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Abstract
Cardiac amyloidosis has a poor prognosis, and high mortality and is often misdiagnosed as hypertrophic cardiomyopathy, 
leading to delayed diagnosis. Machine learning combined with speckle tracking echocardiography was proposed to automate 
differentiating two conditions. A total of 74 patients with pathologically confirmed monoclonal immunoglobulin light chain 
cardiac amyloidosis and 64 patients with hypertrophic cardiomyopathy were enrolled from June 2015 to November 2018. 
Machine learning models utilizing traditional and advanced algorithms were established and determined the most signifi-
cant predictors. The performance was evaluated by the receiver operating characteristic curve (ROC) and the area under the 
curve (AUC). With clinical and echocardiography data, all models showed great discriminative performance (AUC > 0.9). 
Compared with logistic regression (AUC 0.91), machine learning such as support vector machine (AUC 0.95, p = 0.477), 
random forest (AUC 0.97, p = 0.301) and gradient boosting machine (AUC 0.98, p = 0.230) demonstrated similar capability 
to distinguish cardiac amyloidosis and hypertrophic cardiomyopathy. With speckle tracking echocardiography, the predictive 
performance of the voting model was similar to that of LightGBM (AUC was 0.86 for both), while the AUC of XGBoost 
was slightly lower (AUC 0.84). In fivefold cross-validation, the voting model was more robust globally and superior to the 
single model in some test sets. Data-driven machine learning had shown admirable performance in differentiating two con-
ditions and could automatically integrate abundant variables to identify the most discriminating predictors without making 
preassumptions. In the era of big data, automated machine learning will help to identify patients with cardiac amyloidosis 
and timely and effectively intervene, thus improving the outcome.
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Introduction

Cardiac amyloidosis (CA) is a part of systemic amyloido-
sis, in which misfolded amyloid proteins are deposited out-
side cardiomyocytes and lead to restrictive pathology of the 
heart, often denoting a poor outcome [1, 2]. In recent years, 
several new therapies that significantly improve the prog-
nosis of patients with CA have been developed, including 
bortezomib-based induction and consolidation strategies, 
autologous stem cell transplantation, immunomodulatory 
drugs, etc. [3]. Unfortunately, for patients with advanced 
cardiac involvement, current treatments are still limited. 

Moreover, patients with CA could be easily misdiagnosed 
as hypertrophic cardiomyopathy (HCM) who have similar 
phenotypes that are difficult to distinguish on routine echo-
cardiography, often leading to delayed diagnosis. However, 
CA has high mortality and poor prognosis, which makes 
early detection and differential diagnosis quite important.

Because of the advantages of wide application and supe-
rior diastolic function assessment, echocardiography has 
become the preferred screening method for CA. Advanced 
two-dimensional speckle tracking echocardiography (2D-
STE) and strain, and strain rate imaging have been proven 
to differentiate CA from other causes of concentric cardiac 
hypertrophy [4]. Since supersonic inspection always pro-
duces lots of imaging data and the variables interact with 
each other to varying degrees, it is difficult to identify the 
most discriminative predictors through ordinary statisti-
cal analysis. Therefore, more powerful data processing 
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approaches are urgently needed to extract and analyze imag-
ing data.

Machine learning (ML) utilizes computer algorithms to 
seek inherent patterns in datasets with massive variables 
without making preassumptions. It can learn from estab-
lished datasets and facilitate the prediction of risk models 
on new data. In recent years, ML has become an effective 
means for prediction and intelligent decision-making [5–7] 
and has achieved commendable success in cardiovascular 
medicine, such as differentiation of constrictive pericardi-
tis from restrictive cardiomyopathy [8], risk prediction of 
readmission of patients with heart failure [9], diagnosing 
different arrhythmias [10, 11], etc. Given this, we proposed 
an intelligent identification study of CA and HCM based 
on ML.

