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Abstract
Assessing left ventricular (LV) filling pressure (LVFP) is challenging in patients with coronary artery disease (CAD) and 
preserved LV ejection fraction (LVEF). We aimed to correlate left atrial strain (LAS) with two invasive complementary 
parameters of LVFP and compared its accuracy to other echocardiographic data to predict high LVFP. This cross-sectional, 
single-center study enrolled 81 outpatients with LVEF > 50% and significant CAD from a database. Near-simultaneous echo-
cardiography and invasive measurements of both LV end-diastolic pressure (LVEDP) and LV pre-atrial contraction (pre-A) 
pressure were performed in each patient, based on the definition of LVEDP > 16 mmHg and LV pre-A > 12 mmHg as high 
LVFP. A moderate to strong correlation was observed between LAS reservoir (LASr), contractile strain, and LVEDP (r: 0.67 
and 0.62, respectively; p < 0.001); the same was true for LV pre-A (r: 0.65 and 0.63, respectively; p < 0.001). LASr displayed 
good diagnostic performance to identify elevated LVFP, which was higher when compared to traditional parameters. Median 
value of LASr was higher for an isolated increase of LVEDP than for simultaneously high LV pre-A. The cutoff found to 
predict high LVFP was lower for LV pre-A than that one for LVEDP. In the current study, LASr did not provide an additional 
contribution to the 2016 diastolic function algorithm. LAS is a valuable tool for predicting LVFP in patients with CAD 
and preserved LVEF. The choice of LVEDP or LV pre-A as the representative marker of LVFP leads to different cutoffs to 
predict high pressures. The best strategy for adding this tool to a multiparametric algorithm requires further investigation.
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Introduction

Evaluation of left ventricular (LV) filling pressure (LVFP) 
has been performed through both invasive and noninvasive 
methods, routinely by echocardiography [1]. Some chal-
lenging scenarios include heart failure with preserved ejec-
tion fraction (HFPEF) and coronary artery disease (CAD). 
HFPEF represents at least half of the patients with this syn-
drome [2]. CAD is an important cause of mortality world-
wide [3]. Left atrial strain (LAS) has been described as a 
supplementary marker of LVFP and a useful tool for grading 
diastolic dysfunction (DD) in patients with preserved LVEF 
[4, 5].

The 2016 American Society of Echocardiography (ASE) 
and European Association of Cardiovascular Imaging 
(EACVI) guidelines [6] for LV diastolic function evalua-
tion recommended key parameters—left atrial volume index 
(LAVI), tricuspid regurgitation (TR) peak velocity, mitral 
annulus velocity (e′) and ratio E/e′—in an algorithm to pre-
dict LVFP. Some studies have revealed a modest diagnostic 
performance in normal LVEF [7, 8]. The EACVI recommen-
dation for imaging in HFPEF [9] has included LAS reservoir 
(LASr) to replace any missing parameter.

Actually, the widespread term “filling pressure” refers to 
different pressures such as the mean capillary wedge pres-
sure (PCWP), mean left atrial pressure (LAP), mean LV 

diastolic pressure, LV pre-atrial contraction pressure (LV 
pre-A), and LV end diastolic pressure (LVEDP). These pres-
sures are not necessarily interchangeable, and their elevation 
may occur in different stages of the cardiac disease [10, 11].

We aimed to evaluate the correlation of LAS with two 
different and complementary invasive parameters of LVFP 
in each patient with significant CAD and preserved LVEF: 
LVEDP and LV pre-A. In addition, we compared the LAS 
diagnostic accuracy with conventional echocardiographic 
parameters.

Methods

Study population

This cross-sectional, single-center study was conducted at 
Dante Pazzanese Institute of Cardiology (São Paulo, Brazil), 
a specialized cardiovascular center. A total of 141 outpa-
tients referred for diagnostic left-sided heart catheterization 
were retrospectively reviewed from a database. Inclusion 
criteria were defined as: appropriate register of LVFP inva-
sive measurements, sinus rhythm, LVEF > 50%, significant 
CAD (defined by invasive angiography as > 50% stenosis 
of the left main coronary artery, > 70% in a major coronary 
vessel), and no intravenous fluid administration within 24 h 
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prior to the test. Patients with arrhythmia, paced rhythm, 
prosthetic valve, or more than mild valvopathy, complex 
congenital heart disease, interatrial septal aneurysm, pri-
mary myocardial disease, pericardial diseases, ventricular 
septal defect, or an inappropriate acoustic window would be 
excluded. The study was approved by the Institutional Eth-
ics Committee. All patients had provided written informed 
consent at the moment of recruitment.

