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Summary

Maximizing the expression yields of recombinant whole antibodies and antibody fragments such as Fabs, single-
chain Fvs and single-domain antibodies is highly desirable since it leads to lower production costs. Various eukaryotic
and prokaryotic expression systems have been exploited to accommodate antibody expression but Escherichia coli
systems have enjoyed popularity, in particular with respect to antibody fragments, because of their low cost and
convenience. In many instances, product yields have been less than adequate and intrinsic and extrinsic variables
have been investigated in an effort to improve yields. This review deals with various aspects of antibody expression
in E. coli with a particular focus on single-domain antibodies.

I. Introduction

Recombinant antibodies (rAbs) have been expressed
in various formats and are being increasingly used in
or developed for cancer therapy [1–9]. Antibody ther-
apeutics for cancer are already a multi-billion dollar a
year market and a large number of monoclonal anti-
bodies are at various stages of clinical trials. Antibody
engineering techniques, based largely on bacterial ex-
pression of antibodies, are a major driving force in the
development of these drugs.

In terms of combining site topology, rAbs can be
grouped as classical, or conventional antibodies, and
fragments thereof, where the antibody combining site
is formed by the association of VH and VL domains,
or single-domain antibodies (sdAbs), where the com-
bining site resides in a single domain as in VHHs, VHs
or VLs, (Figure 1). Antibody fragments and their man-
ifold derivatives have been engineered for a variety of
specific applications.

The antibody formats commonly selected for
prokaryotic expression have been antigen binding frag-
ments (Fabs) and single-chain variable regions (scFvs)
from conventional antibodies (Figure 1). There is
extensive literature on rAbs [6,10–14] and on the
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expression [15–17] and design of antibody fragments
in terms of scFv domain order [18–20], scFv linker
length [17,21–23], site directed mutagenesis of the
variable domains [24–28], expression in various or-
ganisms from bacteria [29,30] to transgenic animals
[31,32] and targeting the antibodies to different sub-
cellular compartments [33–35]. These efforts have
been directed towards designing antibody molecules
with (i) high affinity, specificity and solubility, (ii) ge-
netic stability of the construct within the expression
host and the stability of protein products per se and
(iii) optimal and economical expression system(s) with
high protein yields and feasible purification strategies
and downstream processing [12,31,36–43]. Antibody
expression is influenced by intrinsic factors such as
antibody gene sequence, transcription and translation
efficiencies and spontaneous protein folding and extrin-
sic factors or physiological effects such as transloca-
tion inside the cell, processing, assisted protein folding,
protein degradation and toxicity to E. coli [40,43–45].

It is well established that reducing the complex-
ity and the size of the antibody molecule generally
avoids many problems related to in vivo expression
yield, correct folding, good solubility, thermal stability



502 Arbabi-Ghahroudi, Tanha and MacKenzie

and conformational stability [3,13,46]. In this regard,
single variable domains of antibodies (VH or VL) are
preferable to Fabs or scFvs. However, these molecules
do not exist naturally as single entities and associate
with each other to make a functional unit. Cameli-
dae, wobbegongs and nurse sharks make substantial
amounts of their immunoglobulins (Igs) as antibodies
which lack light chains (Figure 1; see [47] for the
Igs from wobbegongs and nurse sharks), which means
that single variable domains can function in terms of
antigen binding [48–51], and can be cloned and ex-
pressed as sdAbs [47,52–54]. It is now widely accepted
that the discovery and engineering of heavy chain anti-
bodies (i.e., camelid IgGs which lack light chains) has
greatly improved our knowledge of domain function
in antibodies and has opened new perspectives in anti-
body design and application. Recent scientific literature
definitively shows that sdAbs, regardless of their ori-
gin, and their derivatives will occupy an important place
in the future development of antibody-based reagents
for analytical, diagnostic and therapeutic applications
[1,3,7,55–61].

II. rAb expression systems

Diverse prokaryotic and eukaryotic expression systems
have been developed for rAb expression. These have
included bacterial [29,30,62–67], yeast and filamen-
tous fungus [40,68], eukaryotic alga [69], insect cell
[70], plant [71], mammalian cell [72,73] and transgenic
animal systems [32]. While in many instances rAbs can
be expressed in several different expression systems,
there is sometimes less flexibility in terms of choice of
expression system due to structural requirements on
the part of the rAb. For example, a requirement for cer-
tain therapeutic IgGs to have appropriate glycosylation
necessitates their expression in mammalian cells [74].
Also, due to their complex structure, whole antibodies
have been preferably expressed in eukaryotic systems
which have the appropriate cellular machinery for
efficient folding and assembly. Recently, however, a
fully active non-glycosylated IgG with the ability to
bind neonatal receptors was expressed at high level
in E. coli [75]. Fabs, scFvs and sdAbs have a much
simpler structure and do not require glycosylation.
Thus, bacterial expression, and almost exclusively E.
coli expression, has been the method of choice for
expression of these molecules.

III. E. coli expression strategies

Incentives for the use of E. coli expression systems
include simple fermentation conditions, ease of ge-
netic manipulation, ease of scale-up, relatively short
duration between transformation and protein purifica-
tion, no concerns about viruses that are harmful to hu-
mans and relatively low capital costs for fermentation.
However, E. coli expression has its own drawbacks in-
cluding inefficient production of bona fide, complex,
multi-domain molecules such as IgGs (see above) and
the possibility of bacterial endotoxin contamination of
purified products.

