
ORIGINAL PAPER

The International Journal of Cardiovascular Imaging
https://doi.org/10.1007/s10554-024-03207-7

Jeffrey Yim, Mobina Mahdavi, and Hooman Vaseli are co-first 
authors.

Purang Abolmaesumi and Teresa S.M. Tsang are co-senior authors.

	
 Teresa S.M. Tsang
t.tsang@ubc.ca

1	 Division of Cardiology, University of British Columbia, 2775 
Laurel Street, 9th Floor, Vancouver, BC V5Z 1M9, Canada

2	 Department of Electrical and Computer Engineering, 
University of British Columbia, Vancouver, BC, Canada

Abstract
Left ventricular (LV) geometric patterns aid clinicians in the diagnosis and prognostication of various cardiomyopathies. 
The aim of this study is to assess the accuracy and reproducibility of LV dimensions and wall thickness using deep learn-
ing (DL) models. A total of 30,080 unique studies were included; 24,013 studies were used to train a convolutional neural 
network model to automatically assess, at end-diastole, LV internal diameter (LVID), interventricular septal wall thickness 
(IVS), posterior wall thickness (PWT), and LV mass. The model was trained to select end-diastolic frames with the largest 
LVID and to identify four landmarks, marking the dimensions of LVID, IVS, and PWT using manually labeled landmarks 
as reference. The model was validated with 3,014 echocardiographic cines and the accuracy of the model was evaluated 
with a test set of 3,053 echocardiographic cines. The model accurately measured LVID, IVS, PWT, and LV mass com-
pared to study report values with a mean relative error of 5.40%, 11.73%, 12.76%, and 13.93%, respectively. The 𝑅2 of 
the model for the LVID, IVS, PWT, and the LV mass was 0.88, 0.63, 0.50, and 0.87, respectively. The novel DL model 
developed in this study was accurate for LV dimension assessment without the need to select end-diastolic frames manu-
ally. DL automated measurements of IVS and PWT were less accurate with greater wall thickness. Validation studies in 
larger and more diverse populations are ongoing.
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Introduction

Left ventricular (LV) geometric patterns provide clues in 
the diagnosis, management, and monitoring of cardiovas-
cular diseases. Two-dimensional (2D) transthoracic echo-
cardiography is an accessible and reliable imaging modality 
routinely used for the measurement of LV dimensions and 
wall thickness, which has been shown to predict progno-
sis in various cardiomyopathies [1–5]. Diagnostic accuracy 
of transthoracic echocardiogram interpretations by a nov-
ice interpreter is low, and an accurate assessment of LV 
geometry using echocardiography may be limited by the 
requirement of an experienced interpreter [6–8]. Further, 
these measurements have been shown to show significant 
interobserver and intraobserver variability [9]. Automation 
of echocardiographic interpretation using deep learning 
(DL) can potentially allow non-experts to assess LV dimen-
sions and wall thickness with an accuracy comparable to 
experts while eliminating intraobserver variability,  thus 
improving reproducibility [10]. As predictions made by 
DL models are subject to noise and inference errors, it is 
important to be able to represent uncertainty in the model’s 
predictions [11]. Previous DL models measuring LV dimen-
sions lacked uncertainty quantification and required manual 

input of individual end-diastolic frames for data analysis, 
which limited their real-life applicability [12–14]. The aim 
of this study is to determine the accuracy and reproducibil-
ity of DL derived LV dimensions and wall thickness with 
incorporation of prediction uncertainty.

Methods

Study population

All transthoracic echocardiography studies of consecutive 
patients ≥ 18 years old from 01/01/2017 to 12/31/2021 at a 
single tertiary care center with annotations for the measure-
ment of LV dimensions that were verified by level 3 echo-
cardiographers were included in the development of the 
model. The echocardiographic cines were split in 80:10:10 
proportions for training, validation, and testing respectively. 
The study was approved by the University of British Colum-
bia Clinical Research Ethics Board.
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Two-dimensional transthoracic echocardiography 
and preprocessing