Echocardiographic imaging acquisition and analysis

Echocardiographic images were acquired from GE Health-
care equipment, and analysis was performed on EchoPAC 
PC software Version 204 by an expert echocardiographer. 
Patients were evaluated in left lateral decubitus as the ini-
tial position. Standard exams were performed according to 
current recommendations [12] at the lab cath just before 
coronary angiography. LVEF and LAVI by Simpson´s 
method, transmitral peak early (E) and late atrial flow (A) 
velocities, septal and lateral mitral annular velocities, and 
TR peak velocity were measured and averaged over three 
cardiac cycles. Dedicated views were recorded for LV and 
LA analyses.

LAS reservoir (LASr), conduit (LAScd), contractile 
(LASct), and LV global longitudinal strain (GLS), were 
measured by two-dimensional speckle tracking echocardi-
ography technique using a frame rate from 40–80/s. Biplanar 
calculation of LAS was based on the ASE/EACVI standardi-
zation document [13]. As recommended by this task force, 
the endocardial border was manually traced and the regions 

of interest were adjusted to cover the myocardium (Fig. 1) 
according to previously described steps for nondedicated 
software [14]. These results were displayed on the follow-
ing tables.

Besides, more recently, novel dedicated LA tracking tool 
has been available in the software, so that an additional 
biplanar analysis of LAS was also performed for all cases 
(Fig. 2). This dedicated tool provided automated recogni-
tion of the chamber based on initial landmarks (two points 
to mark mitral ring and one point for LA roof). Diastolic 
function analysis was performed according to the 2016 ASE/
EACVI guidelines [6]. Pulmonary vein Doppler was also 
acquired and analyzed.

Echocardiographic recordings were analyzed while 
blinded to invasive hemodynamic data.

Cardiac catheterization and invasive measurements

Left heart catheterization was performed in the supine 
position, without intravenous sedation, immediately after 
echocardiogram, using a 5 or 6 F catheter with femoral or 
radial arterial access. LV pressures and simultaneous elec-
trocardiographic recordings were taken during an expiratory 
pause, before contrast injection, using a hemodynamic poly-
graph (SP12H-TEB—Brazilian Electronic Technology). A 
fluid-filled catheter was used and transducers were leveled at 
the midaxillary line “zero” in the fluid column. A minimum 
of five consecutive heartbeat cycles were averaged to obtain 
LVEDP and LV pre-A. LVEDP > 16 mmHg [15] and LV 
pre-A > 12 mmHg [16] were defined as high LVFP.

Fig. 1  Biplanar LAS on non-
dedicated LA tracking software
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Statistical analysis

Normality was tested using Kolmogorov-Smirnov with 
Lilliefors correction. Continuous variables were provided 
as mean ± standard deviation for parametric variables or 
median and interquartile range for nonparametric varia-
bles. Categorical data were expressed as absolute numbers 
and percentages. Comparison of continuous variables used 
T-Student and Wilcoxon tests. For categorical variables, 
Chi-squared test was performed. Correlations of continu-
ous variables were made using two-tailed test Pearson 
or Spearman method as appropriate. Receiver-operating 
characteristic (ROC) analysis was carried out to assess 
the diagnostic ability of echocardiographic parameters to 
identify elevated LVFP. Sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), 
and overall accuracy were calculated using standard defini-
tions to predict high LVFP.

Reproducibility of strain measurements was tested 
through intraclass correlation coefficient (ICC) based on a 
subset of 16 exams randomly selected to be reevaluated by 
another experienced operator. In addition, Bland-Altman 
analysis was performed to evaluate the agreement between 
LV-software and LA-software measurements of LAS for 
the entire study sample.

The association of LVEDP and LV pre-A with dichoto-
mous variables was evaluated using binary logistic regres-
sion, assuming odds ratio (OR) as the main analysis.

Statistical analysis was performed using IBM SPSS 
Statistics version 20 (SPSS Inc., IL, USA) software. A 
p-value < 0.05 was considered statistically significant.

