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Abstract Patients with advanced breast cancer frequently
develop metastasis to bone. Bone metastasis results in
intractable pain and a high risk of fractures due to tumor-
driven bone loss (osteolysis), which is caused by increased
osteoclast activity. Osteolysis releases bone-bound growth
factors including transforming growth factor beta (TGF-β).
The widely accepted model of osteolytic bone metastasis in
breast cancer is based on the hypothesis that the TGF-β
released during osteolytic lesion development stimulates
tumor cell parathyroid hormone related protein (PTHrP),
causing stromal cells to secrete receptor activator of NFκB
ligand (RANKL), thus increasing osteoclast differentiation.
Elevated osteoclast numbers results in increased bone
resorption, leading to more TGF-β being released from
bone. This interaction between tumor cells and the bone
microenvironment results in a vicious cycle of bone
destruction and tumor growth. Bisphosphonates are com-
monly prescribed small molecule therapeutics that target
tumor-driven osteoclastic activity in osteolytic breast
cancers. In addition to bisphosphonate therapies, steroidal
and non-steroidal antiestrogen and adjuvant therapies with
aromatase inhibitors are additional small molecule therapies
that may add to the arsenal for treatment of osteolytic breast
cancer. This review focuses on a brief discussion of tumor-
driven osteolysis and the effects of small molecule therapies
in reducing osteolytic tumor progression.
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1 Introduction

Among women, breast cancer is the most common type of
malignancy and is the second overall cause of death in
developed countries. According to The American Cancer
Society, each year nearly 175,000 women are diagnosed
with breast cancer and it is estimated that approximately
43,300 women will die from breast cancer this year.
Metastasis to the spine, ribs, pelvis, and proximal long
bones are frequently seen pathological lesions in advanced
breast cancer, leading to debilitating skeletal complications
such as osteolysis, intractable bone pain, and pathologic
fracture [1]. Moreover, once breast tumor cells metastasize
to bone, mortality increases to 70% [1]. Fortunately, early
diagnosis and effective chemical and radiotherapies have
significantly reduced the mortality rate from primary breast
cancer. However, current therapies remain only palliative
for advanced metastatic breast cancer patients and new
therapies that specifically target both metastasis to bone and
osteolysis are needed. Over one hundred years ago, Stephen
Paget [2] proposed the seed and soil hypothesis in which
tumor cells (the seeds) travel to tissues throughout the body.
These tissues (the soils) provide a spectrum of milieus in
which the tumor cells could survive and proliferate. The
hypothesis is that different types of tumor cells would be
able to expand and colonize different tissues based on the
characteristics of the different tumors. Today, molecular
evidence supports the seed and soil hypothesis that
circulating breast cancer cells lodge in fertile sites such as
the bone marrow stroma and commence growth as micro-
metastases. As compared to other organs, bone has a
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dynamic and complex structure that provides a suitable
microenvironment for breast cancer cells, making bone a
frequent site of metastasis.

The pathophysiology of osteolysis is dependent on a
break-down of the coordination of two predominant cell
types, bone resorbing osteoclasts and bone forming
osteoblasts [3]. Bone structure is controlled in part by a
balance between osteoclastic and osteoblastic activity.
These interactions alter bone during growth or maintain
bone during adulthood and appear to be subverted by tumor
cells lodged in bone marrow. Although most cancers that
metastasize to bone are a mixture of osteolytic (bone
degrading) and osteoblastic (bone forming), breast cancers
tend to be primarily osteolytic. For many years, it was
hypothesized that the tumor cells themselves degraded bone
to cause osteolysis, but there is now ample evidence that
tumors drive bone degradation by stimulating osteoclastic
activity [3–5]. Studies have supported that tumors stimulate
osteoclasts differentiation, increase the activity of each
osteoclasts, and also prolong the life-span of the osteoclasts
[4, 5]. Since a significant problem both in terms of patient
suffering and advancing tumor progression is caused by
tumor-driven osteolysis, reducing osteoclastic activity is an
important target in seeking new therapies to slow disease
progression. It is clear that therapies that repress osteoclast
differentiation and/or target osteoclast survival would be of
great benefit in repressing osteolysis and slowing tumor
progression.