Transthoracic echocardiogram studies were performed by 
certified academic sonographers using standard commer-
cially available ultrasound systems E9 [GE Healthcare, 
Milwaukee, WI], EPIQ [Philips Medical Imaging, Andover, 
MA]), and iE33 [Philips Medical Imaging, Andover, MA]) 
and recorded on an image and information system (Syngo 
Dynamics [Siemens Medical Solutions, Ann Arbor, MI]). 
The distribution of the machines used for data acquisition 
was E9 (7%), iE33 (43%), and EPIQ (50%). Echocardio-
graphic images were acquired, and measurements were 
performed offline in accordance with the recommendations 
of the American Society of Echocardiography [15]. End-
diastolic frames were identified visually by frames with 
the greatest LV cavity. Left ventricular internal diameter 
(LVID) was measured at end-diastole in the LV minor axis 
plane at the level of mitral valve leaflet tips. The antero-
septal and inferolateral septal wall thickness were measured 
at end-diastole to assess the interventricular septum at end-
diastole (IVS) and posterior wall thickness at end-diastole 
(PWT) respectively. LV mass was calculated using the Cube 
formula. All measurements were verified by a level 3 echo-
cardiographer at our center. All annotations, on-screen texts, 
and identifications were removed, and the parasternal long 
axis (PLAX) videos were converted to multidimensional 
numeric arrays of pixels, which were resized to 224 × 224 
while maintaining the aspect ratio, by adding pad pixels of 
0 value while maintaining the beam in the center.

Deep learning model development and training

We developed and trained our convolutional neural net-
work model using the open-source library Keras with Ten-
sorFlow backend in Python. We used a U-net architecture 
with skip connections. The downstream (first half of the 
U-net) consisted of four sets of two 2D-convolutional layers 
with three max-pooling layers in between and the upstream 
(second half of the U-net) consisted of two sets of two 

2D-convolutional layers, with upsampling at the beginning 
of each set, followed by two output heads, each consisting 
of another upsampling layer, two 2D-convolutional layers, 
and a full connected layer with sigmoid activation function 
to generate binary segmentation map for that output head. 
The number of convolutional kernels started from 8 and 
increased to 64 by the end of the downstream section, and 
decreased from 32 to 8 in the upstream section. All 2D con-
volutional kernels had the kernel size of 3 × 3 pixels. The 
model was optimized for image segmentation to perform 
landmark detection. The model first identified the correct 
end-diastolic frames in the cine loops, then used the end-
diastolic frames to train end-to-end a two-foci network, with 
one focus responsible for finding a pair of the landmarks 
at the septal endocardial border and the inferolateral wall 
endocardial border below the level of the mitral valve leaflet 
tips. The other focus was responsible for finding a pair of 
landmarks to identify the pericardium and right ventricular 
endocardial border for estimation of IVS and PWT respec-
tively (Fig. 1).

The model selected the correct end-diastolic frames with 
the largest LVID to identify key landmarks for measuring 
the LV dimensions in each cine. LVID was measured for all 
the frames of a PLAX video, and the frame with the larg-
est LVID measurement was used as the end-diastolic frame 
for further measurement (Fig.  2). Using manually labeled 
annotations as a reference, the model was trained to auto-
matically measure the LVID, IVS, PWT, and LV mass. Each 
frame was processed individually, and no temporal informa-
tion was used. Measurements of LVID, IVS, and PWT were 
done as a postprocessing step.

The model was validated with 10% of the total echo-
cardiographic cines, which were also used to calibrate the 
prediction uncertainty. We then evaluated prediction uncer-
tainty in all of the test sets. Prediction uncertainty was pre-
sented as a binary result, and an echocardiographic cine was 
discarded by the model if the model identified > 2 landmark 
locations per focus or was unable to generate predictions in 
five consecutive frames around the end-diastolic frames, or if 
the Z-score of uncertainties was > 1 based on our validation 

Fig. 1  Architecture of the deep 
neural network framework
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(Fig. 3). We note that the training, validation, and test sets 
had mutually exclusive group of patients.

