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Abstract The evolutionarily selected tissue-protecting mech-
anisms are likely to be triggered by an event of universal
significance for all surrounding cells. Such an event could be
damage to blood vessels, which would result in local tissue
hypoxia. It is now recognized that tissue hypoxia can initiate
the tissue-protecting mechanism mediated by at least two
different biochemical pathways. The central message of this
review is that tumor cells are protected from immune damage
in hypoxic and immunosuppressive tumor microenviron-
ments due to the inactivation of anti-tumor T cells by the
combined action of these two hypoxia-driven mechanisms.
Firstly, tumor hypoxia-produced extracellular adenosine
inhibits anti-tumor T cells via their Gs-protein-coupled and
cAMP-elevating A2A and A2B adenosine receptors (A2AR/
A2BR). Levels of extracellular adenosine are increased in
tumor microenvironments due to the changes in activities of
enzymes involved in adenosine metabolism. Secondly, TCR-
activated and/or tumor hypoxia-exposed anti-tumor T cells
may be inhibited in tumor microenvironments by Hypoxia-
inducible Factor 1a (HIF-1a) Hence, HIF-1a activity in T
cells may contribute to the tumor-protecting immunosup-
pressive effects of tumor hypoxia. Here, we summarize the
data that support the view that protection of hypoxic
cancerous tissues from anti-tumor T cells is mediated by the
same mechanism that protects normal tissues from the
excessive collateral damage by overactive immune cells
during acute inflammation.
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Abbreviations
A2AR adenosine A2A receptor
A2BR adenosine A2B receptor
ADA adenosine deaminase
AK adenosine kinase
ENT equilibrative nucleoside transporter
HIF-1a hypoxia-inducible factor 1a
NT 5′-AMP nucleotidase
TCR T-cell receptor

1 The physiological mechanism that prevents excessive
collateral tissue damage during immune response

The complete eradication of pathogens depends on a prompt and
efficient immune response. Inflammatory processes are initiated
by immune cells through secretion of various pro-inflammatory
cytokines and chemokines, which results in activation and
migration of myeloid cells and lymphocytes to the area of
inflammation [1, 2]. The combined pro-inflammatory actions
of cells of the innate and adaptive immune systems lead to the
damage to bacteria or infected cells. However, immune cells not
only destroy pathogens but might also cause collateral injury to
normal tissues. It was recently explained that the collateral
damage by immune cells is limited by the ‘danger-sensing’
physiological mechanism [3], which results in the tissue-
protecting negative feedback inhibition of overactive immune
cells. This phenomenon may explain the surprisingly rare post-
inflammatory complications in infected patients.

This crucial anti-inflammatory mechanism functions
by engaging the adenosine receptor A2A (A2AR) on the
surface of immune cells [4–7]. It was demonstrated that
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extracellular adenosine that is accumulated in inflamed
areas signals through the A2AR leading to the increase of
immunosuppressive cAMP [3, 8]. As a result, activation
of adenosine->A2AR pathway leads to down-regulation of
pro-inflammatory functions of immune cells and to subse-
quent resolution of tissue-destructing inflammation [7].

Four different adenosine receptors are currently charac-
terized: Gi-protein-coupled A1 and A3 receptors, and Gs-
protein-coupled A2A and A2B receptors [6, 9, 10]. It was
shown that T cells predominantly express A2AR and A2BR
[9, 11–15]. The signaling through A2AR or A2BR in T
cells results in elevation of cAMP levels and consequent
inhibition of TCR-triggered activation of T cells [14, 16–
18] and their effector functions, including proliferation,
expansion and secretion of cytokines such as IFN-g and
TNF-a [13, 18–20].

2 The problem of cancer immunotherapy: some areas
of cancerous tissues are protected from anti-tumor
T cells

The studies of tissue protection from activated immune
cells have immediate implications for the understanding of
how tumors are protected from anti-tumor T cells. The
critical role of T cells in cancer immunosurveillance was
shown in a number of mouse models [21] and human
patients studies [12, 22–30]. It was proven that the presence
of T lymphocytes inside of solid tumors is a predictive factor
for improved clinical outcome during esophageal carcinoma
[23], colorectal cancer [22], and ovarian cancer [24, 25].
Recently, some advances were reported in adoptive T cell
therapy against several forms of cancer [31, 32] with im-
proved development of endogenous anti-tumor CD8+T
lymphocytes [12, 27–30, 33–36] and NK and NKT cells
[37, 38].