Results

We selected a final sample of 81 patients. From the initial 
database, 22 did not meet the inclusion criteria due to inap-
propriate trace recordings of LVFP invasive measurements, 
and 17 presented reduced LVEF. Arrhythmia and more than 
mild valvopathy excluded 12 patients. A subset of 9 patients 
was excluded due to poor acoustic image quality.

Baseline clinical characteristics of the study population 
are summarized in Table 1.

Coronary angiography was requested for outpatients 
investigating CAD under elective conditions. Abnormal 
findings in noninvasive ischemic testing were noted in 41 
(50.6%) patients. Prior acute coronary syndrome more than 
30 days before was reported in 18 (22.2%) subjects. Symp-
toms were the only reason for angiogram in 22 (27.2%) 
patients.

Left main coronary artery disease was reported in 7 
(8.6%) patients. Of the remaining group, 47 (58%) had sin-
gle-vessel disease, 19 (23.5%) presented double-vessel dis-
ease, and 8 (9.9%) three-vessel disease. In 43 (53%) cases, 
the left anterior descending artery presented significant 
stenosis.

Fig. 2  Biplanar LAS on dedi-
cated LA software
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There was no significant difference in regular oral 
medication use between normal and high LVFP groups. 
Prevalence of cardiovascular risk factors was also similar 
as well as heart rate and blood pressure at the time of 
echocardiographic evaluation and catheterization.

LVEDP was normal in 41 patients (group A) and > 16 
mmHg in 40 patients (group B). From this last group, 27 
patients presented simultaneously LV pre-A > 12 mmHg 
(mean 15.8 ± 3.3 mmHg), while 13 had isolated high 
LVEDP. Mean LVEDP and LV pre-A in group A were 
12.3 ± 2.9 mmHg and 8.2 ± 2.8 mmHg respectively; in 
group B, they were 20.6 ± 3.1 mmHg and 14 ± 3.8 mmHg, 
respectively.

Echocardiographic profile

Echocardiographic parameters are described in Table 2. 
Median values of LASr (Fig. 3) in normal LVFP [39.78 
(38.55–41.86)] were higher than in isolated high LVEDP 
[34.41 (30.88–38.13); p < 0.001] and in high LV pre-A 
[23.69 (21.97–26.68); p < 0.001].

Table 1  Baseline characteristics

ACE angiotensin-converting enzyme, ARB  angiotensin II receptor 
blocker, CAD coronary artery disease, CABG coronary artery bypass 
grafting, PCI percutaneous coronary intervention

Variables Number of patients (%) 
or mean (± standard-
deviation)

Age (years) 61.1 ± 8.2
Female sex 27 (33.33%)
Body mass index (kg/m²) 28.8 ± 4.4
Systolic blood pressure (mmHg) 148 ± 21.1
Diastolic blood pressure (mmHg) 83 ± 11.1
Heart rate (bpm) 66.7 ± 11.7
Hypertension 70 (86.42%)
Dyslipidemia 64 (79.01%)
Diabetes mellitus 33 (40.74%)
Familiar history of premature CAD 2 (2.47%)
Current smoker 18 (22.22%)
Symptoms
 Dyspnea 21 (25.93%)
 Angina 47 (58.02%)

Medication use
 Aspirin 74 (91.4%)
 Statin 60 (74.1%)
 Beta-blocker 59 (72.8%)
 ACE-inhibitor 27 (33.3%)
 ARB 32 (39.5%)
 Calcium channel blocker 19 (23.5%)
 Hydralazine 11 (13.6%)
 Nitrate 21 (25.9%)
 Diuretic 26 (32.1%)
 Oral antidiabetic 25 (30.9%)
 Insuline 6 (7.4%)

Coronary revascularization
 CABG 16 (19.8%)
 PCI 14 (17.3%)

Fig. 3  Median values of LASr based on hemodynamic classification 
according to LVFP

Fig. 4  Scatter plots of correla-
tion between LAS and LVFP
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Correlation of LAS and traditional 
echocardiographic variables with LVFP

LASr and LASct revealed a moderate to strong correlation 
with LVEDP and LV pre-A (Table 3). The scatter diagrams 
of LAS are exhibited in Fig. 4. E/e′ average, TR peak veloc-
ity, and LAVI were also correlated with LVFP. TR peak 
evaluation was not feasible (none/trace) in 18 (22%) cases.