Two basic strategies have been applied to express
various formats of antibody fragments, including Fabs,
scFvs and sdAbs, in E. coli. The two approaches involve
directing the antibody product to either the reducing en-
vironment of the cytoplasm or the oxidizing environ-
ment of the periplasmic space between the cytoplasmic
and outer membranes or the culture medium.

III.A. Cytoplasmic expression

The cytoplasmic approach benefits from a high ex-
pression level of antibodies using a strong promoter
(e.g., T7 promoter). The expressed proteins generally
accumulate in the cytoplasm as inclusion bodies (up
to 0.5 g/L in shake-flask cultures and 3.1 g/L in fer-
mentors) due to their foreign nature, high expression
rate and lack of disulfide bonds because of the reduc-
ing environment of the cytoplasm, and thus, need to be
converted to active species by in vitro renaturation [76–
80]. However, in rather infrequent instances, where
rAbs are stable without the conserved disulfide bonds
[81,82] and, thus, their folding is independent of the
redox conditions of the cytoplasm, functional expres-
sion can be achieved without resorting to in vitro re-
naturation. Such disulfide-less rAbs are also important
tools for intrabody technology where antibody frag-
ments fold in the reducing environment of the cyto-
plasm [83,84]. An advantage of the cytoplasmic ex-
pression approach is that inclusion bodies can easily
be recovered from other cellular components because
of their large size and high density following lysis of
bacterial cells. Moreover, this approach is useful for
producing antibody-based fusion proteins such as im-
munotoxins that might be toxic for bacterial cells or
rAbs that are unstable due to intracellular degradation
when expressed in a soluble or secreted form. However,
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Figure 1. Diagramatic representation of a conventional immunoglobulin G(IgG), a camelid heavy chain antibody and antigen binding fragments
derived from each antibody type. The figure only depicts those antigen binding fragments which are explicitly mentioned in the text. For a more
complete graphic list of antigen binding fragments the reader can refer to many of the reviews cited in the text on the subject of the recombinant
antibodies. For simplicity the interdomain noncovalent interactions in classical rAbs and camelid heavy chain IgG (HC IgG) are not depicted.
The dotted lines and the lines connecting the VLs to the VHs represent disulfide linkages and linkers, respectively. In immunotoxin an scFv is
attached to a toxin. In Pentabodies, VTB represents the verotoxin B subunit.

Figure 3. Immunocytochemical staining of (A) A549 lung cancer cells, (B) LNCaP prostate cancer cells and (C) normal epithelial cells by
AFAI, an sdAb isolated by panning a phage antibody library against A549 cells. The AFAI sdAb appears to bind to an antigen that is present
on A549 cells during cell division (D and E). Cells were stained with phage-displayed AFAI as the first anibody, anti-M13 (phage) IgG as
the second antibody and Alexa Fluor©R 546 (red) labelled goat anti-mouse IgG as the third antibody. Endoplasmic reticulum was stained with
(DiOC5)3 (green).
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Figure 2. Superdex 200 size exclusion chromatogram showing the
separation of monomeric (first peak) and pentameric (second peak)
llama VHH.

correct in vitro refolding and purification of functional
product is a complex and time-consuming process, re-
quiring expertise and involving many steps. Problems
and limitations commonly encountered with this ap-
proach, for antibodies in particular, are (i) difficulties in
predicting the tendency of different sequences to form
inclusion bodies and their susceptibility to proteases,
(ii) the need for genetic manipulations at the mRNA
5’-end to avoid possible hairpin structure formation,
(iii) refolding efficiency which is highly variable de-
pending on the specific antibody fragment with yields
varying from 10–40% for Fab and Fv fragments and
(iv) the need for separation of correctly folded protein
from the incorrectly folded protein [6,12,24,85–87].

Improvements have been made to the functional ex-
pression in the cytoplasm by using E. coli cells carrying
mutations in the genes coding for thioredoxin reduc-
tase and gluthathione oxidoreductase [16]. These mu-
tant cells have an oxidizing cytoplasm capable of form-
ing disulfide bridges in proteins. As an alternative, the
functional production yields of antibody fragments in
the cytoplasm can also be significantly improved by co-
expression with chaperones and foldases or by a fusion
protein strategy (see below).

III.B. Antibody secretion to the periplasm or culture
medium

The periplasmic strategy imitates the natural folding
process and secretion of Igs in eukaryotes. In bacte-
ria, there is secretory machinery which directs pro-
teins carrying specific signal sequences such as pelB,
phoA and ompA to the periplasmic space [88]. The
periplasmic space is a more oxidizing environment than
the cytoplasm and is equipped with a number of pro-

teins important for folding and assembly of recombi-
nant proteins, such as those that catalyze disulfide bond
formation and rearrangement (DsbA, PDI and DsbC)
or chaperones such as SKp or FkpA [86,89,90]. Anti-
body fragments expressed in the periplamic space have
been shown to be correctly folded with yields of 0.1–
100 mg/L in shake flasks [29,30,91,92] and 1–2 g/L in
fermentors [37]. Moreover, extraction of periplasmi-
cally expressed proteins can easily be performed by
a simple osmotic shock procedure and purification of
antibodies from periplasmic extracts is less problem-
atic than purification from cell lysates since there are
fewer contaminating bacterial proteins in periplasmic
extracts. However, it should be borne in mind that the
E. coli machinery for protein folding and export to the
periplasm has limited capacity and that high expression
of recombinant proteins often results in the accumula-
tion of insoluble product in the periplasm. It is now
recognized that aggregation in vivo is a function of the
solubility and stability of the folding intermediates in
the periplasmic environment and not of the fully folded
protein [12]. Moreover, secretion of recombinant pro-
tein interferes with the normal function of the secretory
machinery of the cell and, therefore, can be toxic to the
host cell, leading to induction of periplasmic proteases,
enhanced outer membrane permeability and reduced
levels of folding catalysts [6,13,40].

