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Abstract
Background  Left ventricular hypertrophy (LVH) is an independent prognostic factor for cardiovascular events and it can be 
detected by echocardiography in the early stage. In this study, we aim to develop a semi-automatic diagnostic network based 
on deep learning algorithms to detect LVH.
Methods  We retrospectively collected 1610 transthoracic echocardiograms, included 724 patients [189 hypertensive heart 
disease (HHD), 218 hypertrophic cardiomyopathy (HCM), and 58 cardiac amyloidosis (CA), along with 259 controls]. The 
diagnosis of LVH was defined by two experienced clinicians. For the deep learning architecture, we introduced ResNet and 
U-net++ to complete classification and segmentation tasks respectively. The models were trained and validated independently. 
Then, we connected the best-performing models to form the final framework and tested its capabilities.
Results  In terms of individual networks, the view classification model produced AUC = 1.0. The AUC of the LVH detec-
tion model was 0.98 (95% CI 0.94–0.99), with corresponding sensitivity and specificity of 94.0% (95% CI 85.3–98.7%) 
and 91.6% (95% CI 84.6–96.1%) respectively. For etiology identification, the independent model yielded good results with 
AUC = 0.90 (95% CI 0.82–0.95) for HCM, AUC = 0.94 (95% CI 0.88–0.98) for CA, and AUC = 0.88 (95% CI 0.80–0.93) 
for HHD. Finally, our final integrated framework automatically classified four conditions (Normal, HCM, CA, and HHD), 
which achieved an average of AUC 0.91, with an average sensitivity and specificity of 83.7% and 90.0%.
Conclusion  Deep learning architecture has the ability to detect LVH and even distinguish the latent etiology of LVH.
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Introduction

Left ventricular hypertrophy (LVH) is a common cardiac 
morphology change caused by many different diseases such 
as hypertension, hypertrophic cardiomyopathy (HCM), 

cardiac amyloidosis (CA), etc. And it is an independent risk 
factor for other cardiovascular events [1]. If left untreated, 
as the disease progresses and worsens, it will lead to cardiac 
dysfunction, arrhythmia, and eventually heart failure or sud-
den death [2–4]. Therefore, it is important to detect LVH 
and accurately identify the cause in the early stages of the 
disease. Echocardiography, due to its easy accessibility and 
availability, is an essential non-invasive and non-radioactive 
diagnostic modality used to assess the changes of left ven-
tricular (LV) structure [5] and is also a reliable method to 
identify LVH [6]. However, the result is highly dependent 
on the operator’s experience and may vary between echo-
cardiographers, especially for new and inexperienced sonog-
raphers. Inter- and intra-operator variability is a common 
problem in echocardiography [7, 8]. Therefore, there is a 
need to develop an objective and automatic diagnostic sys-
tem to assist clinicians in identifying LVH. Deep learning, 
an advanced machine learning method, can automatically 
extract features from large data sets to significantly improve 
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the performance of tasks such as visual object recogni-
tion and object detection [9]. In recent years, it has been 
extensively applied to medical image recognition research 
and proved to be a promising approach to tackle different 
medical image process tasks [10, 11]. Numerous studies 
have investigated the performance of deep learning in the 
echocardiography field [12, 13], such as view classification, 
cardiac function evaluation, disease detection, etc., and have 
shown exciting results [14, 15]. Therefore, in this study, we 
believe that it is viable to utilize deep learning algorithms 
to detect LVH and identify the etiology in three types of 
diseases, HCM, CA, and hypertensive heart diseases (HHD).

Methods

Study population

Data collection for this study was approved by the Institu-
tional Review Board of The First Affiliated Hospital, School 
of Medicine, Zhejiang University. Patients with LVH were 
identified by searching the echocardiography database of 
The First Affiliated Hospital, School of Medicine, Zhejiang 
University for reports including the keyword “left ventricu-
lar hypertrophy” between January 2018 and December 2020. 
An experienced echocardiographer and a cardiologist (both 
with over ten years clinical experience) defined the diagnosis 
of LVH and etiology through examination reports and cor-
responding clinical data. LVH was defined as LV mass index 
(LVMI) > 95 g/m2 in women and LVMI > 115 g/m2 in men 
by linear method, except for apical HCM,which may have 
normal LVMI. The diagnostic criteria of the three diseases 
were: (1) HHD: patients were diagnosed with a combina-
tion of hypertension and LV wall thickness confirmed by 
echocardiography, with no other conditions of LVH [16]. 
(2) HCM: patient’s maximal end-diastolic LV wall thick-
ness ≥ 15 mm and no other causes of LVH [17]. (3) CA: 
suspicion of CA through echocardiography, confirmed amy-
loidosis by tissue biopsy, or confirmed by late gadolinium 
enhancement cardiac magnetic resonance (CMR) imaging 
[18]. We also included patients with normal cardiac struc-
ture (without LVH) as the control group.