A binary logistic regression analysis was performed to 
study the variables LAVI > 34 ml/m², LASr < 26%, and 
E/e′ average > 14 as predictors of  LVEDP and LV pre-A VE. 
The model containing these 3 variables was significant for 

predicting LVEDP [X² (3) = 24.99; p < 0.001; Nagelkerke R² 
= 0.35] and LV pre-A [X² (3) = 39.87; p < 0.001; Nagelkerke 
R² = 0.54]. In this model, LASr was the only significant 
predictor for LVEDP (OR 7.1; 95% CI 1.7–29.3; p = 0.007) 
and LV pre-A (OR 18.2; 95% CI 4.5–73.4; p < 0.001).

Diagnostic accuracy of traditional 
echocardiographic parameters to predict elevated 
LVFP

E/e′ average, TR peak velocity, and LAVI, as single vari-
ables, demonstrated high specificity and lower sensitivity 
(Table 4). On ROC analysis, these parameters revealed a 

Table 2  Echocardiographic parameters across the groups classified by LVEDP and LV pre-A

DT deceleration time, FAC fractional area change, GLS global longitudinal strain, IVRT  isovolumic relaxation time, LAS cd conduit left atrial 
strain, LASct  contractile left atrial strain. LASr  reservoir left atrial strain, LAVI  left atrial volume indexed, LVH  left ventricle hypertrophy, 
RV right ventricle, TR tricuspid regurgitation

Variable LVEDP ≤ 16 mmHg (n = 41) LVEDP > 16 
mmHg (n = 40)

p-value LV pre-A ≤ 12 
mmHg (n = 54)

LV pre-A > 12 
mmHg (n = 27)

p-value

LV end diastolic diameter (mm) 49.1 ± 3.80 49.4 ± 3.7 0.70 49.1 ± 3.6 49.4 ± 4.1 0.74
LV mass index (g/m²) 99 ± 15.3 98.8 ± 16.6 0.95 98.5 ± 16.1 99.7 ± 15.6 0.74
Relative wall thickness 0.42 ± 0.04 0.41 ± 0.05 0.67 0.41 ± 0.04 0.42 ± 0.05 0.77
LV geometry
 Normal 19 (46.34%) 20 (50%) 0.82 28 (51.85%) 11 (40.74%) 0.74
 Concentric remodelling 10 (24.39%) 10 (25%) 6 (11.11%) 5 (18.52%)
 Concentric LVH 6 (14.63%) 7 (17.5%) 13 (24.07%) 7 (25.93%)
 Excentric LVH 6 (14.63%) 3 (7.5%) 7 (12.96%) 4 (14.81%)

LV end diastolic volume (ml) 77.9 ± 16.6 77 ± 17 0.81 77.9 ± 18.2 76.6 ± 13.5 0.70
LVEF-Simpson (%) 63.12 ± 5.30 64.43 ± 3.64 0.20 63.54 ± 5.12 64.22 ± 3.25 0.47
GLS LV (%) − 16.53 ± 3.42 − 16.93 ± 3.50 0.60 − 16.94 ± 3.39 − 16.30 ± 3.57 0.44
LV wall motion abnormality 14 (34.15%) 11 (27.5%) 0.63 18 (33.33%) 7 (25.93%) 0.61
E wave (cm/s) 68.07 ± 15.14 78.25 ± 19.58 0.01 69.61 ± 17.21 80.07 ± 18.14 0.01
 A wave (cm/s) 74.56 ± 18.68 76.73 ± 16.9 0.59 74.61 ± 17.92 77.67 ± 17.56 0.47