As an alternative to secretion to the periplasm, Fer-
nandez et al. [93] have described an expression strategy
in which antibody fragments are secreted into the cul-
ture medium using the E. coli α-hemolysin (HlyA) sys-
tem. This pathway is comprised of a three-component
protein channel (TolC/HlyB/HlyD) connecting the in-
ner and outer membrane [94,95]. The monomeric toxin
HlyA is secreted directly from the cytoplasm to the
extracellular medium. Antibody fragments are fused
to the C-terminal domain of HlyA and are secreted
into the culture medium by E. coli cells expressing
TolC/HlyB/HlyD. Although the yields for secreted an-
tibody fragments are similar to those obtained with
periplasmic expression, further studies are needed to
investigate the pros and cons of this methodology as an
alternative to the aforementioned strategies for large
scale of production of antibodies.

III.C. Factors influencing expression

Protein production is a multifaceted phenomenon in-
volving complex processes such as, transcription,
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mRNA processing, translation, post-translational mod-
ification, protein folding and assembly and protein ex-
port. Factors that affect any of these processes can in-
fluence product yield. These factors include intrinsic
features of the gene encoding the antibody, intrinsic
features of the antibody structure and its amino acid se-
quence and extrinsic or physiological factors. For any
given antibody molecule, a review of the factors which
are important for in vivo expression of correctly folded
antibodies will help pinpoint aspects of expression that
can be improved in order to arrive at an optimized ex-
pression strategy.

Expression of correctly folded protein is largely de-
pendent on the intrinsic properties of the expression
plasmid and the nucleotide sequence of the gene en-
coding a particular antibody construct and its sequence.
Factors such as codon features, plasmid copy num-
ber [13], the presence of tightly repressible promoters
[96,97], upstream elements such as leader sequence
and amount and stability of mRNA [13] all have an
influence on product yield.

Expression of functional protein in E. coli is ex-
tremely amino acid sequence dependent. While one
rAb may express very well in a functional form, another
may do so very poorly [24,27,28]. The complexity and
nature of antibody fragments affects expression pro-
files. For Fabs, factors such as transfer to the periplasm,
assembly rate, balance between the synthesis of two
chains and the order of Fd (VH + CH1) and light chain
genes are important [98]. For scFv molecules, the
length and amino acid composition of the linker can
have great impact on expression [21,23,43,99,100].
Obviously, the smaller is the size of a protein, the less
is the impact of the various intrinsic and extrinsic fac-
tors on its expression. This has been one of the driving
forces behind attempts to reduce the size of the antigen
binding unit to a minimum. In this regard, naturally oc-
curring heavy chain antibodies from Camelidae have
introduced ideal solutions to problems in antibody ex-
pression, engineering and application. We will discuss
the advantages and applications sdAbs derived from
heavy chain antibodies elsewhere in this review.

A set of the factors involving physiological effects
that influence in vivo expression relate to complex post-
translational events such as translocation inside the cell
(kinetics of membrane transport), processing, assisted
protein folding and assembly (association of VH and
VL in scFvs or Fd and light chain in Fabs), protein
degradation and toxic effects. In addition, protein fold-
ing is also influenced by bacterial culture temperature

[6,101], the redox potential of the host environment
and the presence of folding catalysts, chaperones and
other accessory molecules [44]. The nature of the E.
coli host as well as culture conditions such as type of
nutrients and the amount of inducers have been shown
to influence production yield of antibody fragments
[102–104].

IV. Optimization of rAb expression in E. coli

With the growing success of protein drugs, monoclonal
antibodies in particular, and the large number of protein
drugs in clinical trials protein production capacity is of
fundamental concern. One of the ways to address this
challenge is to optimize product yields and significant
improvements have been made in optimizing various
expression systems for higher protein production. Rou-
tine production of monoclonal antibodies exceeding
1 g/L in Chinese hamster ovary cells has been reported
[74]. An anti-carcinoembryonic antigen scFv has been
produced by the yeast Pichia pastoris at 1.2 g/L [105].
Antibody expression levels of 1–25 g/L in mouse and
goat milk has been reported [32]. A bispecific diabody
and a Fab’ were expressed in functional form in E. coli
at 1–2 g/L [37,106]. However, further improvements
are needed if therapeutic rAbs are to be produced in
the required amounts without very large increases in
manufacturing infrastructure. Total world production
of therapeutic antibodies in 2002 was reported to be
about 1,000 kg. It is estimated this number will increase
several fold in the near future and will be in the vicin-
ity of 20,000 kg per year for one therapeutic antibody
alone [69].