However, the use of T-cell-based immunotherapy appears to
be hindered by “hostile” immunosuppressive tumor microenvi-
ronment that prevents tumor destruction by Tcells [39–41]. For
example, T-cell-mediated tumor rejection is rare despite that
T lymphocytes can recognize antigens expressed by
melanoma, and regardless of the massive influx of tumor
antigen-specific T cells to the tumor site [42]. The co-
existence of tumors and anti-tumor immune cells (“Hell-
strom Paradox”) [26, 39, 41, 43–45] has been a challenging
problem for a long time.

This paradox prompted speculations that tumor microen-
vironment in vivomay prevent anti-tumor CD8+ T cells from
eliminating tumor. Thus, while some of the obstructions to the
successful adoptive T cell transfer therapy may be due to the
activity of suppressor T cells or anti-inflammatory cytokines
[46, 47], other data indicate that the tumor microenvironment
itself is capable of suppressing T-cell activity [42, 43].

Recent studies of immunosuppressive functions of aden-
osine receptors in immune cells during inflammation [4, 5,
48] suggest that extracellular adenosine may provide
cancerous tissues protection from destruction by cytolytic
anti-tumor T cells. The evidence that normal tissues in in-
flamed, and consequently hypoxic areas, protect themselves
from immune damage by triggering A2A receptors on
immune cells prompted the hypothesis that hypoxic tumors
may use the same physiological mechanism to impede the
attack by anti-tumor T cells (Fig. 1).

Indeed, it was demonstrated that extracellular adenosine
produced by hypoxic tumors can prevent anti-tumor T cells
from the successful destruction of tumors through the acti-
vity of A2A adenosine receptor on Tcells [49]. It was shown
that the absence of A2AR results in increased eradication of
tumors in A2A-deficient mice. Moreover, significant im-
provement in tumor destruction can be achieved by the use
of A2AR antagonists or by specific siRNA [49]. These data
put forward the possibility of the development of new
cancer immunotherapies using the strategy of targeting
hypoxia-adenosine-A2A signaling pathway to prevent
inhibition of anti-tumor T lymphocytes in hypoxic tumor
microenvironments.

3 Hypoxia-adenosine-A2AR pathway in acute
inflammation

Important clues for understanding cancerous tissue protec-
tion from anti-tumor T cells have been provided by recent
insights into mechanisms of normal tissue protection from
overactive immune cells through A2A adenosine receptor
[4, 50, 51]. It was demonstrated that the same physiological
mechanism that has evolved to function in damaged and
hypoxic normal tissues [50, 51] also may be involved in
indiscriminately protecting hypoxic cancerous tissue [49].

The physiological mechanism of protection of normal
tissues from overactive immune cells by extracellular aden-
osine may be triggered by local tissue hypoxia that follows
the excessive collateral immune damage to endothelial cells

Fig. 1 Role of hypoxia-adenosine pathway in protection of inflamed
and cancerous tissues
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and microcirculation with ensuing interruption of normal
blood and oxygen supply [7, 50]. The collateral tissue injury
results in extracellular environment changes in the site of
inflammation [52]. The blood supply in the inflamed areas
is regularly blocked by clogging macrophages, which results
in local tissue hypoxia [53, 54]. Likewise, increased tissue
adenosine levels are commonly associated with hypoxia,
and given the anti-inflammatory properties of adenosine, it
was suggested that adenosine production via adenine nucle-
otide metabolism at the vascular surface triggers an
endogenous anti-inflammatory response during hypoxia
[52, 55]. It is well-established that inflamed and cancerous
tissues are often characterized by low oxygen tension due
to interruption of oxygen delivery through capillaries [56–
59]. Accordingly, the levels of extracellular adenosine are
shown to be high in hypoxic areas of inflamed tissues and
solid tumors [49].

It is well established that hypoxia dramatically alters cel-
lular metabolism, which results in accumulation of adeno-
sine in the extracellular environment [60]. Sufficiently high
levels of extracellular adenosine can trigger signaling by
A2AR and/or A2BR on the surface of surrounding cells,
including activated T cells, which culminates in the inhi-
bition of overactive immune cells in a negative feedback
manner [4, 7, 50, 51].

The hypoxia-induced increase of extracellular adenosine
levels can be explained by changes in activities of several
enzymes involved in adenosine metabolism (Fig. 2). The
levels of intracellular adenosine are determined by activities
of several key enzymes (reviewed in [60–62]):

1. -5′-AMP nucleotidase (NT) can promote adenosine
formation from adenosine monophosphate (AMP);

2. -adenosine kinase (AK) can conversely re-phosphorylate
adenosine into AMP;

3. -adenosyl-homocysteine hydrolase can reversibly con-
vert adenosine into S-adenosyl-homocysteine

4. -adenosine deaminase (ADA) can transform adenosine
into inosine;

5. -equilibrative nucleoside transporters (ENT) can trans-
port adenosine through membrane in both directions
[63].

