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Abstract The authors review how cancer cells may
cooperate in metastasis by means of microenvironmental
changes. The main mechanisms underlying this cooperation
are clustered migration of cancer cells, extracellular matrix
degradation, paracrine loops of released signaling factors
and/or induction of adhesion molecules on stromal cells.
Another critical factor could be temporal cooperation:
successive waves of cancer cells may induce progressive
conditioning of the microenvironment. The “class action”
of cancer cells against the microenvironment involves
successive steps of the metastatic process: invasion of the
primary tumor microenvironment, collective migration
through the extracellular matrix, blood vessel disruption,
vascular or lymphatic tumor emboli, establishment of a
premetastatic niche by secreted factors and endothelial
precursor recruitment, induction of cell adhesion molecule
expression in endothelial cells, extravasation, micrometastasis

dormancy and establishment of a new growth in distant sites.
As a result, after completion of the metastatic process, the
series of microenvironmental changes from the primary tumor
to the metastatic site may promote colonization of metastases
by nonmetastatic cancer cells of the primary tumor.
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1 Introduction

The metastatic process is a cellular marathon which
combines both random and non-random selections of
cancer cells. Random selection roughly corresponds to the
mechanistic and “passive” aspects of the metastatic process
(access to blood vessels, blood flow pressure, passive
trapping of cancer cells in capillaries, etc.) [1], whereas
non-random selection is mostly based on the molecular
determinants displayed (or not displayed) by cancer cells
[2]. These molecular determinants (e.g. E-Cadherin expres-
sion, Nm23 suppression, etc.) are required to proceed
through the highly selective, and putatively “active” steps
of the metastatic process, such as escape from anoikis,
homing in a preferential host organ, extravasation and start
of a new growth in secondary sites [3, 4]. According to the
metastatic switch paradigm, their expression is restricted to
a small subpopulation of cells which pre-exists within a
parental neoplasm [5]. In this model, the lack of any of the
required molecular determinants would prevent tumor cells
from developing into metastases [6]. Globally, the success
rate of the metastatic process is very low, less than 0.1% for
each circulating cancer cell, justifying the term “metastatic
inefficiency” [7]. However, cancer cells which fail to
metastasize may facilitate the establishment of metastasis

Cancer Metastasis Rev (2008) 27:5–10
DOI 10.1007/s10555-007-9103-x

F.-C. Bidard (*) :M.-F. Poupon
Department of Translational Research, Institut Curie,
26 rue d’Ulm,
75005 Paris, France
e-mail: fcbidard@curie.fr

M.-F. Poupon
e-mail: mfpoupon@curie.fr

F.-C. Bidard : J.-Y. Pierga
Department of Medical Oncology, Institut Curie,
26 rue d’Ulm,
75005 Paris, France

J.-Y. Pierga
e-mail: jean-yves.pierga@curie.net

A. Vincent-Salomon
Department of Pathology, Institut Curie,
26 rue d’Ulm,
75005 Paris, France
e-mail: anne.salomon@curie.fr



by other cells. A community effect (or “class action”) of
cancer cells may be responsible for favorable conditioning
of the host microenvironment, facilitating the final estab-
lishment of metastases.

2 General mechanisms of cancer cell cooperation

The main mechanisms used by cancer cells to cooperate
have been largely described, although their cooperative
potential has not been elucidated. Direct signaling via
adhesion molecules between cancer cells and surrounding
non-neoplastic cells have been described [8–9], but most of
their interactions are mediated by secreted chemokines,
together with other secreted proteins (e.g. proteases) [10].
The action of secreted factors on the microenvironment
may also facilitate the survival and progression of other
tumor subclones. It has been postulated that two adjacent
tumor cells may overcome certain host defences and protect
each other by means of diffusible products [11]. Another
mechanism is the formation of cancer cell clusters:
“autologous” intercellular junctions may cluster heteroge-
neous subclones in tumor emboli or in invasion through a
basement membrane or endothelium [12–13]. The time
dimension must also be taken into account: due to the
genetic instability of the primary tumor, the tumor
microenvironment is exposed to successive tumor sub-
clones that may exhibit different phenotypes [14]. Once a
potential metastatic subclone has undergone a metastatic
switch, it may take advantage of the prior conditioning of
the microenvironment induced by other cancer cells.

This review details the three main steps of the
hematogenous metastatic process at which a community
effect, or “class action”, can occur: invasion and migration
through the extracellular matrix, pre-metastatic niche
conditioning, final growth of macrometastasis and the late
colonization process of metastases.

