cancer (COSMIC)

Listing of somatic mutations in cancer [67] sanger.ac.uk/cosmic

Cancer Gene Expression Database (CGED) Gene expression analysis of cancer [68] cged.hgc.jp

Database of Differentially Expressed
Proteins in human Cancers (dbDEPC)

Differentially expressed proteins in cancer [69] dbdepc.biosino.org/index

Database of Genomics Variants Reported normal copy number variations [33] projects.tcag.ca/variation

European Bioinformatics Institute (EBI) Integrated database of multiple biological resources [70] ebi.ac.uk

GeneCards Integrated database of multiple
biological resources

[71] genecards.org

GenomeRNAi RNAi experiment results [12] rnai2.dkfz.de/GenomeRNAi

Human DNA Methylome Whole genome methylation sequences
of multiple individuals

[14] neomorph.salk.edu/
human_methylome

Human Histone Modification Database
(HHMD)

Histone modification database [72] bioinfo.hrbmu.edu.cn/hhmd

microRNA.org Annotated microRNAs and their targets [73] microRNA.org

miR2Disease Deregulated microRNAs in cancer [74] miR2Disease.org

miRDB Annotated microRNAs and their targets [75] mirdb.org

miRGen Annotated microRNAs and their targets [76] diana.cslab.ece.ntua.gr/mirgen

National Center for Biotechnology
Information (NCBI)

Integrated database of multiple
biological resources

[77] ncbi.nlm.nih.gov

NCBI Cancer Chromosomes Curated cytogenetic alterations in cancer [77] ncbi.nlm.nih.gov/sites/entrez?
db=cancerchromosomes

NCBI GEO Profiles Gene expression analysis of public datasets [78] ncbi.nlm.nih.gov/sites/
entrez?db=geo

Oncomine Gene expression analysis of public datasets [79] oncomine.org

PROGENETIX Copy number aberrations in cancer by CGH [80] progenetix.net

PRoteomics IDentifications Database (PRIDE) Mass spectrometry results [81] ebi.ac.uk/pride

Sanger CGP LOH and Copy Number Analysis Copy number and LOH profiles of cancer
cell lines

– sanger.ac.uk/cgi-bin/genetics/
CGP/cghviewer/CghHome.cgi

siRecords RNAi experiment results [82] siRecords.umn.edu/siRecords

System for Integrative Genomic Microarray
Analysis (SIGMA)

Array CGH profiles of cancer cell lines [83] sigma.bccrc.ca

The Cancer Genome Anatomy Project (CGAP) Gene expression analysis of cancer [45] cgap.nci.nih.gov/

The Cancer Genome Atlas (TCGA) Multidimensional description of
cancer genomes

[18] cancergenome.nih.gov/
dataportal/data/about/

UCSC Genome Browser Integrated database of multiple
biological resources

[84] genome.ucsc.edu/cgi-bin/
hgNear
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tumor development [85]. Segmental amplification may lead
to an increase in gene and protein expression of oncogenes,
while deletions may lead to haploinsufficiency or the loss of
expression of tumor suppressor genes. Since its development
in the mid-1990s, advances in microarray-based CGH
technology have dramatically increased genome coverage
and target density, improving both the resolution and
sensitivity of detection of copy number alterations [86, 87].
The first genome-wide array CGH analysis utilized cDNA
microarrays originally designed for gene expression profiling
[88]. Since these first experiments, whole genome tiling path
arrays with tens of thousands of bacterial artificial chromo-
some clones, oligonucleotide (25–80-bp nucleotide probes),
and single-nucleotide polymorphism (SNP) arrays with over
one million DNA elements and the essential bioinformatics
tools for visualization and analysis of high-density array
CGH data have been developed (Fig. 1) [7, 35, 89–93].
These innovations have enabled increasingly precise map-
ping of the boundaries and magnitude of genetic alterations
throughout the genome in a single experiment, greatly
increasing our understanding of the cancer genome land-
scape in the context of DNA copy number [35, 94–98].
While early attempts have been made utilizing sequence-
based approaches [99–102], recent studies have begun to
illustrate the improvement in detection resolution through the
advances in high-throughput sequencing technologies [6, 13,
15, 16]. The popularity of genome sequencing will depend
on further cost reduction in data generation and major
advancements in analysis [103].