Echocardiography

Two standard views of end-diastolic, parasternal long-axis 
(PLX), and apical four-chamber (A4C) views of three types 
of LVH, including HHD, HCM, and CA, were collected, 
and another set of non-LVH images was obtained as the 
control group. These two-dimensional (2D) transthoracic 
echocardiograms were performed by experienced sonog-
rapher (3–10  years experiences) using two ultrasound 
machines (Vivid E9, GE Healthcare and EPIQ 7C, Philips). 

The images were stored in Digital Imaging and Communi-
cations in Medicine (DICOM) format with a resolution of 
636*434 pixels (Vivid E9) or 800*600 pixels (EPIQ 7C). 
Due to disease progression or condition improvements, like 
changes in wall thickness or the emergence or disappearance 
of pericardial effusion, as well as the angle and position of 
the probe, echocardiograms of the same patient may vary at 
different inspection times. Therefore, images from the same 
patients at different times (more than one month apart) were 
also included. The treatment during these examination inter-
vals did not significantly change wall thickness (from LVH 
to non-LVH).

Datasets

We divided images into training, validation and testing sets 
(60:20:20). The images of the same patient were not dis-
tributed in different data sets considering that some patients 
who have undergone multiple examinations generated sev-
eral pairs of images and the difference between these images 
was relatively small for humans. The annotations for the two 
cardiac views were created by author Yu. The labels for the 
three types of LVH were created by the consensus of author 
Wu and author Xia based on diagnostic criteria. The manu-
ally delineated LV myocardium were used as the ground 
truth for training the segmentation network. This process 
was performed on open annotation software Labelme. All 
Images were cropped to 384*384 pixels and converted to 
grey scale pictures. The images used to train the classifica-
tion model were further normalized and resized to 224*224 
pixels. We also applied image augmentation to the echocar-
diograms used in training the segmentation network, includ-
ing random shifts of contrast, brightness, or saturation, with 
or without horizontal flips.

Deep learning networks

We built a framework based on ResNet and Unet+ + that 
shows excellent performance in image recognition and 
segmentation [19, 20]. (1) Classification: We introduced 
ResNet to extract features and help solve three classifica-
tion tasks: view classification, LVH detection, and etiol-
ogy identification. View classification and LVH detection 
models were binary classification networks for separating 
two views (A4C and PLX) and discriminating the normal 
structure from LVH, respectively (Fig. 1). Then we con-
structed a three-class classification network to identify three 
types of LVH (HHD, HCM and CA) (Fig. 1). For the LVH 
and etiology classification models in our study, each model 
consists of two sub-networks that extracted features from 
A4C and PLX, respectively. We used a concatenated layer 
to merge the features of the two views and those would 
go through a fully connected layer and a softmax layer 
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sequentially, then output the probabilities (rang from 0 to 1) 
of each class (Fig. 2). Considering the complexity, training 
time and computational consumption of the different tasks, 
we chose ResNet18 for view classification and ResNet50, 
which have deeper layers, for LVH detection and etiology 
identification. (2) Segmentation: To find out whether the 
framework can perform well with only LV myocardium, 
which contains the most important information about rec-
ognizing LVH, and whether the performance of the network 

would be improved with segmented images, we introduced 
and trained U-net++ to segment the LV myocardium using 
the manually delineated contours as the ground truth. The 
output masks will be combined with the original images to 
form new images which will be used to train the same clas-
sification networks. 