Methods

A case–control study of 138 subjects, including 74 verified 
CA cases and 64 patients with verified HCM cases were 
referred to the First Affiliated Hospital of Zhejiang Univer-
sity School of Medicine from June 2015 to November 2018. 
The type of amyloid of all patients with CA assessed by 
immune histology was the light chain and patients were eli-
gible for inclusion if they met any of the following criteria: 
(1) an endomyocardial biopsy confirmed amyloid deposits; 
(2) a positive non-cardiac biopsy for amyloidosis combined 
with cardiac magnetic resonance or non-strain-based echo-
cardiography which presented typical characteristic of CA, 
with relevant clinical history and laboratory findings. The 
characteristics of CA are consistent with the Expert Consen-
sus Recommendations for Multimodality Imaging [12]. Car-
diac involvement of CA was assessed by imaging scans, of 
which forty patients involved the left ventricle, twenty-seven 
patients involved the left and right ventricles, one patient 
implicated two ventricles and the left atrium, and six patients 
involved all ventricles and atria. We further incorporated 64 
patients with HCM as comparator groups whose diagnose 
were created according to recently published guidelines from 
the American College of Cardiology/the American Heart 
Association [13], and they underwent both echocardiog-
raphy and cardiac magnetic resonance imaging to further 
assess HCM and exclude other pathologies. Three of them 
had also genetic analysis and all showed heterozygous muta-
tion. An echocardiographic examination was performed in 
all patients with HCM who presented unexplained left ven-
tricular asymmetrical hypertrophy with septal wall thick-
ness ≥ 15 mm. In the case of positive family history (such 
as sudden death, cardiac hypertrophy, etc.), interventricular 
septal thickness ≥ 13 mm was also enrolled. Subjects with 
left ventricular ejection fraction < 45%, secondary cardiac 

hypertrophy caused by severe aortic valve disease, long-term 
uncontrolled hypertension, or thyroid disease were excluded 
from the study. Patients were also excluded if the relevant 
data were not available. The local institutional ethics com-
mittee approved the study.

Echocardiographic examination

All echocardiographic studies were conducted on GE Vivid 
E9 Color Doppler Ultrasound system (GE Medical, Milwau-
kee, Wisconsin, USA) equipped with a 2-dimension probe 
M5S with a frequency of 2.0–4.5 MHz and a frame rate of 
50–70 frames per second. The grayscale dynamic images of 
the 4-chamber views, the long axis view of the left ventricle, 
the 2-chamber views, and the short axis section with 3 con-
secutive cardiac cycles were obtained and stored on the hard 
disk. M-mode and tissue Doppler ultrasound were used to 
collect ultrasonic parameters, which included: the left atrial 
volume index using an ellipse formula, end-diastolic left 
ventricular diameter, end-systolic left ventricular diameter, 
end-diastolic left ventricular volume, end-systolic left ven-
tricular volume, ejection fraction using the biplane Simp-
son’s method in 4-chamber views and 2-chamber views, 
septal wall thickness, posterior wall thickness. The eccen-
tricity index was calculated as septal wall thickness divided 
by posterior wall thickness. Relative wall thickness was cal-
culated as the ratio of 2 septal wall thickness divided by end-
diastolic left ventricular diameter. The left ventricular mass 
index was calculated based on the Cube formula. Concen-
tric hypertrophy was diagnosed in patients with relative wall 
thickness > 0.42 and a left ventricular mass index > 115 g/
m2. Diastolic parameters, including peak early (E) and late 
(A) diastolic mitral inflow velocity and the ratio of E/A, e′, 
and the ratio of E/e′ ratio were also measured (Fig. 1).

2D‑STE acquisition and analysis

Offline analysis of the video clips was based on Echo PAC 
Version 201 software (GE Company, Fairfield, Connecti-
cut, USA), running on Windows 10 Version 1709 (Micro-
soft Corporation, Washington State, USA). Selecting clear 
dynamic images and using the 4-chamber views, the long 
axis view of the left ventricle, and the 2-chamber views, the 
left ventricular endocardial and epicardial myocardium were 
automatically tracked combined with manually adjusted 
frame by frame throughout the cardiac cycle, and divided 
into 16 segments to generate a ‘bull’s-eye’ plot.