E/A ratio 0.97 ± 0.34 1.06 ± 0.32 0.25 0.98 ± 0.34 1.08 ± 0.33 0.22
DT E wave (ms) 208.5 ± 50.6 215.50 ± 38.55 0.49 210.74 ± 47.60 214.41 ± 39.72 0.72
Septal e′ (cm/s) 7.37 ± 1.67 6.08 ± 1.54 0.001 7.20 ± 1.61 5.78 ± 1.58 < 0.001
Lateral e′ (cm/s) 9.83 ± 2.50 8.6 ± 1.55 0.01 9.76 ± 2.26 8.15 ± 1.46 < 0.001
Average e′ (cm/s) 8.60 ± 1.98 7.34 ± 1.33 0.001 8.48 ± 1.80 6.96 ± 1.32 < 0.001
E/e′ average 8.14 ± 2.00 10.89 ± 2.84 < 0.001 8.39 ± 2.15 11.72 ± 2.65 < 0.001
TR velocity (m/s) 2.03 ± 0.38 2.41 ± 0.33 < 0.001 2.11 ± 0.39 2.47 ± 0.29 < 0.001
IVRT (ms) 87.71 ± 16.46 81.93 ± 13.43 0.09 85.63 ± 16.46 83.30 ± 12.55 0.48
 S/D ratio 1.32 ± 0.47 1.33 ± 0.47 0.94 1.35 ± 0.48 1.26 ± 0.45 0.40

Ar-A duration (ms) 21.85 ± 20.15 16.25 ± 25.93 0.28 21.33 ± 22.42 14.59 ± 24.53 0.24
Ar wave velocity (cm/s) 26.78 ± 3.23 28.63 ± 6.03 0.09 27.37 ± 4.29 28.33 ± 5.92 0.46
 S′ RV (cm/s) 10.76 ± 1.07 10.79 ± 1.09 0.56 10.79 ± 1.08 10.73 ± 1.08 0.82

FAC RV 0.44 ± 0.04 0.43 ± 0.04 0.94 0.44 ± 0.04 0.43 ± 0.04 0.34
LA diameter (mm) 37.2 ± 2.95 38.03 ± 3.70 0.27 37.7 ± 2.91 37.48 ± 4.15 0.84
LAVI (ml/m²) 28.68 ± 4.95 32.70 ± 5.83 0.001 29.28 ± 4.71 33.43 ± 6.58 0.006
LASr 39.8 (38.6–41.9) 25.7 (22.5–32) < 0.001 39.3 (36.4–40.8) 23.7 (22–26.7) < 0.001
LAScd − 19.81 ± 4.84 − 12.99 ± 4.61 < 0.001 − 18.55 ± 5.03 − 12.19 ± 3.79 < 0.001
LASct − 19.91 ± 4.19 − 13.64 ± 4.14 < 0.001 − 19.26 ± 4.34 − 11.93 ± 2.82 < 0.001
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good ability to identify high LVEDP (E/e′: area under the 
curve—AUC 0.78; TR peak velocity: AUC 0.77, for feasible 
evaluations; LAVI: AUC 0.71) and LV pre-A (E/e′: AUC 
0.83; TR peak velocity: AUC 0.75 for feasible evaluations; 
LAVI: 0.70).

Based on the 2016 ASE/EACVI guidelines, the mul-
tiparametric algorithm classified 14 patients with normal 
diastolic function, 55 with grade I DD, and 11 with grade 
II DD. No case was defined as grade III DD. In one case, 
the grade of DD was classified as indeterminate. Excluding 
the indeterminate case, sensitivity, specificity, PPV, NPV, 
and accuracy for elevated LVEDP were 26.3%, 97.6%, 
90.9%, 59.4% and 63.8%, respectively; for high LV pre-
A, 37.5%, 96.4%, 81.8%, 78.3% and 78.8%, respectively.

Diagnostic accuracy of LAS to predict high LVFP

LAS presented powerful diagnostic performance for predict-
ing high LVFP (Fig. 5). On ROC analysis, AUC for LASr 
was superior compared with E/e′ (difference AUC of 0.13 

Table 3  Correlation values of LAS and other echocardiographic 
parameters to LVEDP and LV pre-A

LAScd conduit left atrial strain, LASct  contractile left atrial strain, 
LASr  reservoir left atrial strain, LAVI  left atrial volume indexed, 
SRs systolic strain rate, SRe early diastolic strain rate, SRa  late dias-
tolic strain rate, TR tricuspid regurgitation

Variable r (LVEDP) p-value r (LV pre-A) p-value

LASr − 0.67 < 0.001 − 0.65 < 0.001
LAScd 0.37 < 0.001 0.44 < 0.001
LASct 0.62 < 0.001 0.63 < 0.001
LA SRs − 0.57 < 0.001 − 0.55 < 0.001
LA SRe 0.36 0.001 0.36 0.001
LA SRa 0.59 < 0.001 0.56 < 0.001
E/e´ average 0.51 < 0.001 0.56 < 0.001
TR velocity 0.49 < 0.001 0.50 < 0.001
LAVI 0.33 0.003 0.30 0.006