We introduced cross-entropy loss as the loss function 
and Adam as optimizer of the networks. ReduceLROnPla-
teau, StepLR or Cosine Annealing LR were used to adjust 

Fig.1   The architecture of the integrated framework. aLeft ventricular hypertrophy, bhypertrophic cardiomyopathy, ccardiac amyloidosis dhyper-
tensive heart disease

Fig. 2   Basic architecture of LVH detection and etiology classification models. This figure shows the inner architecture of the green block in the 
Fig. 1. aparasternal long-axis, bapical four-chamber
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the learning rate. Early stopping and L2 regularization were 
applied to avoid overfitting. We trained different networks 
separately and used the validation set to fine-tune the hyper-
parameters. After that, we selected the model with the best 
performance (mainly determined by accuracy as well as AUC) 
to construct our final framework (Fig. 1). The input image 
pairs (sets of A4C and PLX) are sequentially passed through 
the different parts of the integrated framework. Finally, the 
most possible label was output, i.e. Normal, HCM, HHD, or 
CA. For example, if one pair of images (A4C and PLX) of 
a patient was classified as “abnormal”, then the images will 
enter into the next model to identify the cause of LVH and 
output the most possible disease (such as HCM), otherwise, 
the output result is “Normal” (Fig. 1).

In order to make the networks more interpretable, we used 
Gradient-weighted Class Activation Mapping (Grad-CAM) 
approach to create heat maps that highlighted the region of 
interest in the echocardiography for predicting the labels. All 
networks were developed in Python 3.7, Pytorch 1.7.0, and 
Cuda 10.2. All models were trained with graphics processing 
units (GPUs; TITAN RTX, Nvidia).

Comparison with echocardiographers

Two echocardiographers, with 4–5 years of clinical experi-
ence, analyzed the same images on the test dataset to identify 
LVH firstly, then to discriminate the possible etiology of LVH, 
same procedure as the deep learning network. The final results 
were determined by consensus.

Statistical analysis

Dichotomous data are presented as percentages. Continuous 
variables are presented as mean ± standard deviation. Con-
tinuous variables between multiple groups were analyzed 
by ANOVA. Categorical variables were analyzed using the 
χ2 test. The performance of the classification networks was 
evaluated using accuracy, the receiver operating characteris-
tic (ROC) curve, the area under the ROC curve (AUC), and 
the corresponding specificity and sensitivity calculated at the 
Youden Index, with a 95% confidence interval (CI). The Dice 
(Dice Similarity Coefficient), IOU (intersection over union) 
and 95%HD (95% Hausdorff distance) were used to evaluate 
the performance of the segmentation. Statistical analysis was 
performed using SPSS (version 26.0) and MedCalc (version 
19.6.4). P < 0.05 was considered statistical significance.

Results

The study population consisted of 724 patients who under-
went 805 examinations, resulting in a total of 1610 echocar-
diography. Of these patients, 259 had normal wall thickness 

and the remaining patients were diagnosed with HHD 
(n = 189), HCM (n = 218) (including 37 apical hypertrophy), 
and CA (n = 58), respectively. Among these patients, 573 
undertook examinations using Vivid E9 machine, another 
151 using EPIQ 7C machine. A part of patients under-
took several examinations, and the time interval between 
the examinations was 3.9 ± 3.0 months (ranging from 1 to 
15 months).The details of the study population and their 
baseline characteristics are shown in Table 1. We split the 
dataset according to a 60:20:20 ratio, generating 964 images 
(432 patients) for the training set, 332 images (150 patients) 
for the validation set, and 314 images (142patients) for the 
test set. The baseline characteristics of training, validation 
and testing groups for each of the patient categories were 
shown in online Table S1-S4.The loss and accuracy curves 
of training and validation were in online Figs. 1, 2 and 3. 

The results of the individual networks are shown below. 
First, we trained the network to differentiate two views (A4C 
and PLX). The AUC of this network was 1.0 (Fig. 3). Then, 
we developed a second network to distinguish LVH from 
non-LVH. This network performed well with AUC = 0.98 
(95% CI 0.94–0.99) (Fig. 3), and corresponding sensitivity 
and specificity of 94.0% and 91.6%, respectively (Table 2). 
The accuracy of detecting LVH was 92.4%. Furthermore, 
to detect the latent causes of LVH, we trained a three-class 
classification network, and the AUC of the three diseases 
produced by the model on the testing set were 0.90 (95% CI 
0.82–0.95) for HCM, 0.94 (95% CI 0.88–0.98) for CA, and 
0.88 (95% CI 0.80–0.93) for HHD (Fig. 3) and the accuracy 
of this network was 75.7%. The specificity and sensitivity 
corresponding to the three diseases were shown in Table 2. 

