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Introduction

Atherosclerosis and its complications (stroke and myocar-
dial infarction) are the worldwide leading cause of death 
[1]. It is now considered an inflammatory disorder induced 
by low-density lipoprotein (LDL) particles, implicating 
both innate and adaptive immunity [1]. This new paradigm 
led to the assessment of different immunosuppressive or 
immunomodulatory treatments in human atherosclerosis 
targeting neutrophils, lymphocytes, monocytes and/or their 
leading cytokines with colchicine [2, 3], methotrexate [4] 
or canakinumab [5]. Colchicine and canakinumab improved 
clinical outcomes in selected patients, decreasing the risk of 
cardiovascular events in secondary prevention by 15 to 30% 
[2, 3, 5]. However, as reported with interleukin-1 inhibitors 
and methotrexate, their use may be hampered by significant 
weight gain, potentially accelerating the course of athero-
sclerosis, or by cytolytic hepatitis [6, 7]. Hence, an optimal 
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Abstract
ApoE−/− mice are a widely used preclinical model of atherosclerosis, potentially accelerated by a Western diet (WD) or 
uremia. We aimed to compare hybrid 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography-magnetic res-
onance (PET-MR) and immunostaining in ApoE−/− models of accelerated atherosclerosis. Five groups were studied: 
standard diet-fed ApoE−/− (n = 7), standard diet-fed and uremic ApoE−/− (n = 7), WD ApoE−/− (n = 7), WD and uremic 
ApoE−/− (n = 6), and control C57BL/6J mice (n = 6). Uremia was induced by electrocoagulation of the right kidney at 8 
weeks old, followed 2 weeks later by a contralateral nephrectomy. 18F-FDG PET-MR imaging and histological staining 
(anti-CD4, -CD8, -CD11c, -CD20, -CD31, -CD68, -CD163, -interferon-γ, interleukin-1α, -1β, -6, -17 A antibodies) were 
performed in 18-week-old mice, i.e., 8 weeks after 5/6 nephrectomy and/or WD. 18F-FDG uptake was similar in all groups. 
In contrast, histological staining highlighted higher percentages of CD8-, CD68-, or CD11c-positive cells in ApoE−/− aortic 
samples than in wild-type aortic samples. In addition, immunostaining revealed some differences between ApoE−/− mouse 
groups. Only the WD seemed to contribute to these differences. Using immunostaining, WD appeared to be a stronger 
accelerator of atherosclerosis than uremia. However, 18F-FDG PET-MR imaging failed to demonstrate in vivo increased 
aortic glucose uptake in these models.
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and refined understanding of the pathophysiology of athero-
genesis and the consequent development of new therapeutic 
targets remain necessary.

In ApoE−/− mice, the absence of apolipoprotein E (ApoE) 
leads to hypercholesterolemia and to the development of 
atherosclerotic lesions from 10 weeks of age [8, 9]. Positron 
emission tomography (PET) is a noninvasive method for 
the detection of aortic inflammation that has been used for 
assessing atherogenesis in vivo in ApoE−/− mice [10–14]. 
Hybrid PET-magnetic resonance (MR) imaging allows for 
quantitative or semiquantitative analysis of aortic glucose 
uptake within vascular structures by noncontrast MR angi-
ography. Hence, in removing the life-threatening injected 
volumes of CT contrast, PET-MR is theoretically most fitted 
to the physiology of small animals.

Among the proposed methods to accelerate atheroscle-
rosis in ApoE−/− mice, a high-fat high-cholesterol Western 
diet (WD) multiplies the burden of atherosclerotic lesions 
by approximately 3-fold [15] and increases the number of 
proinflammatory cells [16]. The reduction of the nephron 
mass of at least 50% also potentiates the development of 
atherosclerosis [17, 18], and subtotal 5/6 nephrectomy-
induced uremia increases the area of atherosclerotic lesions 
10-fold after 12 weeks of uremia [19]. Despite their high 
relevance for translational research, no study has compared 
the performances of these two methods in accelerating ath-
erogenesis in ApoE−/− mice, especially by means of hybrid 
PET-MR imaging.