The strain data are gathered by time and space param-
eters. Each cardiac cycle was divided into 17 equal segments 
(T1–T17), and Tj represented the corresponding time points 
(j = 1,2…17); Strain measurements were included as fol-
lows: longitudinal strain (LS), global longitudinal strain, 
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longitudinal strain velocity, longitudinal strain rate, longitu-
dinal displacement, circumferential strain, global circumfer-
ential strain, circumferential strain rate, radial strain, global 
radial strain, radial strain rate, rotational rate, left ventricu-
lar twist, left ventricular twist rate. According to the above 
methods, 3791 (223 × 17) variables were systematically 
extracted for each patient (223 are strain-derived variables 
and 17 are time points). Average time strain-derived vari-
ables (223 variables) were used to train the models. Relative 
apical sparing was calculated as average apical LS divided 
by the sum of the average basal and mid-LS, septal apical 
to base ratio as apical septal LS divided by basal septal LS, 
and ejection fraction strain ratio as ejection fraction divided 
by global longitudinal strain.

Establishment and assessment of prediction models

Two ML-based prediction models were established respec-
tively: one model was built using clinical characteristics, 
conventional echocardiography, and 2D-STE data; the other 
was to build models using only 2D-STE data.

Prediction models using clinical characteristics, 
conventional echocardiography, and 2D‑STE data

We developed prediction models using four approaches: 
logistic regression, support vector machine, random forest, 
and XGBoost. These represent the comprehensive analy-
sis from traditional logistic regression to classic ML algo-
rithms (support vector machine, random forest), and then to 
advanced gradient boosting (XGBoost). To assess the valid-
ity of the models, we performed tenfold (or fivefold) cross-
validation by randomly dividing the entire data into 10 (or 
5) parts for 10 (or 5) iterations. In each iteration, we selected 
7 parts as training data and 3 parts as test sets. We reported 
average results for each model on 30% of unseen test sets.

Logistic regression

Logistic regression is the most commonly used risk predic-
tion model. First, univariate logistic regression was used to 
screen out the variables that were meaningful to predict CA. 
Then, variables with p < 0.1 were enrolled in the multivariate 

Fig. 1   Cardiac imaging. This 
example showed the morpho-
logical similarities between 
cardiac amyloidosis (A, B) and 
hypertrophic cardiomyopathy 
(C, D)
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regression analysis for modeling according to the previous 
research, clinical experience, and the multiple requirements 
between variables and outcome. In addition, Spearman cor-
relation was used to exclude the influence of collinearity 
among variables.

Support vector machine

Support vector machine converts data into complex high-
dimensional space to look for the largest difference margin 
to realize the differentiation of diseases [14]. We applied 
linear basis kernel and cost function to build the model and 
tuning parameters to minimize the error classification.

Random forest

Random forest is a tree-based method, the essence of 
which is to continuously split variables at discrete cutting 
points, usually presenting in the form of a tree graph [14]. 

A separate tree is built from bootstrapped data and variables, 
and the final model is a collection of many trees.

Gradient boosting

The core idea of gradient boosting is to set up a series of 
initial models based on the decision tree, which is called 
base classifiers [15, 16]. Subsequently, weaker base classi-
fiers are iterated and adjusted the weights to create a single 
stronger classifier. Information gain (IG), a technique of fea-
ture selection, is defined as a metric of effective classifica-
tion. It is measured in terms of the entropy reduction of the 
class, which reflects additional information about the class 
provided by the variables.

Prediction models of using 2D‑STE data

Boosting-based algorithms are increasingly used because 
they involve the sequential creation of models, with each 
iteration attempting to correct errors in the previous models. 
LightGBM and XGBoost are two widely used algorithms. 
We developed predictive classifiers using 2D-STE data: (1) 
LightGBM; (2) XGBoost; (3) voting model based on Light-
GBM and XGBoost. To evaluate the validity of models, a 
fivefold cross-validation was performed. We split the dataset 
into the training set and test set in a 4:1 ratio and reported 
the performance on the test data.