2 Factors involved in bone metastasis

Breast cancer cells lodged in bone marrow produce
multiple factors that influence osteoclast formation and
activity [4, 6–10]. During bone resorption, osteoclasts
release growth factors including TGF-β, insulin-like
growth factors (IGFs), fibroblast growth factor (FGF),
platelet derived growth factor (PDGF) and bone morpho-
genic proteins (BMPs) from bone matrix [11–14]. These
factors support further tumor growth by increasing prolif-
eration, survival, and angiogenesis [15, 16]. During normal
bone turnover, osteoclast differentiation requires RANKL
and M-CSF whereas osteoprotogerin (OPG), a decoy
receptor for RANKL, represses differentiation [17–19].
Bhatia et al. [20] documented that RANKL expression was
observed in 90% of nonneoplastic breast tissue yet it was
observed in only 62% of nonmetastatic infiltrating ductal
carcinoma (IDC), 31% of metastatic IDC, and 2% of
osteolytic breast cancer bone metastasis. Thus, tumor cell
production of RANKL seems unlikely to be a driving force
behind tumor-induced increased osteoclastogenesis. The
cognate receptor for RANKL, RANK, is expressed in both
neoplastic and nonneoplastic tissues [20]. Jones et al. [21]

has found that RANKL can stimulate migration of
epithelial cancer cells that express RANK. Interestingly,
they also found that blocking RANKL in an animal model
of tumor metastasis selectively blocked tumor cell metas-
tasis to bone, but not other tissues. Thus the roles of
RANKL in tumor progression are complex and many
aspects of this remain to be resolved.

There are two possible ways that tumor cells could
stimulate osteoclast differentiation without providing
RANKL to drive the process. Tumor cells could stimulate
local stroma to increase RANKL production or other
cytokines could be produced by the tumor cells to drive
RANKL-independent osteoclast differentiation. Evidence is
accumulating that tumor cells exploit both of these
scenarios to increase osteolysis.

Guise et al. [22] documented that PTHrP stimulated
osteoblasts and stromal cells to increase RANKL and
suppress OPG expression, supporting that tumor-derived
PTHrP could indirectly activate osteoclastogenesis via
osteoblasts (see Fig. 1). To further examine the role of
PTHrP in tumor metastasis, Saito et al. [23] injected an
aggressive bone metastatic breast cancer cell line into mice
and tested the effects of an anti-PTHrP antibody on tumor
development. Bone metastasis progression and associated
osteolytic destruction were severely suppressed by the
PTHrP antibodies. Dominant negative (dn) TGF-βRII trans-
fected into breast cancer cells reduced TGF-β-mediated
stimulation of PTHrP expression and metastasis to bone
while over-expression of wild type PTHrP in MDA-MB-231
cells expressing dn TGF-βRII restored bone metastasis [24,
25]. These data support a critical role for TGF-β and
PTHrP in tumor progression although data have also
suggested that Interleukin-8 (IL-8), not PTHrP, is important
in some analyses (see Fig. 1) [26]. Clinical studies of breast
cancer patients have found that plasma PTHrP levels are
elevated in approximately 50% of patients with hypercal-
cemia [27, 28]. This raises the possibility that bone
metastasis-associated hypercalcemia could be caused by
PTHrP-mediated elevated osteoclast differentiation and
resulted in increased bone resorption in some patients. To
examine whether plasma level of PTHrP could be a
biomarker for tumor progression, primary tumors of 526
patients with breast cancers were examined by immunohis-
tochemistry for PTHrP expression and patient survival was
tracked for a median 10 year following diagnosis and
treatment [29]. Seventy nine percent of the patients with
tumors that stained positively for PTHrP had improved
survival. Moreover, patients with PTHrP positive primary
tumors were less likely to develop bone metastasis. These
unexpected results suggested that increased production of
PTHrP by breast cancer is correlated with less invasive
phenotype. Studies have found that tumor cells express
other factors that could stimulate osteoclast formation and
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subsequently osteolytic activity such as IL-6, IL-8, IL-11,
tumor necrosis factor alpha (TNF-α), and macrophage
colony stimulating factor (M-CSF) [4, 6–10]. This may
support a direct stimulation of osteoclast differentiation as
TNF-α and IL-8 can stimulate osteoclast differentiation
independent of RANKL [26, 30]. These data may suggest
that tumor cell production of other factors besides PTHrP
or RANKL may be involved in stimulating osteoclast
differentiation.