Copy number variation The discovery of a vast abundance of
germ line segmental DNA copy number variation (CNV) in
the normal human population has not only provided a
baseline for interpretation of cancer genome data but also
highlighted the need for comparison against paired normal
tissue [20, 21, 33, 34, 104–111]. Moreover, it has been
shown that many of the reported CNVs overlap with loci
involved with sensory perception and more importantly,
disease susceptibility. While the role of CNV in cancer is not
well understood, a recent study showed that these regions are
more susceptible to genomic rearrangement and may initiate
subsequent alterations during tumorigenesis [112]. More-
over, CNV at 1q21.1 was recently shown to be associated
with neuroblastoma and implicated NBPF23, a new member
of the neuroblastoma breakpoint family, in tumorigenesis
[113]. A database of all known CNVs is available at
http://projects.tcag.ca/variation [33]. In addition, as copy
number profiles of cancer genomes accumulate, hotspots for
amplification and deletion are becoming evident, and signa-
ture alterations associated with specific diseases and cancer
histologic subtypes are emerging [114–118]. The manifesta-
tion of “oncogene addiction” through lineage-specific DNA
amplification is a case in point [40, 41, 119–122].

Allelic status SNP arrays are best known for their application
in genome-wide association studies (GWAS), where the
correlation of haplotype with phenotype implicates disease
susceptibility [123, 124]. SNP array platforms have shown
tremendous advances in resolution, with the number of SNPs
that can be simultaneously measured increased by 1,000-fold
since initial development. Currently, for example, the
Affymetrix SNP 6.0 array platform measures 1.8 million
elements representing 906,600 SNP elements and >946,000
CNV elements. Likewise, on the Illumina HumanOmni1
platform, over 1,000,000 sites (representing a mixture of
SNP and CNV elements) can be simultaneously assessed. In
addition to their application in GWAS, SNP arrays can also
be used to detect somatic alterations and, when applied in
this context, can allow for the simultaneous detection of
copy number alteration and allele imbalance in tumor
genomes. In the example in Fig. 2, when the SNP array
profile of a lung cancer genome is compared against that of
its paired noncancerous lung tissue, it is not only possible to
distinguish regions of allelic balanced copy neutrality
(Fig. 2a) from allelic imbalance (Fig. 2b, c), but also regions
of allelic imbalance due to segmental DNA copy number
alteration (Fig. 2b) from those without change in total copy
number (Fig. 2c).

Mutational profiling and whole genome sequencing In
cancer, oncogenes are thought to harbor mutations
which lead to increased protein expression or constitutive
protein activation while tumor suppressor genes are
thought to harbor mutations which are inactivating,
either through total loss of protein expression or
expression of mutant, nonfunctional protein. In addition,
activating and inactivating mutations can also be accom-
panied by changes in gene dosage or allele status (see
below). Traditionally, mutation screening has been
focused on specific oncogene and tumor suppressor loci.
With the availability of newer and cheaper sequencing
technologies [125], recent studies have expanded from
single gene analyses to genome-wide screens [6, 13, 15,
16, 126]. For example, in studies using small cell lung
cancer and melanoma cell lines, tens of thousands of
somatic mutations were identified in each cell line, with
a proportion of these mutations being attributed to
cigarette smoke (G to T substitutions) and UV exposure
(C to T), respectively [4, 5]. It will be interesting to see
if other cancers have such mutation signatures. Another
observation made in both studies was that the uneven
distribution of mutations suggests that DNA sequence
integrity is largely maintained by transcription-associated
DNA repair. While these and future studies will uncover
a vast number of mutations, the contribution of those
mutations to tumorigenesis will need to be determined
[127, 128].
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2.3 Genomic landscape: gains, losses, and uniparental
disomy

Individually, the study of genomic dimensions has
yielded a global description of cancer genomes in terms
of gene dosage, allelic status, and somatic mutation.
Collectively, however, the integration of these three
dimensions has brought two concepts to the forefront:
allele-specific copy number alterations and uniparental
disomy (UPD; Fig. 2). Typically, the relationship between
somatic mutation and allele-specific copy number alter-
ations has been associated with tumor suppressor genes
(e.g., RB1 and TP53) whereby mutation is combined with
loss to achieve biallelic inactivation [129, 130]. However,
recent studies have shown preferential amplification of
alleles encoding mutated oncogenes as well [131–136]. In
non-small cell lung cancer, mutant allele specific imbal-
ance (MASI) is frequently present in mutant EGFR and
KRAS tumor cells and is associated with increased mutant
allele transcription and gene activity [136].