Table 4  Sensitivity, specificity, positive predictive value, negative predictive value and accuracy for echocardiographic variables to predict ele-
vated LV pre-A

Variable Sensitivity (%) LVEDP/
LV pre-A

Specificity (%) LVEDP/
LV pre-A

PPV (%) LVEDP/
LV pre-A

NPV (%) LVEDP/
LV pre-A

Accuracy (%) 
LVEDP/LV 
pre-A

E/e′ average > 14 22.5/29.6 97.6/96.3 90/80 56.3/73.2 60.5/74.1
LAVI > 34 ml/m² 50/63 90.2/87 83.3/70.8 64.9/82.5 70.4/79
TR velocity > 2.8 m/s 10.3/16.7 97.1/97.8 75/75 55.9/74.6 57.1/74.6
LASr < 26% 46.3/73.1 92.5/92.6 86.4/82.6 62.7/86.2 62.7/85.2
LASr < 23% 31.7/48.1 100/98.1 100/92.9 58.8/77.9 65.4/81.5
LASr < 18% 7.3/7.4 100/98.1 100/66.7 51.3/67.9 53.1/66.7

Fig. 5  ROC curves for ability of LASr, E/e′ average, and LAVI to predict high LVFP
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and 0.11 for LVEDP and LV pre-A, respectively; p < 0.001) 
and LAVI (difference AUC of 0.20 and 0.24 for LVEDP and 
LV pre-A, respectively; p < 0.001).

For LASr, LAScd and LASct, AUC values were 0.91, 
0.81, and 0.85 to identify high LVEDP and 0.94, 0.84 
and 0.91 to diagnose high LV pre-A (Fig. 6). LASr < 35% 
demonstrated 87% sensitivity and 88% specificity for 
LVEDP > 16 mmHg. On the other hand, LASr < 26% dis-
played 73% sensitivity and 93% specificity for LV pre-A > 12 
mmHg. For a different cutoff, LASr < 23% showed 48% 
sensitivity and 98% specificity. For LASct, the cut-off 14% 
displayed 74% sensitivity and 85% specificity to identify 
elevated LV pre-A. LASct cut-off 15.4% demonstrated 73% 
sensitivity and 83% specificity for high LVEDP.

Reproducibility of LAS measurements

Two observers analyzed LAS in 16 cases randomly selected. 
Interobserver ICCs were 0.94 (95% CI 0.84–0.97), 0.93 
(95% CI 0.80–0.97), and 0.84 (95% CI 0.60–0.94) for LASr, 
LAScd, and LASct, respectively. The corresponding intrao-
bserver ICCs were 0.98 (95% CI 0.94–0.99), 0.96 (CI 95% 
0.90–0.99) and 0.85 (95% CI 0.63–0.95).

Potential added value of LAS to the 2016 ASE/EACVI 
diastolic function algorithm

Incorporating LASr into the 2016 ASE/EACVI recommen-
dation to substitute any missing additional parameter [17] 
did not improve its accuracy. E/e′ and LAVI were feasible 
in all cases in our sample. In 17 of 18 cases of missing TR 
peak velocity, E/e′ average and LAVI were both normal 

Fig. 6  ROC curves for ability of LASr, LAScd, and LASct to predict high LVFP

Fig. 7  Bland-Altman plots for agreement between nondedicated and dedicated software for LAS measurements
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or both positive, so including a new parameter would not 
have changed algorithm conclusion.

Adding LASr to LAVI in the algorithm so that the 
parameter could be positive in case of LAVI > 34 ml/m² 
or LASr < 23% also did not change algorithm performance, 
due to the low rate of positivity of the other parameters. 
The isolated positive “LA criteria” was not sufficient to 
alter the algorithm conclusion.

Agreement of nondedicated and dedicated LA 
tracking tool for strain analysis

LAS measurements with both nondedicated (LV software) 
and dedicated (LA software) tools were similar (Table 5). 
Bland-Altman analysis plots are provided in Fig. 7.

Discussion

Our study could provide some insight into a challenging 
group, that has been studied across a heterogeneous spec-
trum of patients [7, 18].