The Dice score of the segmentation network was 
0.86 ± 0.02, and the IOU, as well as 95%HD were 
0.77 ± 0.03, 7.44 ± 7.89 respectively. The newly produced 
images by segmentation network were used to train the 
LVH detection and etiology identification models (Fig. 4). 
In terms of the performance of the LVH detection model 
trained on auto-segmented images, the AUC was 0.97 (95% 
CI 0.93–0.99) (Fig. 5) which was comparable to the results 
of the original images(0.98 vs 0.97, P = 0.57). As for the 
test results for differentiating the three diseases, the AUC 
produced by the etiology identification network trained 
on auto-segmented images were not significantly different 
from the results on the original images (HCM: 0.90 vs 0.90, 
P = 0.99; CA: 0.93 vs 0.94, P = 0.79; HHD: 0.85 vs 0.88, 
P = 0.60) (Fig. 5; Table 2). The accuracy for the LVH detec-
tion network and etiology identification network were 92.3% 
and 74.7%, respectively.

Considering that our segmentation network did not 
achieve great results with a Dice score of 0.86 and IOU 
of 0.77, the classification results of the segmented images 
may be influenced by the performance of the segmentation 
model. Therefore, we also used manually segmented images 
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(with accurate segmentation) to train the two classification 
models. The accuracy of LVH identification network was 
96.2%. The AUC of recognizing LVH based on manually 
segmented images was 0.98 (95% CI 0.94–0.99). As for 
the results of etiology identification, the AUCs produced 
by this network improved, although not significantly, when 
compared to the results generated by the network trained 
on raw images (HCM: 0.95 vs 0.90, P = 0.06; CA: 0.96 vs 
0.93, P = 0.44; HHD: 0.93 vs 0.88, P = 0.10), and the accu-
racy increased from 75.7 to 80.4%. (Fig. 5; Table 2). The 
remaining results of classification with segmentation were 
shown in Table 2.

Given that the performance of the classification models 
trained on automatically segmented images did not improve 
when compared with the original images, we did not include 

the segmentation network in our final architecture. Ulti-
mately, we connected the view classification model, LVH 
detection model, and etiology identification model to form 
our integrated framework. The input of this network were 
pairs of images, and the final output was one of four labels: 
Normal, HCM, HHD, and CA. The average AUC of this 
joint network was 0.91 (Fig.6; Table 3), and the average 
sensitivity and specificity were 83.7% and 90.0% (Table 3), 
respectively.

The accuracy of differentiating normal cardiac structure 
from LVH by two echocardiographers was 84.6%, and 55.2% 
for recognizing the etiology of LVH.

As for the interpretability of this network, we utilized 
the Grad-CAM approach to create heat maps, as shown in 
Fig. 7, highlighting the region of interest (red) on which 

Table 1   Baseline characteristics 
of patients and measurements of 
echocardiography

BSA body surface area, IVSd diastolic interventricular septum, LVPWd diastolic left ventricular post wall, 
LVM left ventricular mass, LVMI left ventricular mass index, EF ejection fraction, LVDd diastolic left ven-
tricular diameter, LVOT left ventricular outflow tract, GLS-Avg Average global longitudinal strain

Normal Hypertrophy 
cardiomyopathy

Hypertensive 
heart disease

Cardiac amyloidosis P value

No. of Patient 259 218 189 58 –
No. of cases 259 220 189 137 –
Male 71.4% 66.1% 75.5% 77.5% 0.12
Age (years) 56.1 ± 15.4 56.7 ± 14.0 60.6 ± 12.9 61.0 ± 8.4  < 0.05
BSA (m2) 1.69 ± 0.14 1.69 ± 0.13 1.69 ± 0.15 1.68 ± 0.14 0.59
IVSd (cm) 0.96 ± 0.11 1.98 ± 0.54 1.32 ± 0.14 1.52 ± 0.22  < 0.05
LVPWd (cm) 0.93 ± 0.12 1.10 ± 0.22 1.15 ± 0.16 1.38 ± 0.27  < 0.05
IVSd/LVPWd 1.04 ± 0.12 1.86 ± 0.62 1.15 ± 0.10 1.11 ± 0.13  < 0.05
LVM (g) 148.7 ± 31.5 283.2 ± 86.0 223.8 ± 85.7 238.3 ± 61.8  < 0.05
LVMI 87.7 ± 16.9 167.1 ± 49.9 135.6 ± 44.6 142.1 ± 34.3  < 0.05
EF (%) 65.0 ± 6.7 69.5 ± 7.6 66.3 ± 8.8 58.1 ± 10.7  < 0.05
LVDd (cm) 4.61 ± 0.39 4.41 ± 0.52 4.74 ± 0.59 4.17 ± 0.42  < 0.05
LVOT (mmHg) – 31.9 ± 43.22 – –
GLS-Avg (%) – – – 12.93 ± 4.13