UPD is the presence of two copies of a chromosome
segment from one parent and the absence of that DNA
from the other parent. Somatic UPD, also known as
copy-neutral loss of heterozygosity (LOH), results in loss

of heterozygosity (tumor versus normal), without a
change in total DNA copy number [137–139]. UPD is
observed at tumor suppressor gene loci whereby upon loss
of the wild type allele, the mutated allele is duplicated
resulting in a diploid state with homozygous mutation of
the target gene [140]. Interestingly, UPD events are also
detected at mutated oncogenes [136, 141–143]. Until
recently, due to limitations in the resolution of genomic
array platforms, the prevalence of this event has been
widely underestimated and underappreciated. Recent
studies have shown that UPD events are frequently
observed in tumor genomes, with most of the findings
reported from hematological malignancies [144–153]. Our
genome-wide analysis of segmental gain, loss, and UPD in the
T47D breast cancer cell line genome identified that a
significant portion of the genome exhibits UPD, rivaling the
proportion of the genome affected by segmental gain and loss
and highlighting the potential of UPD as a prominent
mechanism of gene disruption in epithelial cancer (Fig. 3).
Interestingly, PIK3CA and TP53 mutations in T47D are
noted in the Catalogue of Somatic Mutations in Cancer [67].
Integrative analysis at these loci detected copy number
increase at PIK3CA and copy number loss at TP53
illustrating the MASI concept described above (Fig. 3).
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Fig. 2 SNP array analysis to
identify areas of altered copy
number and allelic composition in
a clinical lung cancer specimen.
Shown here are a a region that is
copy-neutral with no observed
allelic imbalance and regions
containing a b segmental gain
and c UPD. Examining the
allele-specific copy number plot,
the gain (in b) is likely a single-
copy change, and the UPD event
(in c) is signified by the shift in
allele levels while maintaining
total copy number neutral status
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Somatic UPD also exists at genes without mutation. The
potential significance of this somatic event is not readily
apparent, but it raises the intriguing possibility of allelic
conversion of epigenetic status [139, 144, 154].

3 Epigenomic alterations

3.1 The cancer methylome

Abnormal DNA methylation patterns occur in cancer,
whereby focal hypermethylation at many CpG islands is
evident in a background of global DNA hypomethylation
[155–158]. Broad hypomethylation may lead to genomic

instability, while hypermethylation of CpG islands silences
transcription of specific genes [157, 159–161]. Nonrandom
methylation of multiple CpG islands observed in colon
cancer led to the discovery of CpG island methylator
phenotype, which is causally linked to microsatellite
instability via silencing of the mismatch repair gene,
MLH1 [162–164].

The determination of DNA methylation status relies on
the ability to discriminate between methylated and unme-
thylated cytosines. This is achieved by exploiting
methylation-sensitive/insensitive isoschizomer restriction
enzyme pairs [165–171], chemical conversion of unmethy-
lated cytosine to uracil [172–177], and the affinity for
methylated DNA of specially developed antibodies and

Gain

Loss

UPD

1 2 3 4 5 6 7 8

9 10

17 18 19 20 21 22

11 12 13 14 15 16

TP53

PIK3CA

Fig. 3 Overlay of chromosomal regions of gain, loss, and UPD (copy
number neutral LOH) inherent to the T47D breast cancer cell line. The
chromosomal loci for PIK3CA and TP53 (modified by activating and
inactivating mutations, respectively, in this cell line) are indicated. The
majority of the genome is affected by any one of the three genomic
alterations. Raw SNP 6.0 array data were obtained from the Sanger

database with mutation status obtained from the COSMIC database
[67]. Copy number and allelic status changes were determined using
Partek Genomics Suite, and reference genomes used were 72
individuals from the HapMap collection. Data were visualized using
the SIGMA2 software [7]
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methylated DNA binding proteins [26, 178–184]. Several
computational methods have been developed for deriving
approximations of actual methylation levels from the
relative levels generated by most microarray and locus-
specific sequencing assays [168, 183, 185, 186]. However,
it is important to note that CpG targets represented on
microarrays may or may not be the only elements
controlling gene expression. Recently, it was shown that
in the human colon cancer methylome sequences up to 2 kb
away from CpG islands, termed CpG island shores,
exhibited more methylation than CpG islands and had
greater influence on gene expression than CpG islands
[187]. Furthermore, while excess promoter methylation is
typically associated with transcriptional repression, the loss
of required methylation within gene bodies, proximal to
promoters, can have the same effect [188]. DNA methyl-
ation of epigenetic neighborhoods in the megabase size
range has also been reported [189]. Validation of
methylation-mediated control of gene-specific expression
and evaluation of biological significance can be achieved
via pharmacologic manipulation of DNA methylation, for
example by 5-azacytidine treatment, to relieve methylation
silencing and invoke re-expression [22, 190].