We therefore aimed to compare 18F-fluorodeoxyglucose 
(18F-FDG) PET-MR imaging and immunohistological find-
ings in ApoE−/− mice, with or without WD or uremia, and 
in wild-type mice.

Materials and methods

Mice

Male C57BL/6 ApoE−/− (B6.129P2-Apoetm1Unc/J) and con-
trol C57BL/6J wild-type mice were purchased from The 
Jackson Laboratory (Sacramento, CA, USA) and Janvier 
Labs (Le Genest St. Isle, France), respectively, and housed 
in a temperature-controlled specific pathogenic free envi-
ronment with ad libitum access to food and water. Five 
groups of mice were studied, including a control group of 
6 standard diet-fed C57BL/6 mice. Twenty-seven ApoE−/− 
mice were randomly allocated to one of 4 groups: standard 
diet-fed ApoE−/− (SD, n = 7), SD and uremic ApoE−/− 
(SD-U, n = 7), WD ApoE−/− (WD, n = 7), WD and uremic 
ApoE−/− (WD-U, n = 6). Chronic renal failure was induced 
by electrocoagulation of the right kidney at 8 weeks old, 
followed by a contralateral nephrectomy two weeks later, 

as previously described [13]. Analgesia was obtained by 
preoperative subcutaneous injection of buprenorphine 
(0.05 mg/kg) and then every 12 h as long as needed. Mice 
were fed standard chow up to 10 weeks old, and then for 
the next 8 weeks, 14 mice continued on standard chow and 
13 mice switched to WD (SAFE Western 1635 v35, SAFE 
Diet, Augy, France, made of 21.2% fat, 17% proteins, 
48.5% carbohydrates, 0.2% total cholesterol) according to 
the experimental groups. The mice were separated accord-
ing to the defined diet, but uremic mice were cohoused with 
nonuremic mice to decrease the cage effect. An additional 
analysis was performed to compare all mice that were fed 
an SD versus a WD and to compare all nonuremic mice to 
uremic mice.

All animal procedures were approved by the regional 
animal ethics committee (Comité d’Éthique NOrmand en 
Matière d’EXpérimentation Animale, CENOMEXA 054, 
n°29982) and were performed in accordance with the 
European directive 2010/63/EU on the protection of ani-
mals used for scientific purposes and specific French laws 
(decree n°2013–118). The study is reported in accordance 
with ARRIVE guidelines.

PET-MR imaging

Images were acquired in 18-week-old mice, i.e., 8 weeks 
after the introduction of uremia and/or WD, using a dedi-
cated hybrid PET-MR 7T system (BioSpec 70/18, Bruker, 
Germany). The MR acquisition sequences consisted of a 
localizer, an axial 2D TOF FLASH angiography (TE: 1.657 
ms, TR: 12 ms, 125  ×  125 matrix, bandwidth: 700 Hz/pixel, 
flip angle: 80°, averages: 2, slice thickness: 0.6 mm, slices: 
60), an axial T2 TurboRARE (TE: 24 ms, TR: 1720 ms, 
image size: 150  ×  150, RARE factor: 5, averages: 8, slice 
thickness: 0.5 mm, slices: 30) and a whole-body FISP (TE: 
2.6 ms, TR: 5.5 ms, flip angle: 10°, image size: 80  × 80, 
averages: 3, slice thickness: 0.5 mm, slices: 60). The 2D 
TOF imaging was gated to the ECG to avoid cardiac motion 
artifacts, and T2 TurboRARE was gated to the respiratory 
signal. MR images were used as landmarks to quantify 18F-
FDG uptake in vessels of interest.

The mice were fed a ketogenic diet for 2 days and then 
fasted 18 h before 18F-FDG (Curium, Glisy, France) was 
intraperitoneally injected into conscious mice to decrease 
myocardial uptake [20–22]. Then, anesthesia was induced 
with 5% isoflurane gas and maintained with isoflurane 
1–2% in an N2O/O2 mixture (2:1), and the mice were placed 
in a prone position headfirst in the PET-MR system. A 
static whole-body PET acquisition (15 min) was acquired 
90 ± 1 min after the 18F-FDG injection, with energy win-
dows and coincidence windows of 357–664 keV and 5 ns, 
respectively. The axial scan length was 117 mm. The image 
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data were corrected for dead time, radioactive decay, atten-
uation, scatter and randoms, and sinograms were recon-
structed using a 3-dimensional OSEM algorithm (number 
of iterations: 12, number of subsets: 16) into a 128 × 128 
matrix (slice thickness 0.75 mm).