Statistical analysis

Categorical variables were expressed as the number of cases 
and percentages and were compared using the chi-square 
test or Fisher’s test. Continuous variables were expressed as 
mean ± SD. Kolmogorov–Smirnov test was used to deter-
mine whether the data were normally distributed. If the data 
conform to the normal distribution, the independent sample 
T-test was used for comparison; otherwise, the Mann–Whit-
ney U test was suitable. p < 0.05 was considered statistically 
significant. Sensitivity, specificity, positive predictive value, 
negative predictive value, accuracy, receiver operating char-
acteristic curve, and area under the curve (AUC) were used to 
evaluate the performance of models. DeLong test was used to 
evaluate whether the AUC in different models was statistically 
significant. The data analysis was implemented on SPSS 23.0 
(Version 23.0), R (Version 4.0.3), and Python (Version 3.7).

Results

Study population

The clinical characteristics of both groups are summarized 
in Table 1. The age (60.9 ± 9.7 vs 50.3 ± 15.3, p < 0.001), 

Table 1   Baseline patient characteristics

Values are mean ± SD
CA cardiac amyloidosis; HCM hypertrophic cardiomyopathy; BMI 
body mass index; BSA body surface area; SBP systolic blood pres-
sure; DBP diastolic blood pressure; HR heart rate; HYHA New York 
Heart Association; WBC White blood cell count; HB hemoglobin; 
NT-proBNP N-terminal pro-brain natriuretic peptide; eGFR estimated 
glomerular filtration rate
*Comparison performed between those with CA and HCM

Variable CA (n = 74) HCM (n = 64) p value*

Age (years) 60.9 ± 9.7 50.3 ± 15.3 0.000
Sex (% male) 45 (60.8) 42 (65.6) 0.559
BMI (kg/m2) 21.5 ± 4.6 24.3 ± 3.6 0.000
BSA (m2) 1.6 ± 0.2 1.7 ± 0.2 0.000
SBP (mmHg) 104 ± 17 124 ± 20 0.000
DBP (mmHg) 67 ± 13 74 ± 14 0.004
HR (bpm) 82 ± 14 75 ± 13 0.003
NYHA (> 2 class) 16 (21.7) 10 (15.6) 0.369
Atrial fibrillation 8 (10.8) 12 (18.8) 0.186
Coronary heart disease 4 (5.4) 10 (15.6) 0.047
Hypertension 12 (16.2) 27 (42.2) 0.001
Hyperlipemia 29 (39.2) 14 (21.9) 0.029
Diabetes mellites 5 (6.8) 8 (12.5) 0.249
Chronic kidney disease 47 (63.5) 5 (7.8) 0.000
WBC (109/l) 7.1 ± 2.6 6.6 ± 2.3 0.423
HB (g/l) 122 ± 23 139 ± 23 0.000
Platelet (109/l) 193 ± 85 196 ± 64 0.795
NT-proBNP (pg/ml) 2984 ± 3213 1947 ± 2574 0.107
Troponin I (mmo/l) 0.46 ± 1.66 0.28 ± 1.18 0.001
creatinine (umol/l) 111 ± 94 103 ± 199 0.057
eGFR (ml/min) 72.82 ± 25.57 83.28 ± 28.22 0.007
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heart rate (82 ± 14 vs 75 ± 13, p = 0.003) and troponin I 
(0.46 ± 1.66 vs 0.28 ± 1.18, p = 0.001) level of patients with 
CA were higher, while the body mass index (21.5 ± 4.6 
vs 24.3 ± 3.6, p < 0.001), body surface area (1.6 ± 0.2 vs, 
p = 0.000), systolic (104 ± 17 vs 124 ± 20, p < 0.001) and 
diastolic (67 ± 13 vs 74 ± 14, p = 0.004) blood pressure, and 
glomerular filtration rate (72.82 ± 25.57 vs 83.28 ± 28.22, 
p = 0.007) were lower than those with HCM, and the differ-
ences were statistically significant.