The first single-base resolution maps of the human
methylome have recently been generated by sequencing of
bisulfite converted DNA from human embryonic stem cells
and fetal fibroblasts [14, 191]. This landmark study will
greatly advance the analysis of DNA methylation by
providing whole genome reference maps of methylation in
these specific cells. However, it is well known that DNA
methylation is tissue-specific and that it changes throughout
development; thus, methylome maps for all tissues at
various stages of development may be necessary to
provide adequate maps of “normal” methylation patterns
for use in deciphering aberrant methylation patterns
characteristic of tumors [192–197]. In recognition of
this, the Human Epigenome Project was launched in
2004 to map the methylomes of all major human tissues
[198].

3.2 Integration of cancer genomic and epigenomic events

DNA methylation and genomic instability Cancer-specific
aberrant DNA methylation is associated with reduced
genomic stability and subsequent copy number alter-
ations, including preferential loss of certain imprinted
alleles (LOI) [199–205]. Mechanistically, this instability
may be related to the susceptibility of hypomethylated
DNA to undergo inappropriate recombination events
[206]. Another mechanism known to negatively impact
genomic integrity in lung cancer is the relaxation of
transposable element control that is mediated by DNA
methylation [207–211].

DNA hypomethylation and DNA amplification Preliminary
evidence of specific demethylation of somatic segmental
amplifications (or amplicons) has been put forth in lung
cancer, perhaps representing a novel mechanism of aberrant
oncogene activation [210, 212]. Further studies using large-
scale sequencing of bisulfite-treated DNA will help to
clarify this phenomenon [14]. Hypomethylation has also
been implicated in the formation of specific copy number
alterations in glioblastoma multiforme [213]. One poten-
tially interesting application for DNA methylation profiling
of cancer amplicons such as these is in the discrimination
between “driver” and “passenger” genes within the ampli-
fied sequence. It may be that DNA methylation within the
promoters or gene bodies of these genes is responsible for
the lack of uniform overexpression of genes residing within
amplicons.

DNA hypermethylation and copy number loss The relation-
ship between DNA hypermethylation and allelic loss is well
documented. Tumor suppressor genes are frequently found
in regions of common LOH, and these same TSGs are
frequently found to be hypermethylated, perhaps best
exemplified by the FHIT gene on chromosome 3p [214].
Although it is unclear whether loss or hypermethylation
occurs first, both are known to be very early events in
tumorigenesis preceding any histologic alterations [215–
217]. With the advent of high resolution genome-wide
technologies, it has become possible to comprehensively
search for genes that are inactivated by both mechanisms
simultaneously [218].

Histone modification states While DNA methylation and
gene dosage profiling technologies have become accessible,
technologies for global assays of other key epigenetic
marks including histone modifications are not widely
available. One of the main challenges to conducting
the highest quality studies of genome-wide chromatin
immunoprecipitation on microarray (ChIP-chip) or on
sequencing platform (ChIP-seq) experiments is the
requirement of high-quality DNA from pure cells—
which essentially means growing cells in culture. It is
thus difficult to analyze these dimensions from clinical
specimens. However, much has been learned from
studies of the relationship between different histone
modification states and transcriptional activation or
repression in model systems. Such examples utilizing
ChIP-chip include: cell or context-specific histone mod-
ification patterns related to cell or context-specific gene
expression; histone 3 lysine 27 (H3K27) trimethylation
patterns associated with prostate, lung, and breast cancers;
and H3K9 and H3K79 modification patterns in leukemia
[219–225]. Examples utilizing ChIP-seq include: the analysis
of the growth inhibition program of the androgen receptor
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and the chromatic interaction network of the estrogen
receptor [226, 227].