3D Slicer 4.11 (http://www.slicer.org/) with the PET-
IndiC extension was used to analyze PET-MR images 
[23–26]. Alignment of the PET data to MR images was 
refined using a rigid transformation (6 degrees of freedom). 
The TOF sequences were used to manually draw volumes 
of interest (VOIs) encompassing the entire available por-
tion of the ascending thoracic aorta, descending thoracic 
aorta, abdominal aorta and inferior vena cava. We divided 
the aorta into these three sections because atherosclerotic 
lesions in ApoE−/− mice do not develop at the same speed in 
each arterial segment, with the first lesions appearing in the 
thoracic aorta, particularly the aortic root, and because the 
division between ascending and descending thoracic aorta 
can lessen the impact of a possible spillover effect [9, 27]. 
Then, the VOIs of the aorta were dilated by the neighbor-
hood method (8 neighbors) to include the vessel wall. The 
target-to-background ratio (TBR) was defined as the ratio 
of the maximum uptake within each VOI of the aorta and of 
the maximum uptake of vascular background measured in 
the inferior vena cava.

Blood analyses and ex vivo radioactivity 
measurement

Immediately after PET-MR imaging, blood samples were 
obtained by intracardiac puncture and collected in dry tubes 
while mice were under deep anesthesia. Analyses were per-
formed by an external laboratory according to their inter-
nal protocols (LABÉO Frank Duncombe, Saint-Contest, 
France). Then, the mice were euthanized by decapitation 
under deep anesthesia. All precautions were taken to mini-
mize suffering. After the aorta was removed, periaortic 
brown adipose tissue was removed and a piece at the thora-
coabdominal junction was harvested, regardless of the PET-
MR results, weighed and gamma counted with an ad hoc18F 
protocol for 60 s (Wizard 2470, PerkinElmer, Boston, MA, 
USA), 163 ± 8 min after the 18F-FDG injection. The results 
were expressed as percentage of injected dose per gram of 
tissue (%ID/g).

Histological staining

Atherosclerotic lesions were revealed with Oil red O stain-
ing. Immunostaining was performed on a BenchMark XT 
(Ventana Medical Systems Inc., Tucson, AZ, USA). The fol-
lowing rabbit antibodies were used according to the manu-
facturers’ protocols: anti-CD4 (1:50, Cell Signaling, catalog 

number: #25229), anti-CD8α (1:200, Cell Signaling, catalog 
number: #98941), anti-CD20 (1:50, Abcam, catalog num-
ber: #ab64088), anti-CD31 (1:100, Cell Signaling, catalog 
number: #77699), anti-CD11c (1:100, Cell Signaling, cat-
alog number: #97585), anti-CD68 (1:600, Cell Signaling, 
catalog number: #97778), anti-CD163 (1:200, Abcam, cata-
log number: #ab182422), anti-interleukin (IL)-1β (1:150, 
Abcam, catalog number: #ab205924), anti-IL-1α (1:100, 
Abcam, catalog number: #ab7632), anti-IL-6 (1:100, Ther-
moFisher Scientific, catalog number: #BS-0782R), anti-
IL-17 A (1:100, ThermoFisher Scientific, catalog number: 
#PA5-79470), and anti-interferon-γ (1:100, Abcam, catalog 
number: #ab216642). Bound antibodies were detected using 
avidin-biotin-peroxidase complex (ChromoMap DAB and 
OmniMap anti-Rabbit HRP, Roche Diagnostics, Meylan, 
France). Images were acquired using an Olympus VS120 
slide scanner (Olympus, Tokyo, Japan) at 20× magnifica-
tion. Tissue segmentation was manually performed by the 
same investigator (SD) using the QuPath software package 
(v0.2.3) [28], and data were expressed as the mean per-
centage of positive cells using the “Positive cell detection” 
option (optical density sum, Score compartment: DAB OD 
max with single threshold at 0.25) or as the mean percent-
age of positive area for the Oil red O staining (threshold set 
to 0.5 and smoothing sigma set to 1 with a full resolution of 
0.35 μm/px).