Fig. 3   The results of individual classification network. LVH left ventricular hypertrophy, HCM hypertrophic cardiomyopathy, CA cardiac amy-
loidosis, HHD hypertensive heart disease
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the network focused to predict the labels. The red region 
was concentrated on heart for 87.4% and 71.2% of the A4C 
and PLX views, respectively. Among these percentages, the 
red region specifically highlighted the ventricle on 77.3% 
of the A4C images, and the red region was roughly around 
the interventricular septum on 52.7% of the PLX images.

Discussion

LVH is a relatively common morphological alteration of the 
heart in clinical practice and can be detected by multiple 
imaging modalities, such as electrocardiography echocardi-
ography, and cardiac magnetic resonance imaging. Among 
them, echocardiography is a widely used approach to detect 
and differentiate the etiology of LVH. However, echocar-
diography has some drawbacks, such as low signal–noise 
ratio, spotty image quality and lower reproducibility. Deep 
learning is a promising method to address such problems, 
which has been applied for many types of research pertain-
ing to echocardiography.

Our research mainly focused on classification tasks, 
and the proposed deep learning framework achieved good 
results, with average AUC over 0.90 and corresponding sen-
sitivity and specificity over 80%. Regarding relative research 
work, several studies have utilized deep learning to iden-
tify LVH on echocardiograms; however, few studies have 
explored the etiology of LVH [21, 22]. One study developed 
multiple independent convolutional neural networks, one of 
the representative deep learning algorithms, to differenti-
ate HCM and CA from normal structures, respectively. And 

their result was similar to ours, with the AUC around 0.9. 
However, they did not further distinguish between HCM and 
CA, or other types of LVH [15]. Our framework connected 
multiple independent models to complete different tasks to 
not only identify the LVH from normal structures but also 
to distinguish the etiology of LVH.

In comparison to the two echocardiographers, the clas-
sification networks outperformed them, especially on iden-
tifying the etiology of LVH (accuracy: 75.7% vs 55.2% for 
the network vs echocardiographers). Though we did not 
compare with more experienced observers, the encour-
aging result still showed that the deep learning network 
could be a promising measure to help echocardiographers 
improve diagnostic accuracy, especially for those who are 
less experience.

Segmentation plays a vital role in echocardiographic 
assessment, for example, predicting ejection fraction and 
detecting regional wall motion abnormalities [23, 24]. In 
this study, we introduced the segmentation network to 
delineate and separate the LV myocardium, aiming to find 
out the performance of the network on segmented images 
which contains important information to identify LVH and 
with relatively salient edge features provided by masks. We 
expected the segmentation network would help to improve 
the performance of the classification network. However, 
the AUCs of the classification networks (LVH detection 
and etiology classification) trained on automatically seg-
mented images were not significantly different from those 
using the original images. Likewise, the accuracy was 
similar between the two networks, 92.4% vs 92.3% (raw 
images vs auto-segmented images) for LVH detection and 

Fig. 4   The masks created by manual annotation and auto-segmentation, and the newly generated images of left ventricular myocardium. acardiac 
amyloidosis, bhypertrophic cardiomyopathy, chypertensive heart disease
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75.7% vs 74.7% (raw images vs auto-segmented images) 
for etiology identification. We believe that our segmenta-
tion network’s less than satisfactory performance influ-
enced the classification results since inaccurate segmen-
tation may cause some LVM information loss. Thus, we 
used manually segmented images (with accurate segmen-
tation) to train the classification networks. The AUC of 
LVH identification produced by this network was similar 
to that of the original images (both were 0.98). However, 
the AUCs of distinguishing the three diseases improved, 
and the accuracy of the two classification networks trained 
on manually segmented images both increased when com-
pared to the results of the original images (LVH detection: 
92.4% vs 96.2%, etiology identification: 75.7% vs 80.4%). 
The results suggested that more accurate segmentation 
could help improve classification performance. In this 
study, our segmentation network did not perform well, so 
we did not include this module in our final network. In our 
future work, we will try to improve the capability of the 
segmentation network and connected it to the final network 
to improve classification performance.