The levels of extracellular adenosine are determined by
adenosine flux through the membrane [64], and by
conversion from extracellular AMP through activity of
ecto-5′-AMP nucleotidase (CD73) [65]. The extracellular
adenosine can be converted then to inosine by ecto-
adenosine deaminase [66] A number of studies have
demonstrated that enzymes involved in adenosine metabo-
lism can be affected by hypoxia. It was shown that adenosine
formation is proportional to the AMP substrate concentration
and that adenosine kinase activity is decreased during
hypoxia [67]. The inhibition of adenosine kinase results in
the shunting of intracellular adenosine from the salvage
pathway to extracellular release. Due to normal high
turnover of the AMP-adenosine metabolic cycle, the
hypoxia-induced inhibition of adenosine kinase causes the
amplification of small changes in free AMP into a major
rise in adenosine. While not yet directly tested in hypoxic
tumors, this mechanism plays an important role in the high
sensitivity of the cardiac adenosine system to impaired
oxygenation.

It is known that intravascular nucleotides released by
inflammatory cells undergo phosphohydrolysis via hypoxia-
induced CD39 ectoapyrase, which converts ATP and ADP to
AMP, and by CD73 ecto-5′-nucleotidase that converts AMP
to adenosine [60]. Among the processes that are affected by
cell surface ecto-nucleotidase CD39/ecto-nucleoside tri-
phosphate diphosphohydrolase-type-1 (ENTPD1) [68] are
the endothelial cell, leukocyte and platelet responses to
extracellular nucleotides during thrombosis and vascular
inflammation [69, 70]. The dramatic increase in CD39 ecto-
ATPase activity above the level of normal melanocytes was
demonstrated in differentiated melanomas [71]. It was sug-
gested that since CD39 is known to regulate homotypic
adhesion and may affect the disaggregation step, over-
expression of CD39 may enable tumor cells to reduce
contacts with T lymphocytes and escape from immunolog-
ical recognition. Recent studies of CD39- and CD73-
deficient animals concluded that CD39 and CD73 serve as
critical control points for endogenous adenosine generation
and implicate this pathway as an innate mechanism to
attenuate excessive polymorphonuclear leukocyte accumu-
lation in tissues [55].

Hypoxia can inhibit activities of adenosine kinase and
adenosine deaminase, while increasing the activity of 5′-
nucleotidase [67, 72], resulting in increased levels of
intracellular adenosine. Hypoxia also leads to the reduced
expression of equilibrative nucleoside transporters, which

Fig. 2 Hypoxic regulation of adenosine metabolism. Ado, adenosine;
ADA, adenosine deaminase; AK, adenosine kinase; AMP, adenosine
monophosphate; Ino, inosine; ENT, equilibrative nucleoside transport-
er; NT, 5′-AMP nucleotidase; CD73, ecto-5′-AMP nucleotidase
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leads to decreased adenosine uptake and consequent
extracellular accumulation of adenosine, accompanied by
hypoxia-induced increase in adenosine release [64].

Taken together, these data indicate that levels of extra-
cellular adenosine should be dramatically increased in
hypoxic areas. As a result, accumulated extracellular aden-
osine can trigger Gs-coupled A2A adenosine receptors of
activated immune cells [4], which will lead to the inhibition
of immune functions in hypoxic conditions such as in can-
cerous tissues. Therefore, one can expect that immune cells
infiltrating into hypoxic solid tumors, will encounter high
concentrations of immunosuppressive adenosine in addition
to the unfavorable hypoxic environment. Importantly, the
generation of adenosine from extracellular AMP by ecto-
5′-nucleotidase (CD73) is upregulated by hypoxia due to
the induction of CD73 expression by hypoxia-inducible
transcriptional factor 1 (HIF-1) [73].

4 Effect of hypoxia and hypoxia-inducible factor 1a
on anti-tumor T cells

It is accepted that hypoxic conditions are unlikely to be
conducive for immune cell functioning [52, 74]. Immune
cells cannot avoid hypoxic and anoxic tissue microenviron-
ments in order to fulfill their immunosurveillance function.
Therefore, they need to possess adaptive metabolic mech-
anisms that allow them to generate energy for survival in
conditions of oxygen deficiency and be capable to execute
reactive oxygen species-dependent cytotoxic functions [74–
76]. Among such metabolic adaptations is the transition of
cellular energy production from oxygen-dependent process
of oxidative phosphorylation to anaerobic glycolysis [52].
Indeed, immune cells can successfully use glycolysis as
their energy source, and it was demonstrated that leuko-
cytes rely on glycolysis as their main strategy of ATP-
synthesis [77, 78]. Moreover, even in normoxic conditions
myeloid cells prefer glycolysis rather than oxidative
phosphorylation [79], while T cells can switch to glycolysis
after activation [80].