Statistical analyses

Quantitative data were expressed as the mean ± standard 
error of the mean and analyzed using the nonparametric 
Mann–Whitney test, or, when more than two groups were 
compared, by the nonparametric Kruskal–Wallis test, fol-
lowed if significant by Dunn’s multiple comparison test. 
GraphPad Prism 7 (GraphPad Software Inc., San Diego, 
CA, USA) was used for statistical analyses. A p value < 0.05 
was considered significant.

Results

Five groups of male mice were analyzed: SD ApoE−/− 
(n = 7), SD-U ApoE−/− (n = 7), WD ApoE−/− (n = 7), WD-U 
ApoE−/− (n = 6) and control C57BL/6 mice (n = 6). All 
experiments were performed in 18-week-old mice, with a 
mean weight of 29.85 ± 0.42 g.

Biological analyses

Blood total cholesterol levels were significantly higher in the 
WD ApoE−/− and WD-U ApoE−/− groups than in the control 
C57BL/6 mice (p < 0.05, Table 1). Blood triglyceride levels 
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4.7 ± 0.81%ID/g in the WD ApoE−/− group (n = 7), 
4.3 ± 0.62%ID/g in the WD-U ApoE−/− group (n = 5) and 
2.8 ± 0.62%ID/g in the control C57BL/6 mice (n = 6), 
p = 0.07.

Histological staining

Because the results for thoracic or abdominal segments 
did not add specific relevance, the results for these seg-
ments were combined (Table 2). There were significantly 
more positive cells marked by anti-CD8 and anti-CD11c 
in WD-U ApoE−/− mice than in control C57BL/6 mice 
(p = 0.042 and 0.018, respectively) (see Online Resource 
3). In contrast, there was a decreased proportion of positive 
cells marked by CD31 in the SD ApoE−/− group and in the 
SD-U ApoE−/− group compared with the control C57BL/6 
mice (p = 0.007 and p = 0.002, respectively). There was also 
a decreased percentage of IL-17 A-positive cells in the SD 
ApoE−/− group and in the SD-U ApoE−/− group compared 
with the control C57BL/6 mice (p = 0.0004 and p = 0.003, 

were significantly higher in SD-U ApoE−/− mice than in 
control C57BL/6 mice (p = 0.042).

PET-MR imaging and ex vivo radioactivity 
measurement

The mice received a mean of 22.15 ± 0.74 MBq of 18F-
FDG, without a significant difference among the five groups 
(p = 0.54). An accidental intracolic injection of 18F-FDG 
prevented the analysis of the images for one mouse in the 
SD ApoE−/− group. No significant difference was found 
between groups regarding the TBR, regardless of the aor-
tic segment (Figs. 1 and 2). The results were similar with 
the mean uptake within each VOI (see Online Resource 1). 
The heart uptake was similar between groups (p = 0.13, see 
Online Resource 2).

In addition, no significant differences were found 
regarding the radioactivity measured by gamma count-
ing: 1.7 ± 0.49%ID/g in the SD ApoE−/− group (n = 2), 
5.2 ± 0.83%ID/g in the SD-U ApoE−/− group (n = 5), 

Table 1 Results of biological analyses
SD (n = 7) SD-U (n = 7) WD (n = 7) WD-U (n = 6) WT (n = 6) p 

value
Dunn’s test

Total cholesterol 
(g/L)

10.12 ± 1.23 
(n = 5)

8.57 ± 0.68 (n = 3) 13.52 ± 1.64 
(n = 5)

18.01 ± 2.33 
(n = 5)

1.15 ± 0.09 0.002 WD vs. WT*
WD-U vs. 
WT**

Triglycerides (g/L) 1.47 ± 0.10 (n = 4) 1.68 ± 0.11 (n = 2) 1.25 ± 0.28 (n = 3) 1.21 ± 0.19 (n = 4) 0.61 ± 0.07 0.02 SD-U vs. 
WT*

Calcium (mg/L) 92.85 ± 1.60 
(n = 4)

96.30 ± 0.70 
(n = 2)

92.97 ± 1.11 
(n = 3)