3 Mechanism of osteolytic breast cancer bone metastasis

Bone marrow has a complex vasculature that provides a
conduit for tumor cell access, a mechanism for removal of
metabolic waste, and a source for nutrients and growth
factors to stimulate growth. In addition, bone is a storage
compartment for significant levels of several growth
factors, including TGF-β [11, 13]. Although osteoclasts
secrete active TGF-β, osteoclast-mediated bone degrada-
tion also releases bone matrix-associated TGF-β [31, 32].
As noted above, several studies have documented that
TGF-β is a critical growth factor in breast cancer cell
metastasis to bone (reviewed in [33, 34]). Early in tumor
progression, TGF-β suppresses tumor cells whereas, in
later stages, TGF-β promotes tumor development by

advancing invasion, metastasis, and angiogenesis [35, 36].
Thus, tumor driven osteolysis leads to increased TGF-β in
the tumor microenvironment, which would enhance tumor
progression. Canonical TGF-β signaling involves receptor-
mediated phosphorylation of SMAD2 and/or SMAD3,
either of which dimerize with SMAD4. This complex
moves into the nucleus to alter gene transcription [37].
Evidence is mounting that TGF-β also activates MAPK
pathways as well [38, 39]. TGF-β-mediated stimulation of
PTHrP expression as well as its promotion of osteolytic
metastases are driven by both SMAD and MAPK signaling
pathways [39, 40]. Deckers et al. [41] have shown that
blocking SMAD4 signaling in tumor cells decreases many
aspects of tumor development including advancement of
tumor-induced osteolysis, indicating an important role for
SMAD signaling in tumor progression. Although micro-
tumor establishment and advancement were reduced in
tumor cells lacking SMAD4, large lesions were not
similarly affected, suggesting that SMAD signaling in
micrometastases is more critical than later stages of tumor
progression. In support of this, mouse models have
suggested that TGF-β antagonism may be an effective
therapeutic target [42]. In addition to promoting invasion,
metastasis, and angiogenesis, TGF-β secreted by breast
cancer cells suppresses late stages of osteoblast differenti-
ation and it is possible that TGF-β is an integral component
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Fig. 1 The widely accepted
model of osteolytic bone metas-
tasis in breast cancer is illustrat-
ed. The hypothesis that the
TGF-β released from bone ma-
trix during osteolysis stimulates
PTHrP in tumor cells. Tumor-
produced PTHrP stimulates
osteoblasts and stromal cells to
express RANKL, MCSF and to
suppress OPG expression. In
addition, tumor-derived TNF-α
and IL-8 can also stimulate
osteoclast differentiation inde-
pendent of RANKL. These data
may suggest that other factors
synthesized by tumor besides
PTHrP or RANKL may stimu-
late osteoclast differentiation
and increase osteolysis
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by which tumor cells suppress osteoblast differentiation
[43, 44]. Suppression of osteoblasts would contribute to the
net bone loss observed during osteolytic lesion progression
by uncoupling resorption from formation.

4 Small molecule therapies targeting breast
cancer bone metastasis

In this section we will focus on small molecule therapies
used in the treatment of breast cancers that metastasize to
bone. Potentially, therapies could target a variety of path-
ways including angiogenesis, tumor cell cycle progression,
tumor cell migration to bone, tumor-mediated osteolysis,
and tumor cell apoptosis. Small molecules such as
bisphosphonates, anti-estrogens, and aromatase inhibitors
can interrupt the molecular mechanisms that promote tumor
progression and the discussion below will focus on these
therapies.