It is recognized that hypoxia-inducible transcriptional
factor 1 (HIF-1) is a key factor in the cellular adaptation to
hypoxic conditions, including cell survival, angiogenesis,
and the switch to glycolysis [81]. It was shown that over-
expression of Hypoxia-inducible factor 1a in human can-
cers represent poor prognosis for the eradication of the tumor
[82]. This stimulated the development of pharmacological
agents capable to inhibit HIF-1a in tumors [83].

It is generally accepted that HIF-1a subunit of HIF-1
dimer is tightly regulated by hypoxia via ubiquitin-
mediated degradation mechanism [84]. However, HIF-1a
mRNA expression and protein levels in T cells can be
enhanced by non-hypoxic stimuli that include TCR- and

PI3K-mediated pathways [85–87]. Since HIF-1a is a crucial
factor involved in neonatal vascularization, the studies of its
gene-deficiency in animals were hindered [88]. Recently,
mice with tissue-specific deletions of HIF-1a were devel-
oped in order to bypass the embryonic lethality setback.
Studies of myeloid- and lymphoid-specific HIF-1a knock-
out mice demonstrated that HIF-1a may have different
functions in various types of immune cells [52]. The
conditional deletion of HIF-1a gene in myeloid cells was
accomplished by using the myeloid-cell-specific Cre-
recombinase expression system, which demonstrated that
HIF-1a is critically required for glycolytic energy produc-
tion by myeloid cells at both normoxic and hypoxic con-
ditions [89]. HIF-1a-deficient neutrophils and macrophages
were shown to have impaired metabolism and inhibited
inflammatory response [89]. Consequently, HIF-1a was
shown to be essential for infiltration and pathogen
destruction by myeloid cells [89].

Studies of HIF-1a-deficiency in T cells revealed that
HIF-1a not only plays crucial role in oxygen homeostasis,
but may also serve as a negative regulator of the adaptive
immune response. The role of HIF-1a in lymphoid cells
was first tested using the RAG-2-blastocyst complemen-
tation system [90]. It was found that chimeric mice with
the deletion of HIF-1a in T- and B-lymphocytes, showed
increased autoimmune tissue damage accompanied by
abnormal maturation of B cells [90]. Recently, mice with
T-cell-specific deletion of HIF-1a were created using Lck-
Cre transgenic mice [91]. In direct opposition to the
myeloid cells, it was shown that absence of HIF-1a in T
cells leads to the upregulation of T-cell functions [91].
These observations suggested that while HIF-1a is essential
for macrophage metabolism and pro-inflammatory functions,
it may play an inhibitory role in T-cell functioning. Therefore,
together with A2A adenosine receptor, HIF-1a may represent
part of the anti-inflammatory mechanism of attenuating T-cell
response (Fig. 1). This may also indicate that while hypoxia/
HIF-1a- and adenosine/A2AR-mediated pathways play im-
portant role in protection of normal tissues from collateral
immune damage, tumors may also “hijack” these mecha-
nisms for protection from immune system (Fig. 1).

The TCR activation of T lymphocytes leads to “immediate-
early response gene”-like transcriptional upregulation of the
shorter alternatively-spliced isoform I.1 of HIF-1a [85]. It
was recently shown that even though the levels of this short
isoform were significantly less than the full-length HIF-1a,
genetic deletion of I.1 isoform resulted in significant
increase in TCR-induced T-cell response [91]. These data
suggest that “immediate-early response gene” short isoform
I.1 of HIF-1a is disproportionately important in attenuation
of activated T cells in a delayed negative feed-back manner.

Taken together, the recent studies support the view that
HIF-1a is a negative regulator of T-cell functions [91, 92]
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and suggest that HIF-1a may also play a role in inhibition
of anti-tumor T cells. Considering previous observations that
HIF-1a expression is induced by T-cell activation [85, 87],
it is likely that HIF-1a represents a part of the negative
feed-back loop mechanism that leads to attenuation of
activated T cells. This HIF-1a-mediated anti-inflammatory
pathway may be complimentary to the immunosuppressive
mechanism of tissue protection from excessive immune
damage that is mediated by A2A adenosine receptor and by
hypoxia-induced extracellular adenosine [52].

5 Conclusion

Direct tumor rejection studies and modeling of T-cell-
mediated immunity in in vitro assays strongly suggest that
the hypoxia-stabilized and TCR-activation-induced HIF-1a
may cooperate in inhibiting anti-tumor T cells in tumor
microenvironment. Therefore, new therapies may involve
the application of antagonists of A2A receptor and HIF-1a
inhibitors to prevent the inhibition of T cells and lead to
more efficient elimination of tumors by T lymphocytes in
novel cancer immunotherapy protocols.
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