97.60 ± 3.79 
(n = 4)

90.78 ± 0.98 0.17

Phosphorus (mg/L) 109.45 ± 6.80 
(n = 4)

129.70 ± 8.60 
(n = 2)

139.73 ± 1.33 
(n = 3)

144.20 ± 6.01 
(n = 4)

114.57 ± 5.54 0.02 NS

Values are displayed as the mean (± SEM), and significant values (i.e., p value < 0.05) are displayed in bold. SD: Standard diet ApoE−/−; SD-
U: Standard diet + uremic ApoE−/−; WD: Western diet ApoE−/−; WD-U: Western diet + uremic ApoE−/−; Wild-type; NS: Not significant with 
Dunn’s multiple comparison test value. *: p  < 0.05, **: p  < 0.01

Fig. 1 Results of 18F-FDG PET quantification in 18-week-old standard diet-fed ApoE−/− (n = 6), standard diet-fed and uremic ApoE−/− (n = 7), 
Western diet-fed ApoE−/− (n = 7), Western diet-fed and uremic ApoE−/− (n = 6) or wild-type C57BL/6J mice (n = 6)
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ApoE−/− group compared with the SD ApoE−/− group 
(p = 0.002 and 0.005, respectively) and in the SD-U ApoE−/− 
group (p = 0.013 and 0.029, respectively). The results with 
the anti-IL-1α antibody showed an increased proportion of 
positive cells in the WD-U ApoE−/− group compared with 
the SD-U ApoE−/− group (p = 0.047). The results regard-
ing the anti-IL-1β and the Oil red O staining were different 
between groups (p = 0.035 and 0.029, respectively), but the 
p values with the post hoc Dunn’s multiple comparison test 
were not significant.

respectively) and in the SD ApoE−/− group compared with 
the WD ApoE−/− group (p = 0.032). Regarding anti-CD68 
staining, there were significantly more positive cells in 
the WD-U ApoE−/− group than in the SD ApoE−/− group 
(p = 0.026) or the control C57BL/6 group (p = 0.002). 
For IL-6 staining, the WD ApoE−/− group and the WD-U 
ApoE−/− group had significantly more positive cells than the 
SD-U ApoE−/− group (p = 0.022 and 0.006, respectively). 
There was also an increased proportion of interferon-γ-
positive cells in the WD ApoE−/− group and in the WD-U 

Table 2 Results of histological staining of mouse whole aortas in each group
SD (n = 7) SD-U (n = 7) WD (n = 7) WD-U (n = 6) WT (n = 6) p value Dunn’s test

CD4 0.85 ± 0.26 
(n = 6)

1.01 ± 0.46 1.63 ± 0.56 4.62 ± 2.11 0.42 ± 0.17 0.38 -

CD8 1.88 ± 0.42 1.80 ± 0.68 7.08 ± 3.00 8.48 ± 3.86 1.04 ± 0.52 0.038 WD-U vs. WT*
CD11c 2.21 ± 0.96 2.66 ± 1.25 7.59 ± 2.61 10.09 ± 1.33 0.78 ± 0.28 0.005 WD-U vs. WT*
CD20 0.48 ± 0.29 

(n = 6)
0.48 ± 0.19 2.80 ± 1.64 4.91 ± 3.02 0.62 ± 0.45 0.17 -

CD31 30.91 ± 5.70 25.34 ± 6.16 45.53 ± 3.78 43.11 ± 2.87 59.41 ± 2.98 0.002 SD vs. WT**
SD-U vs. WT**

CD68 1.26 ± 0.53 2.00 ± 0.62 4.18 ± 1.21 13.43 ± 4.51 0.46 ± 0.34 0.002 WD-U vs. SD*
WD-U vs. WT**

CD163 4.77 ± 3.88 1.17 ± 0.38 5.10 ± 1.69 8.10 ± 2.79 2.09 ± 0.45 0.14 -
Interferon-γ 1.11 ± 0.30 1.66 ± 0.45 14.03 ± 3.50 11.13 ± 2.58 3.44 ± 1.09 0.0002 SD vs. WD**