3 Invasion and migration through the extracellular
matrix

During the metastatic process, invasion of the extracellular
matrix (ECM) and migration of cancer cells occur during
primary tumor growth and after arrest of cancer cells in the
endothelium of the host organ [15]. Invasion and migration
properties are closely coordinated, and both require
morphologic changes of the cancer cell: formation of
pseudopodia at the leading edge, release and activation of
extracellular matrix proteases at the invasive front, cell
adhesion to proteolysed ECM and cellular movement by
detachment at the cell rear [16]. The loss of epithelioid
polarization and acquisition of an invasive phenotype are

mostly acquired via epithelial–mesenchymal transition
(EMT) [17]. However, focused analyses on the invasive
front of primary tumors revealed two phenomena which
allow cooperation between heterogeneous cancer cells: the
ability of cancer cells to migrate depends on ECM stiffness
and their ability to degrade ECM components by proteolysis
[18–19].

Experimental and theoretical models have shown that
the primary invading cancer cells are highly selected in
terms of their phenotype and correspond to a few tumor
clones exhibiting aggressive traits [20]. Their migration
through the ECM is accompanied by the formation of
migration tracks signaled by cell membrane material,
such as integrins, released by migrating cancer cells
during their rear detachment [21–22]. The signaling role
of this cellular debris and their ability to slow matrix
remodeling have not been clearly evaluated. However,
by creating a tunnel of least resistance within the ECM
and reshaping the collagen fibers at the border of the
tunnel, primary migrating cancer cells may create
migrating pathways for other cancer cells [23]. It has
also been reported that collective cell movement repre-
sents an efficient dissemination strategy. This collective
migration of cancer cells exhibits an invasive front
composed of clustered promigratory, beta-1 integrin-
expressing cancer cells (described as “guiding” cells)
and different cellular phenotypes at the rear end of the
cell cluster [24–25]. Together with other hypotheses, the
collective migration of cancer cells may explain why
metastases of epithelial cancers still display epithelial
markers and do not exhibit a mesenchymal phenotype
[26]: EMT may concern only the first guiding cancer
cells.

The late step of the migratory pathway within the
microenvironment of the primary tumor is intravasation,
i.e release of cancer cells into blood or lymph [27]. Some
studies have demonstrated the active involvement of
specific molecular determinants, such as adhesion mole-
cules or chemokines [28–30], while others have reported
the importance of passive, unregulated mechanisms of
cancer cell release into lymph or blood vessels [1]. In
clinical studies reporting the existence of circulating cancer
cells in disseminated breast cancers, the number of
circulating cancer cells appeared to be at least partially
linked to disease progression [31] after an initial biological
regulation [32]. These clinical observations are not in favor
of a tight regulation of the intravasation process throughout
tumor growth. To explain how circulating cancer cells may
be a “biological staging beyond tumor burden,” we propose
that early intravasating cancer cells require specific molec-
ular determinants, and that subsequent cancer cells may
take advantage of an altered endothelium to passively
extravasate.
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4 Premetastatic niche conditioning

Circulating cancer cells are released into the blood by
nonmetastatic primary tumors, as documented by many
clinical studies [33]. Many biological studies, including
those using in vivo videomicroscopy, have shown that the
vast majority of these circulating cells cannot form
metastases or micrometastases [34–36]. This has been
described by the well known term “metastatic inefficiency”
[37]. As these cells do not directly form macrometastases,
no study has specifically reported the microenvironmental
changes induced by these “inefficient” cancer cells.
Concerning modification of the extracellular matrix by
early migrating cancer cells, we can postulate that the host-
organ microenvironment may be conditioned by certain
circulating cells to promote the establishment of metastasis
by other cancer cells (Fig. 1).