Bisphosphonates Bisphosphonates (BPs) are a class of
pyrophosphate analogues that bind with high affinity to
hydroxyapatite crystals in mineralized bone and target
osteoclasts to block bone resorption, reducing fracture risk
in postmenopausal women with progressive osteoporosis
[45]. In addition, BPs have successfully been used in the
treatment of malignant hypercalcemia and skeletal metas-
tasis in breast and prostate cancers [46]. Recent animal and
human studies suggest that BPs not only reduce osteolysis
and bone pain associated with metastasis in breast cancer,
but also decrease tumor burden in bone [47, 48]. BPs (non
nitrogen containing) are metabolized to form cytotoxic
ATP-analogues after internalized by tumor cells and
osteoclasts. These toxic metabolites inhibit ATP-dependent
regulatory enzymes, protein tyrosine phosphatases that
transfer phosphate from adenosine triphosphate to tyrosine
amino acid [49–51]. Nitrogen-containing BPs (N-BP)
target the mevalonate pathway by inhibiting the enzyme
farnesyl pyrophosphate (FPP) synthase [52]. Inhibition of
FPP reduces prenylation of GTP-binding proteins, which
are essential for signal transduction in 3-Hydroxy-3-
Methyl-Glutaryl coenzyme A metabolism. FPP is involved
in supporting osteoclast survival as well as cholesterol
biosynthesis [52, 53]. In addition to their potent anti-
osteoclast effects, recent in vitro studies have demonstrated
that BPs inhibited cell viability and induced apoptosis in
the breast cancer cell lines MCF-7 and MDA-MB-231 [54–
59]. During tumor invasion, matrix metalloproteinases
(MMPs) play a significant role as they have ability to
break down the extracellular matrix and basement mem-
branes, which facilitates blood vessels to access the tumor
sites [60–62]. Boissier et al. [60] investigated the effect of
BPs on proteolytic activity of breast and prostate cancer

cell MMPs and found that BPs did not reduce the
expression of MMPs but significantly inhibits proteolytic
activity of MMPs. Therefore anti-tumor effect of BPs may
be possible through MMP inhibition. Clinically, BPs have
been widely used in the treatment of breast cancer patients
with osteolytic tumors for the past 20 years [63–66].

Clodronate was the first generation of BPs used in the
treatment of breast cancer bone metastasis. Cancer patients
treated with oral Clodronate exhibited a significant reduc-
tion in hypercalcemia and vertebral and nonvertebral
fractures [67]. In addition, radiotherapy reduced bone pain
in patients treated with Clodronate and Clodronate adjuvant
therapy also reduced visceral and bone metastases in breast
cancer patients [68].

Pamidronate, a second generation BPs, was reported in
1997 to be the most successful and widely used intravenous
BP for the treatment of bone metastasis in patients with
breast carcinoma [69]. The efficacy and safety of Pamidro-
nate for treatment of bone metastasis of breast cancer were
established in the late 1990s [66]. Theriaulth et al. [66]
assessed the efficacy of Pamidronate in reducing skeletal
morbidity in 372 patients with osteolytic bone metastasis
and found that 2-hour intravenous infusion of pamidronate
(90 mg) every 4 weeks as a supplement to hormonal
therapy significantly reduces skeletal morbidity from
osteolytic metastasis. Newer nitrogen-containing Residro-
nate and Ibandronate inhibit prenylation of proteins,
including the GTP-binding protein Ras, with farnesyl or
geranylgeranyl isoprenoid groups and to lead apoptosis of
osteoclasts [70]. Residronate and Ibandronate potentially
prevent bone loss in breast cancer patients with bone
metastasis, significantly reducing skeletal morbidity [71–
73]. Ibandronate was also shown to suppress bone
metastasis through promotion of apoptosis of metastatic
cancer cells as well as of osteoclasts, supporting a dual
action on tumor cells and osteoclasts [74].

A third-generation BP, Zoledronate, minimizes the
destructive consequences of bone metastases and exerts a
profound effect on tumor-induced osteolysis and tumor
growth in bone [75]. Studies comparing Pamidronate and
Zoledronate found that they both worked equally well but
Zoledronate has a slight advantage as it takes less time to
inject [76]. Results from a randomized patient trial
demonstrated that 4 mg i.v. every 3–4 weeks for 12 months
of Zoledronate is effective at decreasing the skeletal
morbidity of breast cancer metastasis to bone [76]. In
addition, patients receiving Zoledronate therapy showed
significant reduction in pain [77]. Even though the
mechanism of action of Zoledronate remains unresolved,
growing evidence showed that it also inhibits tumor cell
adhesion to the extracellular matrix, invasion, and angio-
genesis [62, 78]. Zoledronate inhibits membrane localiza-
tion of Ras in two breast cancer cell lines suggesting that
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farnesylation of GTP-binding Ras protein may also be
inhibited by Zoledronate [79]. Evidence from animal
models demonstrates that Zoledronate may reduce skeletal
tumor burden and prevent metastasis to bone [75].