SD vs. WD-U**
SD-U vs. WD*
SD-U vs. WD-U*

Interleukin-1α 3.15 ± 1.01 3.65 ± 1.44 8.09 ± 4.35 17.74 ± 5.10 3.84 ± 0.71 0.037 SD-U vs. WD-U*
Interleukin-1β 10.83 ± 5.25 4.21 ± 2.26 10.84 ± 4.21 13.82 ± 4.55 2.16 ± 0.78 0.035 NS
Interleukin-6 3.38 ± 1.48 1.67 ± 0.43 10.73 ± 3.83 12.63 ± 4.06 6.10 ± 1.47 0.002 SD-U vs. WD*

SD-U vs. WD-U**
Interleukin-17 A 10.05 ± 1.52 11.00 ± 2.04 28.56 ± 3.00 26.35 ± 4.42 43.35 ± 4.93 < 0.0001 SD vs. WT***

SD vs. WD*
SD-U vs. WT**

Oil red O 
staining1

4.18 ± 1.54 
(n = 5)

5.50 ± 1.13 
(n = 6)

7.35 ± 0.91 
(n = 6)

10.01 ± 2.13 
(n = 2)

3.13 ± 0.70 0.029 NS

Unless indicated, values are displayed as the mean percentage of positive cells (± SEM). 1 Expressed as the mean percentage of positive area 
(± SEM). Significant values (i.e., p value < 0.05) are displayed in bold. SD: Standard diet ApoE−/−; SD-U: Standard diet + uremic ApoE−/−; WD: 
Western diet ApoE−/−; WD-U: Western diet + uremic ApoE−/−; Wild-type; NS: Not significant with Dunn’s multiple comparison test value. *: 
p < 0.05, **: p < 0.01 ***: p < 0.001

Fig. 2 Representative 18F-FDG PET-MR imaging (sagittal sections 
of 2D TOF FLASH MR angiography sequences). a: standard diet 
ApoE−/− mice; b: standard diet and uremic ApoE−/− mice; c: Western 
diet ApoE−/− mice; d: Western diet and uremic ApoE−/− mice; e: wild-

type C57BL/6J mice; H: heart; Ab: abdominal aorta; Des: descend-
ing thoracic aorta; Asc: ascending thoracic aorta; BAT: paravertebral 
brown adipose tissue
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and 0.11, respectively). Regarding histological staining 
(Table 3), no significant differences were observed between 
nonuremic and uremic mice. In contrast, when combining 
the results for the thoracic and abdominal aortas, each stain-
ing was significantly higher in WD mice than in SD mice, 
except for the CD4 antibody.

To compare the respective contribution of each interven-
tion, an analysis compared all ApoE−/− mice that were fed 
with an SD versus a WD, regardless of their renal status, 
and compared all nonuremic mice to uremic mice, regard-
less of their diet. The TBR, regardless of the aortic segment, 
was comparable between SD and WD mice and between 
nonuremic mice and uremic mice (Fig. 3). Similarly, no 
significant results were found by gamma counting (p = 0.17 

Table 3 Histological staining results of mouse whole aortas according to diet or renal status
Standard diet-fed 
ApoE−/− (n = 14)

Western diet-fed 
ApoE−/− (n = 13)

p value Nonuremic 
ApoE−/− (n = 14)

Uremic 
ApoE−/− (n = 13)