Simultaneous analysis of both LVEDP and pre-A pro-
vides an incremental comprehension of diastolic function 
evolution. LVEDP data allow the analysis of the earliest 
pressure change in the initial stages of diastolic dysfunction. 
The isolated increase in LVEDP should not be assumed as 
diagnostic of HFPEF [19]. Although LVEDP is a metric of 
LV compliance, there is a pitfall in assuming this measure-
ment to be synonym of mean pulmonary artery wedge pres-
sure [20]. In addition, LV pre-A pressure includes a better 
surrogate parameter for LAP, which is a fundamental sub-
strate for dyspnea in HFPEF. Of note, LVEDP was elevated 
in all patients with increased LV pre-A, but this pressure 
was normal in one third of the cases with high LVEDP in 
our study. The choice of the reference parameter for LVFP 
impacts the cutoff used to predict high pressures, as revealed 
by the lower value found when LV pre-A was the standard. 
The median value of LASr (34.4%) described for an isolated 
high LVEDP is near to a possible normal range and much 
higher to the one found for simultaneously high LVEDP and 
LV pre-A (23.7%). This reinforces that LV pre-A is a better 

surrogate of LAP and its increase is more related to a worse 
left atrial function. As previously reported by Braunwald 
et al. [10], in our sample, even when LVEDP is higher than 
20 mmHg, the mean LAP (represented by LV pre-A) could 
be normal.

The near-simultaneous echocardiographic and hemo-
dynamic data establish a potential better correlation of 
measurements, since variations in heart rate, blood pressure 
and volume status become insignificant. Hummel et al. [8] 
acquired echocardiographic data simultaneously with inva-
sive study in supine position. Kasner et al. [21] performed 
an echocardiogram 3 to 5 h after invasive measurements. 
Reddy et al. [22] performed echocardiographic analysis at a 
median interval range of 6 days after hemodynamic study, 
with a possible limitation on parameter correlation.

Most patients presented reduced LV GLS (< 18% in abso-
lute values), reinforcing that normal LVEF does not neces-
sarily imply normal systolic function. However, no struc-
tural echocardiographic differences were found between 
the groups of normal or high LVFP in our study. Mean LV 
GLS also did not show any difference between these groups 
and the CAD profile was similar. Nonetheless, there was 
a higher prevalence of low LV GLS in the high LV pre-A 
group, although not statistically significant, which may can 
be related to sample size. The similar prevalence of cardio-
vascular risk factors in patients with normal or high LVFP 
does not imply a coincident evolutive stage, control, and 
magnitude of diseases, with a possible impact on diastolic 
function. Diabetes mellitus, for instance, independently pre-
dicts poorer LASr and LASct due to advanced glycated end 
products [23]. In addition, the grade of fibrosis in LA may 
be associated with a worsening of its function [24], although 
these data are not available for our sample.

Among the 27 patients with simultaneously high LVEDP 
and LV pre-A, only 3 patients had normal geometry, wall 
motion score index, and LV GLS. Some HFPEF trials [25, 
26] have reported normal diastolic function in one-third of 
the sample. However, this classification was not based on the 
most recent guidelines, which include the essential concept 
of myocardial disease as indicative of DD.

Table 5  Mean and mean 
absolute difference of LAS 
using nondedicated software 
and dedicated software

LAS cd conduit left atrial strain, LASct contractile left atrial strain, LASr reservoir left atrial strain

Variable Nondedicated software Dedicated software p-value Mean 
absolute 
difference

LASr 33.2 ± 8.4 33 ± 7.9 0.52 1.68 ± 1.28
LAScd − 16.4 ± 5.5 − 16.2 ± 5.2 0.48 2.12 ± 2.10
LASct − 16.9 ± 5.1 − 16.7 ± 5.3 0.51 1.58 ± 1.31
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Correlation of LAS and LVFP

In a sample of patients with CAD and preserved LVEF, 
LASr and LASct provided a powerful diagnostic ability to 
predict LVFP based on hemodynamic data of LVEDP and 
LV pre-A.