4 Relating genetic and epigenetic events to changes
in the transcriptome through integrative analysis

Aberrations in individual genetic or epigenetic dimensions
are prominent across various cancer types, culminating in
changes to the transcriptome. However, for a given gene,
most of the events documented previously, such as copy
number amplification, homozygous deletion, somatic muta-
tion, or DNA hypermethylation, do not occur in 100% of
tumors for a given cancer type. Moreover, it has been
observed that the same gene may be activated or inactivated
by different mechanisms. Since most of the studies described
above analyzed single DNA dimensions, it is likely that many
genes would be overlooked due to a low frequency of
alteration in a single dimension; the same gene may be
detected at a high frequency when multiple dimensions are
considered. Thus, analysis of more dimensions may reveal
higher frequency gene-specific disruption with corresponding
transcriptome aberrations for particular cancer types, as would
be expected for genes causative to cancer development.

4.1 Multiple mechanisms of gene disruption

Expression profiling studies have been instrumental in
detecting genes dysregulated in cancer [228–230]. However,
aberrant expression of some genes may simply reflect
incidental genome instability or secondary dysregulation.
Global gene expression profiling alone may not distinguish
causal events and bystander changes. One of the first studies
to relate gene expression changes with gene dosage status on
a global scale was a parallel analysis of DNA and mRNA
[88, 231]. The same cDNA microarray platform was used to
investigate impact of DNA copy number alterations on the
expression of over 6,500 genes. This study determined that
62% of genes located within regions of DNA amplification
showed elevated expression in breast cancer. Subsequent
studies in other cancer types revealed a broad range in the
correlation between increased gene dosage and expression
levels for protein coding genes (19% to 62%) [114, 228,
231–234]. Studies integrating gene dosage and gene expres-
sion have identified cancer subtype-specific pathway activa-
tion and signatures associated with clinical outcome [118,
235–238]. In addition, when examining known disease-
relevant pathways, it has been shown that even though
individual components of a pathway are disrupted at a low
frequency, collectively, these alterations can result in
frequent disruption of a given pathway [18, 114]. Similarly,
alterations in DNA methylation or histone modification

status can also affect gene expression and have subsequent
pathway level consequences (see above).

4.2 Multiple mechanisms of disrupting noncoding RNA
levels

Segmental DNA copy number alterations also affect the
expression of noncoding RNAs [239–243]. MicroRNAs
(miRNA) have been shown to have a significant role in
cancer development with specific miRNAs implicated in a
number of different cancer types [28, 244–246]. Specific
miRNA expression signatures are associated with critical
steps in tumor initiation and development including cell
hyperproliferation, angiogenesis, tumor formation, and
metastasis [247]. High-throughput analysis of micro-
RNAs has been of interest, and microarrays have been
developed to assess essentially all annotated microRNAs.
To date, >700 miRNAs have been annotated in the
genome (http://mirdb.org/miRDB/statistics.html, [75]),
with more likely to be discovered. For example, we
recently demonstrated that a deletion on chromosome 5q
leads to the reduced expression of two miRNAs that are
abundant in hematopoietic stem/progenitor cells. This
study revealed haploinsufficiency and reduced expression
of miR-145 and miR-146a as mediators of a subtype of
myelodysplastic syndrome [242]. Although the genomic
loss and underexpression implicates a tumor-suppressive
role for these specific miRNAs, others undergo activating
genomic alterations and elevated expression and hence
are thought to be oncogenic [248, 249].

Just as copy number alterations can alter miRNA activity,
epigenetic alterations have also been shown to affect miRNA
expression [250–252]. Aberrant methylation of miRNAs has
been reported in a variety of cancer types, and the disruption
of epigenetically mediated miRNA control has been shown to
have oncogenic effects due to downstream gene deregulation
[253]. For example, abnormal DNA methylation of miRNAs
has been associated with tumor metastasis, leading to the
appreciation of a group of metastasis-related miRNAs [249].

4.3 Multidimensional integration of genome, epigenome,
and transcriptome

Large-scale initiatives Since multiple genomic/epigenomic
mechanisms can influence gene expression and lead to
disruption of a given function, an integrative multidimension-
al analysis is necessary for a more comprehensive under-
standing of the cancer phenotype (Fig. 4). Specific programs
and initiatives such as those by The Cancer Genome Atlas
project and the cancer Biomedical Informatics Grid enable
parallel and multidimensional analysis of cancer genomes [8,
18] (Table 2). Recently, studies in glioblastoma and
osteosarcoma have shown that integrative genomic and
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epigenomic approaches can indeed reveal the specific genetic
pathways involved in different cancers [18, 254].