p 
value

CD4 0.94 ± 0.27 (n = 13) 3.01 ± 1.06 0.24 1.27 ± 0.33 (n = 13) 2.68 ± 1.09 0.97
CD8 1.84 ± 0.39 7.73 ± 2.31 0.015 4.48 ± 1.62 4.89 ± 1.98 0.74
CD11c 2.43 ± 0.76 8.74 ± 1.52 < 0.001 4.90 ± 1.53 6.09 ± 1.38 0.80
CD20 0.48 ± 0.16 (n = 13) 3.78 ± 1.60 0.038 1.73 ± 0.92 (n = 13) 2.53 ± 1.47 0.40
CD31 28.12 ± 4.11 44.41 ± 2.36 0.008 38.22 ± 3.86 33.54 ± 4.29 0.49
CD68 1.63 ± 0.41 8.45 ± 2.47 0.002 2.72 ± 0.75 7.28 ± 2.59 0.16
CD163 2.97 ± 1.94 6.49 ± 1.56 0.015 4.94 ± 2.03 4.37 ± 1.59 0.99
Interferon-γ 1.38 ± 0.27 12.69 ± 2.18 < 0.0001 7.57 ± 2.46 6.03 ± 1.79 0.95
Interleukin-1α 3.40 ± 0.85 12.54 ± 3.47 0.013 5.62 ± 2.25 10.15 ± 3.11 0.33
Interleukin-1β 7.52 ± 2.90 12.21 ± 2.99 0.038 10.83 ± 3.23 8.64 ± 2.70 0.84
Interleukin-6 2.52 ± 0.78 11.61 ± 2.68 < 0.0001 7.06 ± 2.22 6.73 ± 2.39 0.80
Interleukin-17 A 10.52 ± 1.23 27.54 ± 2.50 < 0.0001 19.30 ± 3.03 18.09 ± 3.12 0.99
Oil red O staining1 4.90 ± 0.91 (n = 11) 8.01 ± 0.89 (n = 8) 0.033 5.91 ± 0.95 (n = 11) 6.63 ± 1.18 

(n = 8)
0.60

Unless indicated, values are displayed as the mean percentage of positive cells (±SEM). 1 Expressed as the mean percentage of positive area 
(±SEM). Significant values (i.e., p value <0.05) are displayed in bold

Fig. 3 Results of 18F-FDG PET quantification in 18-week-old ApoE−/− mice according to their diet or renal status. Upper line: standard diet 
(n = 13) versus Western diet (n = 13)-fed ApoE−/− mice. Bottom line: nonuremic (n = 13) versus uremic (n = 13) ApoE−/− mice
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difference was significant only in the WD-U group. This 
group also exhibited more CD11c-positive cells, a pheno-
typic marker that is expressed by dendritic cells that exert 
both pro- and antiatherosclerotic functions but also by other 
cells, especially the monocyte-macrophage lineages [34]. 
Of note, the staining of CD163, a marker of anti-inflam-
matory and atheroprotective macrophages [35], is similar 
between groups, contrary to the results with the anti-CD68 
antibody that is expressed on both pro- and anti-inflamma-
tory macrophages.

In addition, immunostaining also revealed some differ-
ences between ApoE−/− mouse groups. Indeed, higher pro-
portions of CD68-, interferon-γ-, IL-1α- and IL-6-positive 
cells were found in WD ApoE−/− mice and/or in WD-U 
ApoE−/− mice than in SD ApoE−/− and/or in SD-U ApoE−/− 
mice. Although some atheroprotective functions have been 
described for interferon-γ and IL-6, these cytokines and 
IL-1α are mainly considered atherogenic [36–38].

Two other features seem paradoxical. CD31, an adhesion 
molecule that is expressed in particular by endothelial cells, 
participates in the development of atherosclerotic lesions 
by sensing shear stress and through the transmigration of 
leukocytes. Therefore, double knockout ApoE−/−/CD31−/− 
mice exhibit a significant reduction in atherosclerotic 
lesions [39]. We found that SD ApoE−/− and SD-U ApoE−/− 
mice have fewer positive CD31 cells within the aortic wall 
than control C57BL/6 mice. This may be secondary to the 
decreased expression of CD31 within the endothelial layer 
from 6 weeks to 16–20 weeks in this model, in parallel with 
the evolution of atherosclerotic lesions from the fatty to 
fibrous stage [40]. In addition, some proinflammatory cyto-
kines can be responsible for both CD31 internalization and 
decreased synthesis, as shown with tumor necrosis factor-α 
and interferon-γ [41, 42]. The role of IL-17 A in atherogen-
esis is controversial, with both atherogenic and atheropro-
tective functions depending on the studies [43]. Indeed, 
IL-17 A may be involved in the early stage of atherosclero-
sis development and may explain a different percentage of 
positive cells among ApoE−/− mouse groups. Of note, the 
staining by anti-IL-17 A antibody was mainly localized in 
endothelial cells, which is unusual and may suggest a lack 
of specificity of the antibody.