Approaches taken in efforts to improve the expres-
sion of antibodies, namely, an evolutionary approach,
a rational approach and an approach in which the
antibody fragment is co-expressed with chaperone(s)
and/or foldase(s) or fused to a second protein with
chaperone-like activities are described. Similar muta-
genesis techniques are employed for the evolutionary
and rational approaches.

IV.A. Mutagenesis techniques

A variety of synonymous, codon-based mutagenesis
approaches have been employed for improving pro-
tein expression yields. One approach has been to
optimize codon usage by replacing host organism
rare codons with preferable codons that presumably
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have higher corresponding tRNA concentrations [107–
110]. In another approach codon pair usage are opti-
mized by mutating “slow pair” codons to “fast pair”
codons [111,112]. To our knowledge, the above two
approaches have been applied only to expression of
rAbs in non-E. coli hosts [28,100,113] and molecules
other than antibodies in E. coli hosts [114–116], but the
concept should be applicable to enhancing rAb expres-
sion in E. coli. Codon/codon pair optimization appears
to enhance protein yields by increasing translation
efficiency.

A wobble-base codon mutagenesis approach was
employed by Stemmer et al. [117] to increase the yield
of an Fv in a dicistronic expression format. The leader
peptide codons of the VH cistron were mutated at the
wobble base positions and a library of 107 mutants was
constructed. Screening by a colony lift method identi-
fied an Fv with 4 to 11-fold improvement in expression
yield. In a similar approach, several signal peptides se-
lected from a wobble-base library for their ability to in-
crease the expression of alkaline phosphatase reporter
increased the expression yield of a scFv and a Fab’ [15].
Protein yield improvements have been attributed to the
formation of favorable 5’-end mRNA secondary struc-
ture which enhances translation initiation. The signal
peptide wobble-base codon mutagenesis/alkaline phos-
phatase reporter system was also applied to improv-
ing Fab’ expression, significantly increasing the yield
to 580 mg/L [98,108]; a good balance of light and Fd
chain synthesis was found to be important in obtaining
higher yield. In another experiment, the same authors
[98] increased the expression of the Fab’ by 3-fold with
a codon usage optimization approach different from
above; the 5’ codons of the light chain were replaced
not with the average preferred codons but with the pre-
ferred codons used at the 5’ end of E. coli periplasmic
genes [15]. Balanced light and Fd chain synthesis, pos-
sibly caused by changes in the secondary structure of
the RNA in and around the mutated area may have
led to a more favorable secretion/folding process, with
the net result being an increase in functional protein
expression.

IV.B. Evolutionary approaches

This strategy is based on the construction of recom-
binant libraries of antibody-expressing clones with di-
rected or random mutagenesis generated by molecular
biology techniques. Thereafter, techniques such as ge-

netic screening, phage display, yeast display or ribo-
some display are employed to isolate protein variants
with exhibit enhanced expression. Many high express-
ing rAbs have been isolated by an indirect selection,
i.e., based on affinity and stability selection criteria not
expression.

Martineau et al. [79] applied an evolutionary/genetic
selection approach to an scFv for improving its func-
tional expression in the cytoplasm of E. coli. An scFv
with the ability to bind and activate a mutant β-
galactosidase was used as an starting point to construct
a library by random mutagenesis, and the library was
co-expressed with β-galactosidase in the cytoplasm of
a lac− bacterium. Mutants with improved expression
were selected by plating on limiting lactose. Follow-
ing several cycles of library construction and selection
an scFv with 50-fold higher functional expression in
the cytoplasm was isolated. Although this selection ap-
proach is not a general one it may be used as a basis
for developing a more general approach.

A phage display approach in a phagemid/helper
phage format and based on affinity selection can be
used to select for high-expressing rAbs [118]. In this
system well-expressing rAbs would be displayed more
efficiently due to their better folding properties, and
thus will be favored during binding selection. From
a mutant phage display library constructed for the
purpose of obtaining higher affinity binders, Deng
et al. [119], in addition to obtaining variants with im-
proved binding, isolated two mutants with protein ex-
pression yields of 50 and 120 mg/L compared to 10–
15 mg/L for the wild type. The affinities of these two
binders, however, were comparable to that for the wild
type. In a similar experiment, Jackson et al. [120]
observed that that the enrichment of clones follow-
ing several rounds of panning of a mutant phage dis-
play library was based on not only affinity, which was
the intended selection pressure, but also expression
levels.

Evolutionary approaches based on stability selec-
tions can also be used to select for high-expressing
rAbs. This is because a positive correlation has been
found between stability and the expression level of
rAbs. Jespers et al. [59] reported the isolation of sev-
eral aggregation resistant human VH domains from a
synthetic phage display library by heat denaturation.
Compared to the parent wild type clone, which was
highly prone to aggregation, these VHs had much bet-
ter expression, as high as 10-fold. In another report,
Jung et al. [26] applied a temperature stress-guided
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selection strategy and identified mutants from a phage
display library which, compared to the wild type, had
improved thermostability, 20-fold better affinity and 3-
fold better expression yield. Using a ribosome display
approach, Jermutus et al. [121] performed selections
under decreasing redox potential and isolated mutant
scFvs which were stable in the absence of their disul-
fide linkage. In addition to higher stability, the mutants
had significantly higher expression than the wild type
in E. coli, as high as 4-fold. Shusta et al. [122] have
shown a positive correlation between yeast surface dis-
play level and protein thermostability and expression.
Based on this fact, Graff et al. [123], panned an anti-
carcinoembryonic antigen scFv mutants yeast display
library for enhanced display level and under stability
pressure. They successfully isolated several scFvs with
increased expression level, as high as 100-fold com-
pared to the wild type.