Conventional echocardiography

End-systolic left ventricular diameter (28.4 ± 4.0 vs 
25.2 ± 4.9, p < 0.001), end-systolic left ventricular volume 
(31.8 ± 11.2 vs 24.1 ± 10.4, p < 0.001), left ventricular pos-
terior wall thickness (14.0 ± 2.8 vs 12.3 ± 3.6, p < 0.001), 
relative wall thickness (0.70 ± 0.16 vs 0.60 ± 0.23, 
p < 0.001), E (0.85 ± 0.30 vs 0.70 ± 0.24, p = 0.001), E/A 
(1.81 ± 1.11 vs 1.19 ± 0.69, p = 0.001), E/e′ (18.1 ± 10.1 
vs 15.0 ± 15.7, p = 0.010) and relative apical sparing 
(0.93 ± 0.31 vs 0.68 ± 0.24, p < 0.001) of patients with CA 
were higher, while end-diastolic left ventricular diameter 
(40.6 ± 4.3 vs 42.5 ± 5.7, p = 0.045), end-diastolic left 
ventricular volume (73.6 ± 18.5 vs 81.4 ± 24.6, p = 0.041), 
ejection fraction (56.7 ± 10.7 vs 70.7 ± 8.5, p < 0.001), left 
ventricular septum thickness (15.5 ± 3.6 vs 23.1 ± 6.7, 
p < 0.001), left ventricular mass index (159.6 ± 53.1 vs 
190.8 ± 58.7, p = 0.001), eccentricity index (1.1 ± 0.3 vs 
2.0 ± 0.7, p < 0.001) and A (0.59 ± 0.25 vs 0.69 ± 0.26, 
p = 0.026) were lower than those with HCM. There was no 
statistical difference in left atrial volume index, e′, global 
longitudinal strain, septal apical to base ratio, and ejection 
fraction strain ratio between the two groups, as shown in 
Table 2.

Clinical predictive models

The models based on clinical characteristics, conventional 
echocardiography, and 2D‑STE data

ML algorithms all have good predictive performance 
(AUC > 0.9), among which the XGBoost has the highest 
AUC of 0.98 (Table 3). Compared with the logistic regres-
sion (sensitivity 92%, specificity 94%, AUC 0.91), ML 
such as support vector machine (sensitivity 89%, specific-
ity 100%, AUC 0.95, p = 0.477), random forest (sensitivity 
96%, specificity 100%, AUC 0.97, p = 0.301) and XGBoost 
(sensitivity 88%, specificity 95%, AUC 0.98, p = 0.230) 
presented similar capability to predict CA.

Relative apical sparing, age, left atrial volume index, 
and eccentric index were found to be significantly 

predictive of CA using multivariable logistic regression 
analysis (p < 0.05). The ejection fraction was ruled out 
due to the effect of multicollinearity. Information gain of 
XGBoost to feature selection showed that chronic kidney 
disease (IG = 0.26) was the most important predictor, fol-
lowed by left ventricular septum thickness (IG = 0.17), 
ejection fraction (IG = 0.13), relative apical sparing 
(IG = 0.11), systolic blood pressure (IG = 0.07) and eccen-
tricity index (IG = 0.05) (Fig. 2).

The models based on 2D‑STE data

After training with the tuned hyperparameters, the feature 
importance of the voting model integrated LightGBM and 
XGBoost was obtained and ranked. The results indicated 
that RadStrain3 (the radial strain of the middle ventricu-
lar septum) was the most important predictor, followed 
by LongStrainEpi7 (the longitudinal strain of the anterior 
wall of the epicardial basement segment) and CirStrainR4 
(circumferential strain rate of the posterior wall of the 
basement segment) (Table 4).

Among all the three ML algorithms (XGBoost, Light-
GBM, and voting model), the discriminant ability of the 
voting model was similar to LightGBM (AUC of both 
was 0.86), while the AUC of XGBoost was slightly lower, 
which was 0.84 (Fig. 3).

In the fivefold cross-validation, the mean AUC of Light-
GBM, XGBoost, and voting models were 0.89 ± 0.19, 
0.85 ± 0.43, and 0.87 ± 0.30, respectively. The voting 
model was globally more robust and outperformed to indi-
vidual model on test sets (Fig. 4).

Discussions

ML combined with 2D-STE to carry out intelligent identi-
fication on CA and HCM discovered: that ML had a great 
performance in the differential diagnosis and could auto-
matically integrate plentiful variables to identify the most 
discriminative predictors without preassumption.