Unfortunately, BP therapy has not succeeded in appre-
ciably prolonging the lifespan of patients, perhaps because
treatment does not appear to slow tumor growth in soft
tissues [74]. The American Society of Clinical Oncology
guidelines reported that, in breast cancer patients, there is
no significant improvement in patients’ life expectancy
with BP treatment although BPs are considered an effective
supportive therapy to reduce pain in patients with osteolytic
cancer [80]. Whether BPs have anti-tumor effect along with
anti-osteoclastic effect is poorly understood and requires
further study. Further studies are also needed to fully
elucidate these biochemical mechanisms and to determine if
the anti-tumor potential of bisphosphonates translates to the
clinical setting. This raises the question whether a therapy
that both reduces osteoclast activity and represses tumor
cell growth directly will be achievable.

Antiestrogens Excessive estrogen exposure promotes
breast carcinogenesis by increasing tumor cell proliferation
and suppressing DNA repair mechanism and drugs that
target estrogen signaling have been used successfully for
the treatment of early and advance stage of breast cancer
[81]. Current anti-estrogen treatments in breast cancer
malignancy are based on two different strategies. These
are: (a) antagonizing the estrogen binding to estrogen
receptor and (b) inhibiting estrogen biosynthesis. Selective
estrogen receptor modulators (SERMs) have been devel-
oped to repress estrogen effects on tumor cells. The SERM
Tamoxifen has been used for many years in the treatment of
both early and advanced breast cancer [82, 83]. Mechanis-
tically, Tamoxifen competes with estrogen for binding to
the estrogen receptor (ER), which inhibits receptor activa-
tion [84–86]. Clinical studies indicated that Tamoxifen not
only prevent the development of breast cancer in high risk
women but also protect patients against contra-lateral breast
cancer metastases [87–90]. Adjuvant Tamoxifen therapy
has been shown to be beneficial to patients with advanced
breast cancer since treatment significantly prolong disease-
free and overall survival in postmenopausal women with
early stage breast cancer [91]. As with other anti-estrogen
therapies, patients with higher estrogen receptor levels
respond better to Tamoxifen treatment [86]. However many
patients who responded to Tamoxifen therapy frequently
become Tamoxifen resistant [86]. As Tamoxifen treatment
is associated with rare but serious adverse effects, including
endometrial cancer and thromboembolism [83], use of new
generations of Tamoxifen analogs with reduced site effects
is rising in the treatment of early and advance stage of
breast cancer. Raloxifene is a second generation of SERM

with high affinity for ER and has been shown to reduce the
incidence of malignancy in clinical studies [92, 93].
Raloxifen therapy was first approved for the prevention
and treatment of osteoporosis because it suppresses bone
remodeling to the premenopausal level, maintaining the
function of osteoblasts and osteocytes. Raloxifene sup-
presses osteoclastogenesis and inhibits expression of TNF-
α-induced IL-1β, but not IL-6 [94]. On the other hand, it
also positively affects osteoblasts survival, suggesting that
Raloxifene has not only an antiresorptive role, but also an
osteoblast stimulatory role, which may improve bone
densities in patients [94]. Clinical trials indicate that
Raloxifen can be used for prevention and treatment of
osteoporosis in postmenopausal patients with invasive
breast cancer [95, 96]. Recently, Vogel et al. [97]
confirmed the benefit of Raloxifene in reducing the
potential risk of invasive breast cancer and lowering the
risk of thromboembolism in a clinical trial. Surprisingly, the
risk of osteoporotic fracture remained similar in both
Tamoxifen and Raloxifen given group [97]. The Raloxifene
analog Arzoxifene also has high binding affinity for ERs
and is being developed for prevention and treatment of
breast cancer [98, 99]. In addition to Arzoxifene, Lasofox-
ifene and Toremifene are emerging SERMs that demon-
strate high affinity for the ER in ER positive breast cancers
[100, 101]. Lasofoxifene has the potential to be used as a
therapeutic for postmenopausal women who have osteopo-
rosis and is currently being tested to prevent osteoporosis in
patients with advanced breast cancer patients [100, 102,
103]. Furthermore, Toremifene, which is analog of Tamox-
ifen, shows a similar efficacy and toxicity profile to
Raloxifen as it has efficacy in the treatment of metastatic
breast cancer in postmenopausal women [104]. The
steroidal anti-estrogen, Fulvestrant (ICI 182780) is a new
type of ER antagonist that is effective in tumors with
reduced ER levels in a small clinical trial [105]. Fulvestrant
is now approved as a treatment for postmenopausal women
with ER positive metastatic breast cancer if Tamoxifen
treatment fails [106].