IV.C. Rational approaches

This approach is based on the biophysical properties of
individual antibodies, detailed structural comparisons
of antibodies and the effects of mutations obtained in
evolutionary experiments on antibody properties [83].
CDR grafting is a typical example of this approach
and involves grafting the contact residues from a non-
soluble scFv onto the scaffold of a well-expressed and
stable scFv, leading to soluble expression and good
thermodynamic stability of the hybrid molecule [124].
A second example of this approach involves the iso-
lation of naturally occurring Abs without cysteines or
making cysteine-free scFvs by valine-alanine scanning
in both VH and VL [79,84]. In another approach, VL

and VH framework region amino acid replacements,
that improve expression level (up to 700 mg/L) and
limit cell lysis were made [25]; for example, at VH po-
sition 6, a glutamic acid to glutamine mutation results
in 30-fold higher expression of soluble scFv since the
amino acid at this position promotes correct folding by
interacting with a folding intermediate [125]. As exam-
ples for sdAbs, functional expression of several human
VHs were drastically increased by amino acid substitu-
tion at a few key solubility positions [126–128]. Other
rational approaches which have resulted in improved
expression yields include (i) chain shuffling in which
hyperstable VH or VL domains are paired with a li-
brary of randomized VL or VH for subsequent panning

[129] and (ii) replacement of hydrophobic patches at
the antibody variable/constant domain interface [27].

IV.D. Coexpression with chaperones and foldases

Proper and efficient folding of antibodies in vivo in-
volves molecular chaperones and foldases such as pro-
tein disulfide isomerase and peptidyl-proline cis-trans
isomerase [130–132]. The functional yield of anti-
bodies by an in vitro renaturation approach and by
E. coli cell-free translation systems is also enhanced
in the presence of molecular chaperones and foldases
[85,133–136]. Chaperone overexpression in E. coli has
been implicated as a means of preventing denaturation
and misfolding of overexpressed heterologous proteins
[137,138] and expression of many heterologous pro-
teins with simultaneous overexpression of molecular
chaperones has resulted in increased soluble functional
protein yields in E. coli [139–142]. Chaperones and
foldases are known to enhance expression yields by fa-
cilitating folding, preventing aggregation, reactivating
aggregates and reducing protein degradation [136,142–
144]. Attempts have also been made to enhance in vivo
rAb production yield in E. coli by co-overexpression
of foldases and chaperones.

Knappik et al. [19] tested the effect of overexpression
of periplasmic E. coli protein disulfide isomerase DsbA
and E. coli proline cis-trans isomerase PPIase A on the
functional co-expression of Fv, Fab and scFv forms of
the antibody McPC603 whose functional expression
yield was limited by the periplasmic folding process.
Overexpression of PPIase marginally increased func-
tional expression in all instances, except for a scFv in
the VL/VH orientation (scFv-L), by 1.8 fold. No fur-
ther yield increase was observed when scFv-L was co-
expressed with both PPIase and DsbA. Co-expressing
the Fab with DsbA in a different expression format
did not increase its functional expression. Aggrega-
tion which precedes or is independent of isomeriza-
tion may limit protein folding. A lack of DsbA con-
tribution to soluble yield was also observed for an-
other scFv [135] and may reflect its weak isomerization
activity.

In the search of factors that enhance the phage dis-
play of proteins as well as the functional expression
of proteins in the E. coli periplasm, Bothmann and
Plückthun [89] identified a periplasmic factor (Skp),
by a phage display technique and from an E. coli
protein library, which increased the phage display of
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several scFvs. Co-expression of several scFvs with
Skp increased their functional periplasmic expression
yields significantly. A correlation was observed be-
tween scFv expression properties and the effect of Skp
on functional expression—the better a given scFv was
in terms of functional expression, the less the effect of
the Skp co-expression on scFv functional folding. Skp
co-expression was also shown to increase soluble func-
tional expression of anti-atrazine and anti-diuron scFvs
in the E. coli periplasm. This paralleled a concomitant
decrease in the production of aggregated species [145].
As observed by others [89], the functional expression
level of the scFvs correlated with the expression level
of Skp.

Employing the same selection approach [89], Both-
mann and Plückthun [90] identified a periplasmic PPI-
ase, FkpA, which when co-expressed with several
scFvs increased their functional periplasmic expres-
sion by as much as 10-fold with the FkpA effect being
independent of its PPIase activity [90,144]. FkpA as-
sists folding by suppressing aggregation early during
folding events and reactivating inactive proteins in later
folding events [144]. As observed for Skp, the bene-
ficial effect of FkpA was greater for scFvs with poor
folding properties and had no effect on a scFv with
good folding characteristics. Combined co-expression
of FkpA and Skp had the same effect as FkpA alone
[90].