A simple experiment in a human colorectal model of
metastasis reported that E Selectin expression by endothelial
cells mediated the arrest of cancer cells in the liver [38].
After injection of cancer cells into the portal vasculature, E
Selectin was strongly upregulated in the liver, thereby
facilitating the arrest of further incoming cancer cells [39].
More recently, E Selectin expression by sinusoidal endothe-
lial cells was shown to be only part of the proinflammatory
response of the host-organ microenvironment to arrested
cancer cells: release of TNF-alpha by Kupffer cells, and
P-Selectin, VCAM-1, and ICAM-1 expression by sinusoidal
endothelial cells [40–41]. This process is one of the first
steps leading to the creation of a favorable metastatic niche.
Other alterations of the endothelial microenvironment can

also upregulate the metastatic process: expression of integrin
adhesion molecules in cancer cells and the endothelium,
matrix metalloproteinases, and chemotactic factors that
promote the attachment of tumor cells to the vessel wall
and/or transvascular penetration [42–43]. Not surprisingly,
together with intravascular tumor emboli of the primary
tumor [44], prometastatic intravascular “homotypic” adhe-
sive interactions between circulating cancer cells have also
been reported at the site of primary attachment to the
endothelium [12, 45]. These two kinds of cellular cluster
may also promote cooperation against the host-organ
microenvironment.

In addition to activation of the endothelium and
clustering of cancer cells, a primary tumor may also trigger
the recruitment of bone-marrow derived cells at future
metastatic sites. It has been reported that the secretion of
inflammatory chemokines, induced by the primary tumor,
attracts both cancer cells and MAC1+ myeloid cells in the
premetastatic lung [46]. Moreover, VEGFR1+/VLA-4+
bone marrow-derived hematopoietic progenitor cells may
form a premetastatic niche in future host organs, and their
recruitment is mediated by signaling factors secreted by
cancer cells [47–48]. However, it has not been reported
whether or not proliferation at the metastatic site is
restricted to the cancer cells which were initially responsible
for the recruitment of metastasis-facilitating bone marrow
cells. Importantly, in the reported experiments, the metastatic
pattern (i.e. preferential homing of metastasizing cells) of
injected tumor cells depended on the conditioned microenvi-
ronment, but not on their own intrinsic metastatic pattern. In
the absence of supplementary experiments, it can be hypoth-

Fig. 1 Premetastatic niche con-
ditioning. Possible cooperations
between successive waves of
homogeneous or heterogeneous
circulating cancer cells
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esized that chemokine-secreting subclones of the primary
tumor are responsible for initiation of the premetastatic niche,
but that the resulting conditioned microenvironment may also
be a niche for other tumor subclones.

5 Final growth and colonization of macrometastases

The early growth and regulation of micrometastatic cancer
cells within a host organ remain unclear. Many studies
have reported that bone marrow micrometastases (BM
MM) are a strong prognostic factor for metastatic relapse
of early breast cancers [49–50], in accordance with our
results [51]. After successful dissemination, isolated
cancer cells appear to undergo a dormancy phase which
could last several years, before some of them grow into
macrometastases [52]. Strikingly, BM MM have almost
completed the metastatic process but still remain geneti-
cally and phenotypically heterogeneous [53–55]. In the
breast cancer adjuvant setting, 40 months after completion
of treatment, the detection of BM MM and circulating
cancer cells were not correlated in patients, and only BM
MM had a significant impact on survival. Although
circulating cancer cells had no prognostic significance in
the overall population, their detection resulted in an
especially poor prognosis for the few patients who also
exhibited BM MM [56]. It can be hypothesized that
circulating cancer cells might form macrometastases when
the local microenvironment has been favorably condi-
tioned by other cancer cells (namely BM MM), but this
hypothesis needs to be further investigated.

The late growth of metastases, after the start of
secondary proliferation by metastasizing cancer cells, has
been studied in our laboratory. Although the underlying
molecular determinants have not been determined, we
demonstrated colonization of metastases by nonmetastatic
circulating cancer cells [57]. These types of tumor
subpopulation interactions in metastasis were also indirectly
reported in a murine model [58]. We concluded that the late
part of the metastatic process creates a favorable microen-
vironment for the arrest and growth of other tumor
subclones. This cooperative process could also explain
why primary tumors and macrometastases may exhibit a
similar molecular profile after clonal initiation of metastases
[59–60].

6 Conclusion

We have reviewed the main steps of the metastatic process
in which cooperation of cancer cells progressively creates a
conditioned microenvironment, and its potential mecha-
nisms. The cooperation between cancer cells may have

been underestimated by the use of highly selected cell lines
injected intravenously to mice. It is almost impossible at the
present time, for technical reasons and due to genetic
instability, to distinguish all of the genetically and pheno-
typically different subclones in a primary tumor and to
follow them in the course of the metastatic process.
However, this class action type of process might also exist
in many other hallmarks of cancer, such as angiogenesis or
immunity escape. If confirmed by further experiments, this
cooperation may change our understanding of the meta-
static process.
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