In our test set of 3,053 echocardiographic cines, a total 
of 240 echocardiographic cines were discarded due to high 
uncertainty. Of the remaining 2813 echocardiographic cines, 
our model automatically measured the LVID, IVS, PWT, 
and LV mass with a mean percent error of 5.40%, 11.73%, 
12.76%, and 13.93%, and with a mean absolute error of 
2.4 mm, 1.1 mm, 1.2 mm, and 20.8 g respectively (Figs. 4 
and 5).The 𝑅2 of the model for the LVID, IVS, PWT, and 
the LV mass was 0.88, 0.63, 0.50, and 0.87 respectively. Our 
model prediction on all of the measurements improved in 
its accuracy with prediction uncertainty, and the analysis 
of the rejected cases demonstrated poor model prediction 
(Table 1).

Our model had similar mean percentage error com-
pared to the state-of-the-art models in landmark detection 
of LVID, IVS, and PWT (Table  2). Model prediction for 
IVS and PWT were less accurate than LV mass and LVID, 
especially with very large LV wall thickness. Our model 
predictions were more accurate or at least similar to human 
interobserver variability between two independent expert 
readers using manual measurements (Table 3) [6]. On aver-
age, the model generated an output of 270 frames/second, 
processing each frame in 3.7ms.

We assessed our model’s accuracy of the classification 
model in predicting LV geometry pattern based on the 2015 
ASE/EACVI guideline (Fig. 6) [15]. Our model was able 
to accurately categorize the LV geometry pattern with F1 
scores of 0.73, 0.58, 0.62, and 0.44 (normal, concentric 
remodeling, eccentric hypertrophy, and concentric hyper-
trophy respectively).

set. The accuracy of the model was evaluated with a test 
set from the remaining 10% of the echocardiographic cines, 
and the mean relative error and 𝑅2 scores were calculated.

The model was trained for 100 epochs, meaning that each 
training data was seen by the model 100 times. To prevent 
overfitting on or memorizing the training data, each image 
was augmented with random rotation (up to 10 degrees), 
horizontal and vertical shift (by 10% of the image resolu-
tion), and zooming in (to up to 90% of the image size). Each 
batch of input data at each training iteration consisted of 
16 end-diastolic frames of 16 randomly selected echo cines. 
To optimize the model, DICE loss and binary cross-entropy 
loss were used as the error measures, with equal weight. 
These were applied on both output heads. The ADAM opti-
mizer with the learning rate of 0.001 was used.

Statistical analysis

Statistical analyses were performed using SAS v9.4 (SAS 
Institute, Cary, North Carolina). Continuous variables were 
expressed as mean ± standard deviation. Categorical vari-
ables were expressed as numbers (percentages). Data was 
analyzed using two-way ANOVA, chi-square, and student’s 
t-test. A p-value of < 0.05 was taken to be significant.

Results

A total of 30,080 unique transthoracic echocardiographic 
cines from the parasternal long-axis (PLAX) view over a 
5-year period were used to train, validate, and test a convo-
lutional neural network model to automatically assess LV 
dimensions. A total of 24,013 unique studies were used to 
train the model, and the model was validated with 3,014 
echocardiographic cines, which were also used to calibrate 
the prediction uncertainty. The accuracy of the model was 
evaluated with a test set of 3,053 echocardiographic cines 

Fig. 2  Frame-by-frame assess-
ment of left ventricular internal 
diameter (LVID) in all frames 
of a parasternal long axis video 
using the deep neural network 
model
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end-systolic and end-diastolic frames automatically, but 
have not been used to measure and report LV wall thickness 
[16–22]. The mean percentage error ranged between 5.40 
and 13.93% for our model, which is well within the range of 
typical interobserver variability between expert clinicians, 
while eliminating intraobserver variability [9, 23, 24]. Our 
model contributes to the previous work in LV wall dimen-
sion measurements by making a truly autonomous model 
one step closer. Although our study selected PLAX videos 
specifically for assessment, our group has demonstrated 
that DL models can accurately classify 15 standard views 
in two-dimensional echocardiography, and that automated 
selection of PLAX video is feasible [25, 26].