Co-expression of PPIase PhFKBP with anti-hen egg
lysozyme Fab which essentially expresses as inactive
aggregates in the E. coli cytoplasm improved soluble
expression of the Fab [143]. Improved soluble func-
tional expression was attributed to suppression of ag-
gregation and the chaperone-like folding activities of
PhFKBP and not its PPIase activity. Consistent with
these results, co-expression of periplasmic PpiA and
SurA PPIase did not increase functional expression
yields of scFvs [90].

Co-expression of an anti-CEA scFv-human inter-
leukin 2 fusion with GroES/EL resulted in a 2-fold
increase in both its soluble cytoplasmic expression and
activity following in vitro refolding [104]. Levy et al.
[146] studied the effect of cytoplasmic co-expression
of GroEL/ES, trigger factor, DnaK/J, DsbC and Skp
on the functional expression of 26–10 anti-digoxin
Fab in E. coli. With the exception of DnaK/J, which
had a negative effect, all increased the functional Fab
expression in the cytoplasm, and experiments with
GroEL/ES showed that the increase in soluble Fab pro-
duction was accompanied by a reduction in Fab ag-

gregation. Skp had the largest beneficial effect on ex-
pression (eight-fold) followed closely by trigger fac-
tor. The beneficial effect of trigger factor on soluble
expression of recombinant proteins was also demon-
strated in another study [147]. In contrast to Levy
et al. [146], who did not observe a beneficial effect
with DnaK/J, Nishihara et al. [147] showed that co-
expression of DnaK/J-GrpE significantly increased sol-
uble protein production. As another contradictory re-
sult, DnaK, but not GroEL/ES, was beneficial in terms
of increasing functional yields of a scFv [136]. These
contradictory results point to the complexity of chap-
erone and foldase action. Chaperones and foldases
have differential folding effects depending on the sub-
strate structure, show synergistic effects in combina-
tions and may be more effective in certain combina-
tions than others [135,136,141,147]. It also appears
that the effect of chaperones and foldases are concen-
tration and time dependent [19,85,134,145,148]. Thus,
for a given chaperone, its expression and/or its tim-
ing may be more optimal in one expression system
under study than another, hence better or positive ex-
pression effects. A further complication is that while a
higher expression of chaperones and folding catalysts
correlates with higher functional yields of target pro-
teins, an “excessive” or non-stoichiometric expression
may have negative effect [146] due to, e.g., growth
inhibition effects [149,150] or deleterious effects re-
lating to plasmid stability and induction [44,151,
152].

IV.E. Fusion protein strategy

Heterologous expression of rAbs, and other proteins, in
E. coli has been increased or made possible by fusing
them at the gene level to proteins such as E. coli MBP,
glutathione-S-transferase and Staphylococcus protein
A (see [153] and below for a more complete list of
proteins). Apparently, enhancement of expression is
mediated by the chaperone-like activity of the certain
proteins by preventing or significantly diminishing rAb
inclusion body formation. Unless it is disruptive to the
activity of the rAb, the protein is typically fused up-
stream of the rAb since this orientation has been more
consistent in terms of increasing expression yields. The
fusion protein often has ligand binding activity which
facilitates the purification of the fused rAb by one-step
affinity chromatography with a ligand-functionalized
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column [154–156]. The fused protein can also be ex-
ploited as a tag for detecting a rAb [155].

Enhancing protein yield by the fusion protein strat-
egy has been successfully carried out for both cyto-
plasmic and periplasmic expression of rAbs. Zheng et
al. [157] reported that a catalytic scFv was expressed
mainly as inclusion bodies in the cytoplasm, even at
22◦C, with the amount of soluble product being too
low to purify. However, when, the scFv was fused to the
C-terminus of the highly soluble E. coli N utilization
substance protein A (NusA) [158], the level of soluble
expression increased dramatically to 3 mg/L. Fusion
to NusA promotes functional disulfide bond formation
[157]. When fused to the C-terminus of the E. coli
MBP, several scFvs expressed much better than their
unfused counterparts in the reducing environment of
the E. coli cytoplasm [154]. A notable example was
scFv 4-4-20/212 which expressed virtually entirely in
an insoluble form in E. coli in an unfused format but
gave 50 mg/L of soluble, active product when fused
to MBP. In another report, Hayhurst [159] improved
periplasmic expression of an anti-atrazine scFv and an
anti-diuron scFv by fusion to the MBP (N-terminal fu-
sion) and/or human IgG kappa light chain constant do-
main, Cκ , (C-terminal fusion). The anti-atrazine con-
struct MBP-scAb (scAb = scFv-Cκ) produced signif-
icantly more protein than scAb-MBP, underlying the
importance of MBP fusion order. C-terminal fusion of
Cκ has been shown to increase cytoplasmic expression
of an scFv in mammalian cells by stabilizing the con-
struct, i.e., preventing degradation [160]. Ideno et al.
[161] fused the C-termini of an anti-hen egg lysozyme
scFv and Fab, which were mostly expressed as in-
clusion bodies in their unfused states, to an archaeal
FK506 binding protein (FKBP)-type peptidyl-prolyl
cis-trans isomerase (PPIase). The fused versions were
mostly expressed as soluble proteins in the cytoplasm
of E. coli. The increased rAb expression was attributed
to the fusion protein’s chaperone-like activity, not to its
PPIase activity.