Gene disruption by multiple mechanisms One of the two
key reasons for using an integrative approach is the ability
to detect critical genes that are disrupted by multiple

mechanisms across a sample set but are disrupted at a low
frequency by any one mechanism. These genes would have
been overlooked in previous, single dimensional studies.
The second key advantage of integrative approaches is the
ability to identify genes that are simultaneously disrupted
by multiple mechanisms—two hits—in a single sample.
Using a dataset comprised of DNA copy number, allelic
status, DNA methylation, and gene expression profiles
from ten lung adenocarcinomas and matched nonmalignant
tissue controls, we illustrate these benefits below.

If gene expression changes are a consequence of alterations
at the DNA level, then a higher proportion of the observed
expression changes can be directly attributed to a defined
causal event when multiple types of DNA alterations are
examined (Fig. 5a). While some samples have over 70% of
the expression associated with DNA level changes (sample
7, sample 8), other samples have only 30% (sample 5,
sample 9). Additionally, consequential to associating more
gene expression changes with DNA level changes within a
sample, more disrupted genes are detected, and in turn,
more disrupted pathways are identified across a sample set
(Fig. 5b, c). In fact, in our example, nearly five times as
many genes (∼1,100 compared to ∼200) are detected as
disrupted in at least 50% of the samples when we account
for multiple mechanisms of disruption (versus one mech-
anism alone; Fig. 5c). This result illustrates that without
using an integrative approach, many potentially important
genes would be dismissed as they are disrupted by low
frequency events when a single DNA dimension is
analyzed. This also holds true at the pathway level when
the identified genes are grouped based on their biological
function (Fig. 5d). For example, the Hepatic Fibrosis/
Hepatic Stellate Cell Activation pathway and the RAR
Activation pathway, which are identified when all DNA
dimensions are considered, would not be detected as
significantly altered when using individual DNA dimen-
sions alone.

Implications on sample size requirements In the example
above, we illustrate that a significant number of genes and
pathways exhibit a low frequency of disruption when
examining single dimensions (and thus would be over-
looked) but, indeed, exhibit a high frequency of disruption
when multiple dimensions are considered (Fig. 5). Notably,
these findings imply that integrative multidimensional
analysis of individual samples may directly impact the
cohort sample size required for gene discovery on the basis
of frequency of disruption (Fig. 5e). Reduction in sample
size requirements means that one can extend this approach
to situations involving rare specimens where accrual of
hundreds of samples in a reasonable timeframe is not
possible. Moreover, reduced sample sizes are particularly

Total copy number: Amplication

Allele specific copy number

DNA hypomethylation

N
or

m
al

Tu
m

or

# 
of

 c
op

ie
s

# 
of

 c
op

ie
s

0

0

1

2

3

2

4

MUC1

Overexpression

Normal Tumor
0

1000

2000

3000

4000

5000

6000

R
el

at
iv

e 
ex

pr
es

si
on

7000

a

b

c

d

Fig. 4 Integration of copy number, allelic status, DNA methylation,
and gene expression for a single lung adenocarcinoma sample. a Copy
number and b allele status analyses revealed a high level allele-
specific DNA amplification (highlighted in yellow, image generated
with Partek Genomics Suite); c individual CpG loci within this region
were assessed for differential methylation between tumor and
nonmalignant tissue. Hypomethylation at the indicated CpG locus,
which corresponds to the MUC1 gene, is observed (visualized with
Genesis). d Expression analysis revealed fourfold overexpression of
the MUC1 transcript when a tumor sample was compared to matched,
adjacent nonmalignant tissue. Copy number and allele status profiling
was performed using the Affymetrix SNP 6.0 array; DNA methylation
profiling using the Illumina Infinium HM27 platform and gene
expression using the Affymetrix Human Exon 1.0 ST array