“Black-box” is an inherent aspect of the deep learn-
ing algorithm. Unlike traditional machine learning, which 
mainly depends on manually extracted features (that help to 
explain the decision-making process), deep learning meth-
ods make predictions based on automatically extracted fea-
tures. Thus, which features the algorithm uses to make deci-
sions is unknown. The unseen nature of the decision-making 
process of deep learning is called “Black-bx”.

Only a few studies in medicine using deep learning 
method focused on the interpretability of the “Black-box” 
[25, 26]. In our study, we tried to figure out which part of 
the echocardiography did the network focused on when 
the model made the decisions. We applied the Grad-CAM 
method to create class activation maps which highlighted 
the interested regions, and the network mainly predicted the 
labels based on the features extracted from that area. As 
shown in the Fig. 7, whether on A4C or PLX, the high-
lighted area (red) was major located on heart, not other 
irrelevant regions, which means the network mainly made 
the decisions based on the features extracted from heart. In 
addition, the red area was concentrated on the ventricle in 
most of the echocardiography on A4C view, and on PLX 
view, although the ventricle was not specifically highlighted, 
the red area was roughly around interventricular septum, 
which further increased the reliability and interpretability 
of the proposed deep learning network. The “black-box” is 
a key issue of deep learning algorithms, which might limit 
the application of this state-of-the-art approach in clinical 
work [27]. More research adopting deep learning algorithms 
should focus on both the performance and interpretability 
of the network.
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The architecture we proposed was built on images only. Com-
bining other modalities or clinical measurements may further 
improve the performance of the network [28], especially 12-lead 
electrocardiography (ECG), which is another easily available 
and widely used method for detecting LVH. Numerous studies 
have shown that ECG-based artificial intelligence methods have 
the ability to detect LVH [29, 30]. In addition, ECG also con-
tains some information that can help to distinguish the etiology 
of LVH, for example, if the voltage on ECG is lower than normal 
under conditions of ventricular wall thickness, then CA should 
be highly suspected [18]. In future research efforts in the field 
of cardiovascular imaging, more comprehensive deep learning 
frameworks involving rapid acquisition, less operator-dependent, 
and multifaceted information should be considered.

Limitations

Our study has several limitations. First, the framework was 
trained with relatively small datasets. Although we included 
over 700 patients, only two images of each patient were col-
lected, resulting in less than 2000 images. Therefore, further 
studies should be done with larger sample size, not only with 
more echocardiograms but also covering a larger number 
of patients. Second, all the echocardiograms were collected 
from one medical center, though we collected data from two 
commonly used ultrasound vendors, the lack of external data 
influenced the generalizability of this network. So multi-
center and multi-vendor studies are needed to improve and 
test the generalizability of the deep learning model. Third, 

Fig. 5   The results of classification networks on automatically or manually segmented images. LVH left ventricular hypertrophy, HCM hyper-
trophic cardiomyopathy, CA cardiac amyloidosis, HHD hypertensive heart disease
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half of the CA patients have multiple pairs of images (from 
different inspection times), although we avoided distributing 
these images from the same patient into different datasets, it 
may still influence the result of classification results of CA. 
Fourth, this study did not include other types of LVH, except 
for HCM, CA, and HHD.

Conclusion

Deep learning architectures have the ability to automati-
cally detect LVH and even distinguish the underlying 
etiology of LVH. With sufficient data and appropriate 
network architecture, this cutting-edge technology has 

Fig. 6   The results of the final 
integrated framework. HCM 
hypertrophic cardiomyopathy, 
CA cardiac amyloidosis, HHD 
hypertensive heart disease

Table 3   Results of final framework on original images

a Hypertrophic cardiomyopathy, bcardiac amyloidosis, chypertensive 
heart disease

AUC (95% CI) Sensitivity (95% 
CI)

Specificity (95% CI)

Average 0.91 83.7% 90.0%
Normal 0.97 (0.93–0.99) 92.5% (81.8–

97.9%)
96.3% (90.9–99.0%)

HCMa 0.88 (0.80–0.93) 85.7% (71.5–
94.6%)

81.8% (70.4–90.2%)

CAb 0.92 (0.85–0.96) 85.2% (66.3–
95.8%)

91.4% (83.0–96.5%)

HHDc 0.86 (0.78–0.92) 71.4% (53.7–
85.4%)

90.4% (81.2–96.1%)
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great potential to be applied in clinical practice to assist 
echocardiographers in making faster and more accurate 
diagnoses of LVH, especially for less experienced sonog-
raphers. More research is needed in the cardiovascular 
field to help advance the future application of this state-
of-the-art technology.
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