In this study, the WD groups of mice exhibited a higher 
percentage of inflammatory cells than the SD groups. In con-
trast, the induced uremia did not seem to increase inflamma-
tory cells. In line with these findings, no infiltration by B or 
T cells has been observed in previous studies with uremic 
mice [17, 44]. Previous results are controversial regarding 
the involvement of macrophages, demonstrating [45, 46] 
or not [18, 30] an increased macrophage content in athero-
sclerotic lesions. Uremia, although contradicted by some 
studies [17, 44], contributes to accelerating the calcification 

Discussion

To our knowledge, this is the first study assessing two fre-
quently used methods of accelerated atherosclerosis in 
ApoE−/− mice. We found that with its current sensitivity, 
our 18F-FDG PET protocol at the 8-week follow-up did not 
detect metabolic remodeling within the aortic wall, whereas 
inflammation was revealed by immunostaining. In addition, 
this vessel wall inflammation was found only in WD mice.

The similarity of aortic 18F-FDG uptake assessed by 18F-
FDG uptake or gamma counting between all groups, includ-
ing the wild-type mice, was previously reported. Indeed, in 
the study by Ahmed et al. [11]., the aortic 18F-FDG uptake 
was similar in WD ApoE−/− mice or in WD wild-type mice 
of 16 and of 20 weeks of age. In addition, in the study by Hag 
et al. [10]., aortic 18F-FDG uptake, assessed by SUVmean and 
gamma counting, was significantly higher in high-fat diet-
fed ApoE−/− mice than in SD ApoE−/− mice after 16 weeks 
of diet but not after only 8 weeks. Similarly, in the study by 
Zhao et al. [12]., gamma counting of aortic 18F-FDG uptake 
was similar in high fat, high cholesterol diet-fed ApoE−/− 
mice and in high fat, high cholesterol diet-fed wild-type 
mice compared with SD wild-type mice after 5 weeks of 
diet but was higher after 13 weeks of diet. The study by 
Laurberg et al. [14]. even suggests that aortic 18F-FDG 
uptake is lower in nonatherosclerotic segments of the aorta 
than in advanced atherosclerotic lesions. Taken together, 
these results emphasized the lack of sensitivity of 18F-FDG 
PET in assessing aortic inflammation in ApoE−/− mice, even 
when using a hybrid PET-MR approach. We have chosen a 
study endpoint of 8 weeks after the accelerated atheroscle-
rosis method because intralesional macrophages at the early 
stage of foam cell formation are responsible at least in part 
for 18F-FDG uptake [29] and because atherosclerotic lesions 
can be histologically detected as early as 3 weeks of WD [9] 
and as 6 weeks of uremia [30]. But, based on the results, it 
might be possible that our study endpoint was too early for 
demonstrating differences between groups. Although PET 
acquisition 3 h after 18F-FDG injection has been reported to 
optimize the quantitation of atherosclerotic plaque inflam-
mation in humans by decreasing blood pool activity [31], 
our PET acquisition 90 min after 18F-FDG injection is in 
line with previous studies, with a delay ranging from 60 to 
120 min after injection [12, 32]. In addition, to our knowl-
edge, no study comparing different 18F-FDG PET acquisi-
tion times has been performed in the ApoE−/− mouse model.

In contrast to metabolic imaging, histological staining 
clearly highlighted differences between ApoE−/− versus 
wild-type mice. As expected, because of the involvement 
of CD8+ cells and macrophages in the pathophysiology of 
atherosclerosis [33], more CD8- and CD68-positive cells 
were found in ApoE−/− mice than in wild-type mice, but the 
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First, 18F-FDG PET-MR imaging at the 8-week follow-up 
failed to reveal an early atherogenic remodeling of the aorta 
that was nevertheless demonstrated using immunostaining. 
Second, only WD, and not uremia, significantly led to accel-
erated atherosclerosis, at least in its inflammatory compo-
nent. Therefore, future studies with new anti-inflammatory 
and targeted therapies in ApoE−/− mice should use a WD 
to accelerate (inflammatory) atherosclerosis and should not 
rely solely on 18F-FDG PET to assess the efficacy. Other 
possible discriminating imaging approaches could be pro-
posed, such as other radiotracers than 18F-FDG or micron-
sized particles of iron oxide conjugated with antibodies 
targeting early endothelial activation and/or mineralization 
processes involved in atherosclerosis.
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