Aromatase inhibitors In contrast to the above discussed
SERMs, aromatase inhibitors target aromatase activity,
blocking the conversion of androgens to estrogens and
reducing estrogen levels in tissue and plasma [107].
Anastrozole (Arimidex), Letrozole (Femera), and Exemes-
tane (Aromasin) are adjuvant therapies being used to treat
advanced breast cancers as aromatase inhibitors are
considered second-line therapies for Tamoxifen-relapsed
patients [108]. They are also regarded to be first-line
therapies for the patients who are resistant to Tamoxifen
treatment [108]. Aromatase expression, and thus estrogen
synthesis, is seen in the ovaries, adipose tissue, brain,
placenta, bone, fetal liver and smooth muscle cells [109].
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There is also increased aromatase expression in breast
tumors and adipotic stromal tissue adjacent to tumors [110,
111]. Due to effects of estrogen suppression on bone
metabolism, aromatase inhibitor use is commonly restricted
to postmenopausal women.

Anastrozole is a non-steroidal aromatase inhibitor that
has been effective in postmenopausal women with ad-
vanced breast cancer and visceral metastases and is
approved by FDA for the first and second-line early and
metastatic breast cancer [112, 113]. A multi-center clinical
trial included postmenopausal women who had primary
therapy as well as surgery for invasive breast cancer [114].
Anastrozol was as effective as Tamoxifen and the combi-
nation study did not improve disease-free survival beyond
individual treatment [112]. However Anastrozole treated
subjects had significantly reduced site effects compared to
Tamoxifen treated subjects. Anastrozole is considered at
least equally effective as Tamoxifen when utilized as first-
line therapy in metastatic breast cancer [112]. Letrozole,
another non-steroidal aromatase inhibitor, was the first
hormonal therapy to significantly reduce metastasis when
given after standard Tamoxifen treatment of postmenopausal
patients [115]. Women receiving Letrozole had a lower
incidence of contra lateral breast cancer compared to
Tamoxifen treated women. When Letrozole is used subse-
quent to Tamoxifen treatment, node-positive patients had
improved disease-free survival compared to patients not
receiving Letrozole treatment [116]. However, Letrozole
did not improve the survival of node negative patients
compared to those receiving only Tamoxifen. This study
suggests that postmenopausal women with ER positive
tumors who have completed 5 years of adjuvant Tamoxifen
therapy should be considered for Letrozole treatment.
Aromatase inhibitors are considered as the second-line
therapies for Tamoxifen-relapsed breast cancer and are
currently under consideration as first-line therapies as they
show promise as future treatments of invasive breast cancer.
Women with metastatic breast cancer who were given
Letrozole as first line treatment had a significantly higher
response rate, longer time to progression, and improved one
and 2-year survival rates compared with women given
Tamoxifen [117–119]. Reports from a recent clinical study
suggested that adjuvant treatment with Letrozole reduced
the risk of recurrent disease especially in metastatic sites in
postmenopausal women with ER positive tumors when
compared to Tamoxifen [120]. The side effects of throm-
boembolism, endometrial cancer, and vaginal bleeding were
common in the Tamoxifen-treated group and a higher
incidence of skeletal and cardiac events and hypercholes-
terolemia were seen in the Letrozole-treated group [120].
The steroidal aromatase inhibitor Exemestane is currently
used as a second-or third-line treatment option in postmen-
opausal patients whose disease has progressed following

Tamoxifen therapy. Both anti-estrogen therapies, SERMs
and aromatase inhibitors, are only effective to ER positive
tumors, which limits the application of endocrine therapy
solely for breast cancer patients with ER-positive. Although
these therapies show promise in repressing tumor progres-
sion, it should be taken into consideration that therapies by
aromatase inhibitors do not replace the bone lost in
advanced stage of metastatic breast cancer. This, combined
with the effects of inhibiting estrogen effects on bone
metabolism, means that patients taking aromatase inhibitor
treatment need to have their bone densities carefully
monitored [121].
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