CA is a rare and complex disease with high mortality 
and poor prognosis. Although new treatments which sig-
nificantly improve the outcomes have been developed, the 
available management with advanced cardiac involvement 
is still very limited. In addition, clinical confusion about 
cardiac hypertrophy caused by other causes (e.g., HCM, 
hypertension, and aortic stenosis) often leads to delayed 
diagnosis, which prevents patients with CA from receiv-
ing an early and effective intervention. Echocardiography 
has become the preferred screening approach for patients 
with CA due to its wide application, low risk, low cost, 
convenience, and superior diastolic function assessment. 
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Therefore, many related studies had been done to distin-
guish CA from other causes of cardiac hypertrophy.

Cardiac deformation analysis of 2D-STE could reveal 
early systolic abnormalities. Early reports by Sun et al. [17] 
suggest that global longitudinal strain, global circumfer-
ential strain, and the global radial strain were significantly 

reduced in patients with advanced CA compared with HCM 
and hypertensive heart disease, and although there was 
some overlap between the groups, the three causes of car-
diac hypertrophy could be distinguished to a certain extent. 
Di Bella et al. [18] displayed that the epicardial strain in 
patients with amyloid transthyretin was significantly lower 
than that in patients with HCM. Subsequently, Baccouche 
et al. [19] made use of 3-dimension speckle-tracking echo-
cardiography to identify CA from HCM, presenting that 
most of the functional parameters in both groups were lower, 
while those in the CA group were the lowest. The radial 
strain of CA patients demonstrated the “reverse pattern” 
from base to apex, suggesting that two conditions could be 
distinguished based on functional patterns. Similarly, Phelan 
et al. [4] proposed that the “relative apical sparing” of longi-
tudinal strain could well identify CA. Liu et al. [20] showed 
that septal apical to base ratio > 2.1 joint with deceleration 
time < 200 ms helps to differentiate CA from other causes 
of ventricular hypertrophy. In recent years, Pagourelias 
et al. [21] proposed that the ejection fraction strain ratio 
has the best CA differentiation effect (AUC 0.95; 95% CI 
0.89–0.98). In the challenging subgroups (maximum wall 
thickness ≤ 16  mm and LVEF > 55%), ejection fraction 
strain ratio is still the best predictor of CA. Furthermore, 
Boldrini et al.     [22] developed a scoring-based CA diag-
nostic model by analyzing morphological, functional, and 
strain-derived parameters. The results show that centripetal 
reconstruction and strain-derived parameters have the best 
diagnostic performance. The multivariate logistic regression 
model, which included relative wall thickness, E/e′, LS and 
tricuspid annular plane contraction deviation, had the best 
diagnostic effect on monoclonal immunoglobulin light chain 
amyloidosis (AUC 0.90; 95% CI 0.87–0.92).

The complexity of CA assessment has increased in terms 
of a large amount of data generated by supersonic inspec-
tion and increasing clinical variables. Traditional statistical 
analysis could only explore the relationships among lim-
ited variables and achieve a certain degree of predictive 
performance. However, in the era of big data, it is usually 
necessary to integrate abundant variables, which is a great 
challenge for clinicians. Therefore, we presented the study 
of differentiating CA and HCM based on ML. Combining 

Table 2   Echocardiographic characteristics

Values are mean ± SD
CA cardiac amyloidosis; HCM hypertrophic cardiomyopathy; LAVI 
left atrial volume index; LVDd end-diastolic left ventricular diameter; 
LVDs end-systolic left ventricular diameter; EDV end-diastolic left 
ventricular volume; ESV end-systolic left ventricular volume; LVEF 
left ventricular ejection fraction; LVSd left ventricular septum thick-
ness; LVPWd left ventricular posterior wall thickness; LVMI left ven-
tricular mass index; RWT​ relative wall thickness; E peak early mitral 
diastolic flow velocity; A peak late mitral diastolic flow velocity; e′ 
early mitral annular diastolic tissue velocity; GLS global longitudinal 
strain; SAB septal apical to base ratio; EFSR ejectionfraction strain 
ratio; RELAPS relative apical sparing
*Comparison performed between those with CA and HCM