Similar to previous work, our model was less accurate in 
estimating IVS and PWT when compared to LVID, espe-
cially in cases of greater wall thickness [13]. Several con-
siderations are important. First, the measurements could 
have been overestimated by including the RV trabecula-
tion, papillary muscles, or the sigmoid septum; however, 
our model generally underestimated the wall thickness as 
opposed to overestimation. It is possible that our model 
measured the septum at the tapered section, underestimating 

Discussion

To the best of our knowledge, the dataset of 2D transtho-
racic echocardiography studies used for the development of 
this DL model for assessing LV dimension and wall thick-
ness represented the largest of all datasets that have been 
used for similar development. The principal findings of this 
study are as follows: (1) the novel DL model was able to 
accurately assess the LV wall dimension; (2) the model was 
able to automatically estimate the LV wall thickness without 
manual selection of end-diastolic frames; and (3) DL auto-
mated measurements of IVS and PWT were less accurate 
with greater wall thickness.

Our DL model for automating LV dimensions from 
PLAX views compare favorably with the current state-
of-the-art models. In practice, LV thickness is measured 
using an end-diastole frame that is identified manually by 
selecting the frame with the largest LV cavity. Previous 
DL models have required users to manually select end-
diastolic frames to be inputted into the model, which limits 
the real-life applicability of automated LV wall dimension 
assessment. Previous DL models have been trained to select 

Fig. 4  Scatter plot and regression of predicted left ventricular dimension measurement using deep neural network models

 

Fig. 3  Echocardiographic cines 
distribution for the model 
development
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its true thickness. As well, the model had fewer images of 
markedly thickened walls to train on. One way of improving 
the accuracy of the model would be to include more images 
with very thick LV walls in the training set and to set a geo-
graphical limitation on the landmark detection to avoid the 
end of the septum where the tapering may occur.

This study was the first to incorporate prediction uncer-
tainty in a DL model for assessing LV wall dimensions. 
Uncertainty quantification in artificial intelligence is impor-
tant, as the model is able to convey to the users the level 
of confidence for its predictions and users can be apprised 
of any uncertainty of its predictions. However, there are no 
universally accepted parameters for the level of uncertainty 
in measurement of LV wall dimension by a DL model. 

Table 1  Comparison of model measurements based on uncertainty prediction
Model measurements without uncer-
tainty prediction

Model measurements with uncer-
tainty prediction

Model measurements on rejected cases (based on uncer-
tainty prediction)

MAE MPE R2 MAE MPE R2 MAE MPE R2

LV mass 21.5 g 14.4% 0.86 20.8 g 13.9% 0.87 31.8 g 21.7% 0.79
LVIDd 2.60 mm 5.8% 0.86 2.44 mm 5.4% 0.88 4.81 mm 11.8% 0.76
IVSd 1.16 mm 12.1% 0.59 1.10 mm 11.7% 0.63 1.97 mm 17.4% 0.44
PWT 1.20 mm 13.1% 0.47 1.15 mm 12.7% 0.50 1.87 mm 18.4% 0.30

Table 2  Comparison of current study model to state-of-the-art model 
in landmark detection of left ventricular wall dimensions
Model N Mean percent error (%)

LV mass LVID IVS PWT
Current study 29,946 13.9 5.4 11.7 12.7
Gilbert et al. [13] 585 N/A 6.0 13.4 10.8
Sofka et al. [12] 7657 N/A 4.87 N/A N/A

Table 3  Comparison of current study model to interobserver variabil-
ity between two expert readers using manual measurement
Model Mean percent error

LV mass (g) LVID (mm) IVS (mm) PWT (mm)
Current study 20.8 2.4 1.1 1.2
Lang et al. [24] N/A 4.0 1.1 1.5

Fig. 5  Blind-Altman plots for the mean percent error
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echocardiograms done in both inpatient and outpatient echo-
cardiography labs at our tertiary care center that includes a 
diverse set of populations and pathologies. We only included 
echocardiographic studies of good quality for LV dimension 
and wall thickness. However, poor echocardiographic stud-
ies are unlikely to yield accurate LV wall dimensions, and our 
model’s prediction uncertainty would likely have discarded 
those studies. There is also uncertainty in how the model will 
perform with certain anatomic variations, such as basal septal 
hypertrophy or apical hypertrophy.

Conclusion

In this pilot study, we developed a novel DL model for auto-
mating the measurement of LV dimensions and wall thickness 
by 2D echocardiography. The model performed well for mea-
surements of LVID and LV mass, and moderately for IVS and 
PWT. The accuracy appeared reduced with greater LV wall 
thickness.
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