Cancer Metastasis Rev (2010) 29:73–93 81



P
ro

po
rt

io
n 

of
  d

iff
er

en
tia

lly
 e

xp
re

ss
ed

 g
en

es

10

0

20

30

40

50

60

# 
of

 S
ig

ni
fic

an
t P

at
hw

ay
s

Cop
y N

um
be

r

DNA M
et

hy
lat

ion

CNNLO
H

All D
im

en
sio

ns

0
200
400
600
800

1000
1200

Cop
y N

um
be

r

DNA M
et

hy
lat

ion

CNNLO
H

# 
of

 g
en

es
 id

en
tif

ie
d

All D
im

en
sio

ns

1400

Cop
y N

um
be

r

DNA M
et

hy
lat

ion

Cop
y N

um
be

r N
eu

tra
l

LO
H (C

NNLO
H)

Le
ve

ra
gin

g 
All

Dim
en

sio
ns

0.1

0.2

0.3

0.4

0

0.5

0.6

0.7

0.8

0.9

Sample 1
Sample 2
Sample 3
Sample 4
Sample 5
Sample 6
Sample 7
Sample 8
Sample 9
Sample 10
Average

0

Hep
at

ic 
Fibr

os
is 

/ 

Hep
at

ic 
Ste

lla
te

Cell
 A

cti
va

tio
n

RAR A
cti

va
tio

n

M
ac

ro
pin

oc
yto

sis

Com
ple

m
en

t S
ys

te
m

Le
uk

oc
yte

 E
xtr

av
as

at
ion

Sign
ali

ng

Ree
lin

 S
ign

ali
ng

in 
Neu

ro
ns

Onc
os

ta
tin

 M

Sign
ali

ng

IL
-8

 S
ign

ali
ng

Acu
te

 P
ha

se

Res
po

ns
e 

Sign
ali

ng

CXCR4 
Sign

ali
ng

2

4

6

-lo
g(

pv
al

ue
)

Th
re

sh
ol

d

Copy Number

DNA Methylation

CNNLOH

All Dimensions

Copy Number

DNA Methylation

CNNLOH

All Dimensions

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Frequency of Disruption (%) Frequency of Disruption (%)

RRM2RARRES2

a

d

e

b

c

Fig. 5 Enhanced analysis of the cancer phenotype using an
integrative and multidimensional approach. a On average, a higher
proportion of differential gene expression can be associated with
genomic alterations when examining multiple DNA dimensions
relative to single dimensions. b Using a fixed frequency threshold of
50%, more genes are revealed to be frequently disrupted when
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Example of two genes that are missed when a single DNA dimension
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Both ribonucleotide reductase M2 (RRM2) [255, 256] and retinoic
acid receptor responder (tazarotene-induced) 2 (RARRES2) [257,
258] are known to be deregulated in multiple cancer types
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applicable to familial cancers or to isolated populations at
increased risk for specific cancers.

Biallelic gene disruption Two-hit biallelic inactivation of
genes and high-level gene amplifications are typically
considered to be causal mechanisms that inflict gene
expression changes. When examining multiple DNA dimen-
sions, concerted biallelic disruption of a gene in the same
sample can be readily identified; copy number loss with
hypermethylation resulting in underexpression or copy
number gain with hypomethylation and overexpression are
examples. Indeed, we do identify genes harboring
concerted disruptions using the same lung adenocarcino-
ma dataset mentioned above. The MUC1 locus exhibits
concurrent copy number increase with hypomethylation
and overexpression (Fig. 4). MUC1 has previously been
shown to be important in lung and breast cancers and is

currently a target for therapeutic intervention [259–261].
Collectively, we have demonstrated how an integrative,
multidimensional approach can be utilized for cancer gene
and pathway discovery.

4.4 Disruption of multiple components in biological
pathways

We described above how an integrative, multidimen-
sional approach improves the detection of disrupted
genes, especially those affected by multiple low-
frequency mechanisms. This concept can be extended
to identify biological pathways, where multiple path-
way components are disrupted at low frequencies (see
above; Fig. 5d). The EGFR signaling pathway is a well-
documented dysregulated component of lung cancer.
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pathway than a single dimen-
sional analysis alone. In this
example, multidimensional pro-
filing data were generated from
ten lung adenocarcinomas and
their paired noncancerous lung
tissue. Analysis of DNA copy
number (gene dosage) altera-
tions that affected expression
identified seven genes (in green)
that are disrupted at ≥30% fre-
quency. However, when altera-
tions in copy number, DNA
methylation, sequence mutation,
and/or copy-neutral LOH were
considered, 17 genes disrupted
at ≥30% frequency were identi-
fied to be associated with a
change in expression, with an
additional gene, KRAS, harbor-
ing frequent mutation. The 11
additional genes are indicated in
red. Genes in gray are not
significant in this dataset as they
did not meet the frequency
criteria
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Using the same multidimensional profiling dataset from
Fig. 5 above, seven genes were detected with gene
dosage alteration at a frequency ≥30%. However, when
we considered alterations in gene dosage, allelic status,
DNA methylation, and somatic mutation collectively
(for KRAS and EGFR only), 18 genes in the pathway
were identified to be altered at ≥30% frequency (Fig. 6).
The detection of the additional 11 genes illustrates the
benefit of employing an integrative approach and
extends the sample size reduction argument to the
pathway level.