Variable CA (n = 74) HCM (n = 64) p value*

LAVI (ml/m2) 34.4 ± 13.5 39.0 ± 14.9 0.085
LVDd (mm) 40.6 ± 4.3 42.5 ± 5.7 0.045
LVDs (mm) 28.4 ± 4.0 25.2 ± 4.9 0.000
EDV (ml) 73.6 ± 18.5 81.4 ± 24.6 0.041
ESV (ml) 31.8 ± 11.2 24.1 ± 10.4 0.000
LVEF (%) 56.7 ± 10.7 70.7 ± 8.5 0.000
LVSd (mm) 15.5 ± 3.6 23.1 ± 6.7 0.000
LVPWd (mm) 14.0 ± 2.8 12.3 ± 3.6 0.000
LVMI (g/m2) 159.6 ± 53.1 190.8 ± 58.7 0.001
RWT​ 0.70 ± 0.16 0.60 ± 0.23 0.000
Eccentric index 1.1 ± 0.3 2.0 ± 0.7 0.000
E (m/s) 0.85 ± 0.30 0.70 ± 0.24 0.001
A (m/s) 0.59 ± 0.25 0.69 ± 0.26 0.026
E/A 1.81 ± 1.11 1.19 ± 0.69 0.001
e′ (m/s) 0.06 ± 0.03 0.06 ± 0.02 0.263
E/e′ 18.1 ± 10.1 15.0 ± 15.7 0.010
GLS 11.9 ± 4.6 13.1 ± 4.1 0.121
SAB 2.63 ± 1.45 2.81 ± 2.38 0.322
EFSR 5.4 ± 2.1 6.0 ± 2.7 0.098
RELAPS 0.93 ± 0.31 0.68 ± 0.24 0.000

Table 3   Comparing machine 
learning models with Logistic 
regression

LR logistic regression; SVM support vector machine; RF Random Forest; XGBoost extreme gradient boost-
ing
*Comparison performed between machine learning models with traditional logistic regression

AUC​ Sensitivity Specificity True positive False negative Accuracy p value*

LR 0.91 0.92 0.94 0.96 0.89 0.93 –
SVM 0.95 0.89 1 1 0.91 0.95 0.477
RF 0.97 0.96 1 1 0.94 0.98 0.301
XGBoost 0.98 0.88 0.95 0.93 0.91 0.92 0.230
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clinical characteristics, routine echocardiography and 
2D-STE data, support vector machine, random forest, and 
XGBoost manifested a favorable discriminative performance 
(AUC > 0.9). When based on 2D-STE data solely, the dif-
ferent gradient boosting models still performed well in the 
identification of CA patients. The voting model was more 
robust globally and superior to a single algorithm on some 
test sets. Although the difference in the AUC of ML was 
not statistically significant compared with the traditional 
logistic regression model (p > 0.05), it should be pointed 
out that this study was based on small sample data, and the 
performance of ML needs to be further discussed on larger 

data. Previously, Zhang et al. [23] employed ML to achieve 
automatic echocardiography interpretation. The algorithms 
can not only implement view recognition, image segmenta-
tion, structure, and function quantification but also realize 
automatic detection of CA, HCM, and pulmonary hyperten-
sion, which further reflects the effectiveness of ML. ML, a 
form of artificial intelligence that eliminates preassumptions, 
explores the unknown pattern with all useful data to avoid 
neglecting some important but not yet recognized predictors. 
Interestingly, ML also automatically identified traditional 
variables, such as ejection fraction, eccentricity index, and 
relative apical sparing, which further validates the potential 

Fig. 2   Feature selection of 
XGBoost. Information gain 
(IG), a technique of feature 
selection, is defined as a metric 
of effective classification. It 
is measured in terms of the 
entropy reduction of the class, 
which reflects additional infor-
mation about the class provided 
by the variables. Information 
gain of XGBoost combined 
clinical and echocardiography 
data, showing that chronic 
kidney disease (IG = 0.26) was 
the most important predictor, 
followed by Left ventricular 
septum thickness (IG = 0.17), 
ejection fraction (IG = 0.13), 
relative apical sparing 
(IG = 0.11), systolic blood pres-
sure (IG = 0.07) and eccentricity 
index (IG = 0.05)