The fusion protein approach to improving yield has
its limitations. Any one fusion partner may not increase
soluble expression of a particular rAb and other fusion
partners may need to be tried [161,162]. Another draw-
back to this approach is the frequent requirement for
downstream experiments to separate the fusion partner
from the rAb, especially when the fused rAb is not as
active as the unfused one. It is also possible that, while
a rAb fusion may have good solubility and stability, the
rAb may not in the absence of the fusion partner.

V. Single-domain antibodies

The term sdAb was originally introduced by Ward and
co-workers [163] to describe murine VH domains that
were screened for binding to lysozyme. These murine
VH domains had good affinities for antigen but poor
solubilities due to the absence of a VL partner, demon-
strating that additional domain engineering is required
to generate fully functional sdAbs from conventional
antibodies. The discovery of camelid heavy chain anti-
bodies in 1993 [49] opened up new possibilities for the
engineering of sdAbs. Following the discovery of these
unique antibodies, functional VHH domains specific
for lysozyme and tetanus toxoid were isolated from a
phage library constructed from the antibody repertoire
of an immunized camel [52,53]. The discovery of heavy
chain antibodies also opened up new opportunities for
the generation of functional murine [164] and human
VH and VL domains [3,126,128,165,166].

V.A. Heavy chain antibodies

Camelidae heavy chain antibodies are homodimers
where each monomer unit is comprised of a single
variable domain (VHH), a long or short hinge region
and two constant domains corresponding to CH2 and
CH3 of conventional antibodies (Figure 1) [49–51,167].
The lack of the first constant domain (CH1) in heavy
chain antibodies is structurally related to the absence
of a light chain, as CH1 anchors the constant do-
main of the light chain [168]. Genomic studies have
shown that the DNA encoding CH1 is spliced out dur-
ing mRNA processing [169,170]. Crystal and solution
structures of several VHHs have shown that the general
‘immunoglobulin domain fold’ of conventional anti-
body variable domains is kept intact in VHHs [53,171–
173]. However, there are structural differences and
amino acid replacements which seem to be specific
for VHHs. New canonical structures for the CDR1 and
CDR2 loops result in a much larger structural repertoire
[167,174,175]. Camelid VHH repertoires contain un-
usually long average CDR3s with camel VHH CDR3s
being long compared to VHs (average length of 16–18
amino acids) and llama VHH CDR3s covering a wide
range of lengths [50,51,176]. It has been shown that in
at least some VHH structures the longer CDR3 folds
over the “former” VL interface [53,177]. Framework
2 amino acid substitutions in VHHs relative to VHs,
namely, V37F/Y, G44E/Q, L45R/C and W47G/S/L/F
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[167,176,178], veneer the otherwise hydrophobic re-
gion interacting with the VL domain in conventional
antibodies. Indeed, the solubility of a human VH was
improved by incorporation of the VHH FR2 amino acid
substitutions [126]. However, the total expression level
and the original antigen-binding properties were sac-
rificed, emphasizing that residue interrelationships are
involved in VH folding, expression and antigen bind-
ing. Recent structural studies comparing a VHH and
its humanized derivative showed that Glu 44 and Arg
45 are the key elements in making the domain soluble
whereas Tyr 37 and Arg 45 are important in VL domain
pairing [179]. From these studies it was concluded that
in addition to the VHH-specific amino acid replace-
ments, other mutations and veneering are required to
make a functional, stable and soluble human or mouse
VH [7,179].

A class of antibodies, termed IgNARs, discovered
in nurse sharks and webbegongs are related to camelid
heavy chain antibodies in terms of overall format
[48,54]. The variable domains of these antibodies (i.e.,
VHs) have been cloned, expressed in bacteria and their
structures in complex with lysozyme have been solved
[47,180]. These antigen-binding units are comparable,
although somewhat smaller, in size to VHHs. However,
their primary structure and fold is quite divergent from
that of human, mouse or Camelidae VHs or VHHs.

V.B. Advantages of sdAbs

The fact that sdAbs are much less complex than con-
ventional antibody fragments offers significant advan-
tages in terms of antibody engineering and production
in good yield. Only a small set of primers is needed for
amplification of sdAbs and construction of sdAb phage
libraries is relatively straightforward since assembly
reactions are not required as for scFvs [7,52,167]. Be-
cause they are single domains of relatively small size,
they are efficiently expressed in E. coli with yields of
up to 80 mg/L in shake-flask cultures [52,92] and in
yeast and fungal species with yields of up to 100 mg/L
in shake-flask cultures and kilogram quantities from
large fermentors (1.5 × 104 litre fed-batch fermen-
tation) [181,182] as soluble, non-aggregating protein.
This in marked contrast to the expression of conven-
tional antibody fragments such as Fabs or scFvs for
which much lower yields of soluble product are gener-
ally obtained. While the complexity and multidomain
nature of Fabs and scFvs relative to sdAbs is a major

reason for the difference in yield, residues at the inter-
face of variable and constant domains [27] and the ex-
pression efficiency and balance of light and Fd chains
can also affect Fab yield [98]. For scFvs, yield can
be affected by domain orientation [19], sequence and
length of the linker joining the two domains [21,100]
and susceptibility of the linker to proteases [183,184].

sdAbs have excellent physical properties and are su-
perior to conventional antibody fragments in this re-
gard. sdAbs have high thermal and conformational sta-
bility. It has been shown that the VHH domains can
withstand prolonged incubation at temperatures above
90◦C, a property that is attributed to a reversible unfold-
ing behaviour [46,185,186]. By contrast, conventional
human and mouse VHs often aggregate irreversibly
on thermal denaturation. Melting points ranging from
60◦C to 78◦C have been reported for camel and llama
VHHs [46,57]. Also, it has been shown that VHHs are
resistant to proteases [187] and to harsh conditions such
as the presence of nonionic and anionic surfactants,
high urea concentrations and extreme pH [7,56].