5 Tracking clonal expansion in spatial dimensions

Delineating the clonal relationship between multiple tumors in
the same patient is relevant not only to clinical management of
disease but also to the understanding of metastasis. Multiple
tumors in the same patient may not necessarily share an identical
genomic profile. The similarities and differences in genomic
landscape between tumors are quantifiable and therefore can be
used for delineating relatedness. Whole genome comparison
based on array CGH profiles is a new tool for distinguishing
metastatic from primary synchronous carcinomas. A multitude
of genomic features, for example the boundaries of segmental
deletions, are used to delineate the presence and the sequence of
events in clonal evolution [262–270].

Furthermore, signature genetic alterations can be used to
track clonality in a cell population, putting genetic events in

the context of tumor tissue architecture. By assessing the
appearance of preselected markers in individual nuclei on a
tissue section by FISH, the clustering and the expansion of
clonally related cells can be delineated by analyzing the
marker patterns of neighboring cells (Fig. 7).

6 Evaluating the biological significance of integrative
genomics findings

The utilization of an integrative genomic, epigenomic, and
transcriptomic approach will undoubtedly improve our ability
to identify gene disruptions and their effects on gene
expression. The next challenge is to develop approaches for
the determination of functional and phenotypic evidence of
the biological relevance of such gene disruptions in a high-
throughputmanner—for example, functional genomic screens
by RNAi, proteomic profiling, and metabolite profiling.
Forced expression of genes and RNAi knockdown of gene
expression are commonly used methods for assessing growth
and invasion phenotypes in cell models. Genome-wide RNAi
screens, comprised of large libraries of short hairpin RNA
sequences redundantly targeting thousands of genes, have
been used to identify genes essential to tumorigenesis,
including tumor suppressor genes as well as cooperative
genes with oncogenic mutation in several malignancies [24,
30, 31, 271–279]. Animal models are also instrumental to
functional validation of genes singly or in combination, but
this topic is beyond the scope of this article. Cross

a b

Fig. 7 Automated detection of selected clonal populations of cells
within a cancer biopsy tissue section. All nuclei (∼150,000 in this
example) are detected, and FISH probe signal counts are enumerated
for each nucleus. FISH signal pattern for each cell is compared against
its neighbor in order to define spatial association (or neighborhood). A
mathematical model is then applied to determine clonal cell relation-
ships. a Mapping cancer cells on a tissue section. A gain or loss of any
one of three FISH markers indicates a cancer cell. This image shows

the density of cancer cells (so defined) in neighborhoods as a color
overlay. Red indicates high fraction of cancer cells, yellow indicates
medium fraction of cancer cells, and blue indicates low to none (see
scale bar). Most of the section is highlighted except for the
surrounding normal stromal infiltrates. b Mapping clonal cells.
The same image data were analyzed for concurrent gains of each of
the three markers. The two clusters of cells, magnified within the
white boxes, are cells harboring gain of all three markers
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referencing genomic findings with proteomic profiles will
determine the functional consequences yielding information
on expression levels, posttranslational modification, and
protein–protein interactions [280–284]. As recent studies
have highlighted the importance of the metabolome in
cancer, the genomic landscape can also be integrated with
metabolome profiles to determine the role of genetic and
epigenetic alterations in cellular physiology relevant to
cancer development [285–287].

The progress made in the development of technologies
and approaches to analyze the genome, epigenome, and
transcriptome has allowed for much improved understand-
ing of cancer landscapes. With the increased application of
sequence-based approaches to analyze genetic and epige-
netic dimensions and the additional complexity with the
proteome and metabolome to follow, an unprecedented
definition of the cancer cell can be achieved. The next key
challenge will be the synthesis of this information to better
understand fundamental cancer processes such as progres-
sion, metastasis, and drug resistance.
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