Table 4   The top 50 important features of the voting model

The voting model that integrated the two algorithms of LightGBM and XGBoost used 2D-STE data to obtain the top 50 important features. 
The results indicated that RadStrain3 (the radial strain of the middle ventricular septum) was the most important predictor, followed by Long-
StrainEpi7 (the longitudinal strain of the anterior wall of the epicardial basement segment) and CirStrainR4 (the circumferential strain rate of the 
posterior wall of the basement segment)

Feature Rank Feature Rank Feature Rank Feature Rank Feature Rank

RadStrain3 1 BasalRotation3 11 LonStrainR10 21 CirStrainR8 31 CirStrainR11 41
LonStrainEpi7 2 LonStrainV8 12 PapiRotation6 22 PapiRotation2 32 GRSPAPI 42
CirStrainR4 3 LonStrainV13 13 LonStrainR1 23 CirStrainR16 33 LonStrainD2 43
LonStrain7 4 LonStrainEndo7 14 RadStrain4 24 GRSAPICAL 34 LonStrainEndo18 44
RadStrain2 5 LonStrainR7 15 PapiRotation3 25 CirStrain16 35 LonStrain13 45
RadStrain7 6 RadStrain8 16 ApicalRotationR4 26 CirStrainR13 36 CirStrainR17 46
LonStrainEpi16 7 LonStrainD9 17 LonStrainV14 27 CirStrainR5 37 LonStrain3 47
CirStrain10 8 RadStrainR12 18 LonStrainD10 28 RadStrain11 38 LonStrainR3 48
BasalRotation1 9 CirStrain4 19 LonStrainEpi15 29 CirStrain15 39 BasalRotation4 49
BasalRotation2 10 LonStrainEpi13 20 LonStrainV7 30 LonStrainD13 40 BasalRotationR3 50
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scalability and practicability. In addition, unexpected inter-
actions between several weaker predictors would not be 
overlooked.

ML will not replace traditional statistical analysis, con-
versely, it provides a supplement and extension [24]. For 
rapidly growing data, ML explores non-linear patterns and 
automatically extracts important variables, thus simplify-
ing feature selection and improving prediction, and facilitat-
ing the differentiation of similar phenotypic diseases. Also, 
ML seamlessly incorporates new data to continually update 
models and promote performance over time. Beyond that, 
ML possesses efficiency as it runs complex mathematical 
algorithms, such as gradient boosting, in a few seconds and 
produces easy-to-understand results with low variability and 
high accuracy.

Limitations of the study

There are some limitations to this study. First of all, the 
establishment of ML models was carried out in a small num-
ber of samples, and further validation needs to be conducted 
in a larger dataset. In addition, considering the imbalance of 
data among different areas, our study was single-center with 

certain specific population characteristics, further research 
needs to be trained and verified in multiple centers and 
regions to improve the generality of the models. Finally, our 
model was only evaluated in two-dimensional echocardiog-
raphy with limited time and space, and further studies could 
include more ultrasonic sections or implement the models 
by other imaging methods. With the increment of samples, 
deep learning may improve the prediction of the models.

Conclusions

CA has a poor prognosis, and high mortality and is often 
misdiagnosed as HCM, leading to delayed diagnosis. If CA 
can be identified early and provided effective intervention 
in time, it is beneficial to improve the outcome for patients. 
We proposed intelligent identification of CA from HCM 
based on ML using 2D-STE data. The results indicated that 
the ML models had great discriminative performance, and 
could automatically integrate vast variables without mak-
ing any preassumption, so as to identify the most important 
predictors. In the era of big data, automated ML will help 

Fig. 3   The ROC curve of differ-
ent gradient boosting models. 
Among all the three ML algo-
rithms (XGBoost, LightGBM 
and voting model), the discrimi-
nant ability of voting model was 
similar to LightGBM (AUC of 
both were 0.86), while the AUC 
of XGBoost was slightly lower, 
which was 0.84. A XGBoost; B 
LightGBM; C Voting model
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to identify patients with CA, so that timely and effective 
intervention can be carried out to improve the prognosis.
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