Because of their small size and long protruding
CDR3s VHHs can access epitopes that are inaccessi-
ble to conventional antibody fragments, such as clefts
and cavities which are often the hallmarks of enzyme-
substrate and receptor-ligand interactions [53,188]. It
has also been shown that VHHs can access inaccessible
and conserved epitopes on the surface of trypanosomes
[189]. They may also be efficient reagents for targeting
tumors where penetration into poorly vascularized tis-
sue is crucial to the success of a drug [3]. The ability of
sdAbs to transmigrate across an in vitro model of the
human blood brain barrier may be related to their small
size. Molecules of this nature have great potential for
the delivery of therapeutics across the blood brain bar-
rier in the development of treatments for neurological
diseases [61].

V.C. Engineering sdAbs for improved function

The small size of sdAbs may limit their application
in instances where a prolonged serum half-life is de-
sirable. Two solutions to this shortcoming have been
successfully applied for other antibody fragments such
as scFvs and Fabs, namely, covalent attachment of
polyethylene glycol (PEG) to the antibody fragment
(PEGylation) [3,190] and physical linkage of the an-
tibody fragment to a naturally existing serum protein
with extended half-life such as serum albumin or the
Fc region of antibodies [3,191].
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Due to their small size, high stability and good ex-
pression yield and the fact that they show little ten-
dency to aggregate, sdAbs are ideal antibody fragments
for constructing multispecific and multivalent antibody
reagents [7,187,192]. Zhang et al. [187] have described
a method for producing pentameric sdAbs in good yield
in E. coli. Like their monomeric counterparts, the so-
called pentabodies have excellent biophysical proper-
ties [187] and do not aggregate (Figure 2). Pentamer-
ization has the effect of enhancing sdAb binding to
immobilized antigen by several orders of magnitude
[187].

A pentavalent sdAb approach to tumor antigen dis-
covery has been successfully applied to the identi-
fication of a novel carcinoembryonic antigen-related
cell adhesion molecule 6 (CEA6) epitope on lung ade-
nocarcinoma [193]. An sdAb specific for non-small
cell lung carcinoma was obtained by panning a non-
immune llama sdAb library [92] against the A549 cell
line. A pentameric form of the sdAb was used to iden-
tify the antigen recognized by the sdAb as a form of
CEA6 by a 2-D gel electrophoresis/Western blotting
approach. Phage-displayed sdAb serves as an excel-
lent immunocytochemical reagent [187], (Figure 3) as
does the pentabody form of the sdAb (MacKenzie et
al., unpublished results). The pentabody strongly stains
a sub-population of A549 cells, weakly stains some
other cancer cell lines and does not stain normal ep-
ithelial cells (Figure 3(A)–(C)). While not conclusive,
there is evidence that the antigen recognized by the
sdAb is transiently expressed during cell division (Fig-
ure 3(D)–(E)). These results show that a phage sdAb
library/pentabody approach may provide a useful tu-
mor marker discovery platform and demonstrate that
pentabodies are very useful reagents for immunostain-
ing and proteomics.

VI. Conclusions

The bacterial expression of antibody fragments has
been a primary deriving force behind the rapid expan-
sion and major successes of antibody engineering in the
past two decades. Antibody library screening by phage
display, which is now a relatively routine procedure for
the de novo isolation of monoclonal antibody fragments
and for improving antibody properties by evolution-
ary approaches, is contingent upon expression of prop-
erly folded antibodies in E. coli. Antibody engineering
and bacterial expression provide a convenient means

of generating antigen binding fragments for evaluation,
isolation and production of antibody in this manner al-
leviates any concerns about the use of animals for such
purposes.

As applications for monoclonal antibodies and their
derivatives continue to increase, it is likely that bac-
terial expression will play a more significant role in
their manufacture. However, is unlikely that bacterial
expression of whole antibodies will become practi-
cal because of the difficulties in expressing such large
molecules in bacteria and the requirements for glycosy-
lation. While much has been learned about the factors
influencing antibody yield in E. coli, it is not possi-
ble to identify general conditions that will give good
expression of a particular antibody format. Antibody
sequence remains the key factor in determining yield
and various engineering and expression strategies may
have to be investigated in order to achieve acceptable
product yield.

In recent years it has become clear that bacterial ex-
pression of sdAbs is much less problematic than the
expression of antigen binding fragments from conven-
tional antibodies. While sequence greatly influences
sdAb expression, these molecules generally express,
as functional correctly folded protein at levels that
are at least 10-fold higher than those obtained for
more complex antibody fragments. In addition, sdAb-
based fusion proteins also tend to express at high lev-
els in E. coli. It is likely that there is a bright future
for the bacterial expression of sdAbs and sdAb-based
molecules.
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