LASr performance was superior to that of conventional 
parameters for diastolic function evaluation as previously 
reported. In patients with preserved LVEF, Hummel et al. 
[8] described AUCs to predict PCWP for E/e′ > 15, TR 
peak velocity > 2.8 m/s, LAVI > 34 ml/m² and multipara-
metric ASE/EACVI algorithm of 0.59, 0.69, 0.76 and 0.75, 
respectively. In multivariable linear regression analysis, 
only IVRT and LASr remained independently associated 
with this invasive measurement. Correlation of E/e′ with 
invasive measurement, mainly in preserved LVEF, has been 
described as weak to moderate [27, 28]. Our findings have 
corroborated lower sensitivity and higher specificity of the 
individual parameters E/e′, LAVI, and TR peak velocity 
in predicting LVFP [18]. Singh et al. [29] have previously 
reported the usefulness of LASr as a sole parameter for cat-
egorizing patients as having normal or high LFVP.

A potential contribution of adding LASr to the 2016 ASE/
EACVI multiparametric algorithm is related to the sensitiv-
ity of the other parameters. The cutoff of E/e′ average > 14, 
for instance, has revealed better specificity than sensitivity 
in predicting high LVFP, mainly for patients with preserved 
LVEF [18]. Furthermore, many patients present intermedi-
ate E/e′ values and remain in the gray zone of 8–14 [27], as 
revealed by 70% of false negatives for E/e′ > 14 in patients 
with high LV pre-A in our sample.

Defining optimal cutoffs for key parameters demands 
an appropriate balance between sensitivity, specificity and 
prognostic value. Morris et al. described an association 
of LASr < 23% with dyspnea, worse functional class and 
PCWP > 15 mmHg, even for normal LAVI. In our sample, 
this value was similar to the median of the high LV pre-A 
group, but had low sensitivity and high specificity to pre-
dict LVFP. None of our patients were classified as having 
grade III diastolic dysfunction, which can be related to less 
advanced stages of LA dysfunction and less reduced LAS 
values [30]. Additionally, studies with higher LVFP have 
shown lower cutoffs for LAS, as revealed by Inoue et al. 
in a group in which 8% had PCWP > 30 mmHg. None of 
our patients presented LV pre-A > 30 mmHg and only 4 
cases > 20 mmHg. Moreover, the exclusion of patients with 
atrial fibrillation and more than mild mitral regurgitation in 
our study may have influenced higher cutoffs. Inoue et al. 
[31] reported LASr < 20% in the subgroup of atrial fibrilla-
tion regardless of LVFP.

Notwithstanding the good correlation of LASr with 
LVFP, using it as a stand-alone index may be questiona-
ble. Since the normal range is wide, patients with diastolic 

function can have normal LARs and normal subjects can 
present decreased strain values due to loading conditions 
[32].

Echo software and technical aspects of strain 
analysis

Commercially available software was utilized in our analy-
sis, which has been widely used to define the normal value 
range of LAS [33]. There has been good correlation demon-
strated with other vendors, mainly after the technical stand-
ardization initiative [34]. However, the grade of correlation 
between LAS and invasive pressure measurements may still 
vary according to the software used [31].

Reproducibility of LAS measurements based 
on nondedicated and dedicated software

Specific tracking tools for LA provided interchangeable 
mean measurement results for strain compared to nondedi-
cated software. A previous study [35] based on the same 
vendor also showed that the choice of software did not sig-
nificantly impact strain values, but presented a better intra 
and interobserver correlation. It is reasonable to believe that 
automatized tools may favor the routine use of new tech-
niques, mainly outside of a research setting.

Limitations

This was a single-center study with a relatively limited num-
ber of patients in a reference center with a profile of severe 
cardiovascular diseases. A single commercially available 
software was used to perform echo analysis, which may 
limit generalizability. Despite the use of two parameters 
for LVFP evaluation, PCWP data were not available, since 
right circulation was not studied invasively. Although fluid-
filled transducers have often been used [16, 18], high-fidelity 
catheters could have provided better accuracy for pressure 
measurements. Ultrasound enhancing agents were not used 
in order to improve TR jet signal.

Conclusions

LAS revealed a moderate to strong correlation with invasive 
measurements of LVFP and may be a useful adjunct param-
eter to identify elevated pressures in patients with CAD and 
preserved LVEF. The choice of LVEDP or LV pre-A as the 
representative parameter of LVFP leads to different cutoffs 
to predict high pressures. The best strategy to add LASr 
to a multiparametric algorithm for the evaluation of LVFP 
demands further investigation.
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