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Abstract
Visual or manual characterization and classification of atherosclerotic plaque lesions are tedious, error-prone, and time-
consuming. The purpose of this study is to develop and design an automated carotid plaque characterization and classification 
system into binary classes, namely symptomatic and asymptomatic types via the deep learning (DL) framework implemented 
on a supercomputer. We hypothesize that on ultrasound images, symptomatic carotid plaques have (a) a low grayscale median 
because of a histologically large lipid core and relatively little collagen and calcium, and (b) a higher chaotic (heterogeneous) 
grayscale distribution due to the composition. The methodology consisted of building a DL model of Artificial Intelligence 
(called Atheromatic 2.0, AtheroPoint, CA, USA) that used a classic convolution neural network consisting of 13 layers and 
implemented on a supercomputer. The DL model used a cross-validation protocol for estimating the classification accuracy 
(ACC) and area-under-the-curve (AUC). A sample of 346 carotid ultrasound-based delineated plaques were used (196 
symptomatic and 150 asymptomatic, mean age 69.9 ± 7.8 years, with 39% females). This was augmented using geometric 
transformation yielding 2312 plaques (1191 symptomatic and 1120 asymptomatic plaques). K10 (90% training and 10% 
testing) cross-validation DL protocol was implemented and showed an (i) accuracy and (ii) AUC without and with augmenta-
tion of 86.17%, 0.86 (p-value < 0.0001), and 89.7%, 0.91 (p-value < 0.0001), respectively. The DL characterization system 
consisted of validation of the two hypotheses: (a) mean feature strength (MFS) and (b) Mandelbrot’s fractal dimension (FD) 
for measuring chaotic behavior. We demonstrated that both MFS and FD were higher in symptomatic plaques compared to 
asymptomatic plaques by 64.15 ± 0.73% (p-value < 0.0001) and 6 ± 0.13% (p-value < 0.0001), respectively. The benchmark-
ing results show that DL with augmentation (ACC: 89.7%, AUC: 0.91 (p-value < 0.0001)) is superior to previously published 
machine learning (ACC: 83.7%) by 6.0%. The Atheromatic runs the test patient in < 2 s. Deep learning can be a useful tool 
for carotid ultrasound-based characterization and classification of symptomatic and asymptomatic plaques.
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Introduction

There are 17.9 million cardiovascular diseases (CVD) deaths 
globally and 647,000 in the USA per year [1, 2], which 
means a loss of one life every 37 s [3]. CVD’s fundamental 
cause is atherosclerosis development with plaque formation 
in the vasculature, such as the coronary and carotid arteries 
[4]. Plaque rupture or plaque ulceration often results in the 
formation of a thrombus, which may embolize or occlude the 
lumen obstructing the blood flow causing myocardial infarc-
tion or stroke [5]. This study is focused on the characteriza-
tion and classification of only carotid artery atherosclerotic 
plaques, a study classified under the topic of computer-aided 
diagnosis [6, 7]. This study will not dwell on the literature 
dealing with coronary artery plaques.

Several medical imaging modalities are used to visualize 
and screen the plaque, with the most common being mag-
netic resonance imaging (MRI) [8], computed tomography 
(CT) [9], and ultrasound (US) [10, 11]. Over the past decade, 
ultrasound has become an established norm as a first-line 
diagnostic modality in symptomatic patients and a powerful 
screening tool in asymptomatic individuals [12]. It is a safe, 
low-cost test [13], easy to use, has a small footprint, and is 
radiation-free [14]. Also, carotid ultrasound imaging at a 
resolution close to 0.2 mm provides the ability to study the 
texture of plaques and determine whether they are stable or 
unstable [15–17].

As seen on ultrasound, carotid plaque texture is variable 
and challenging to classify using the naked eye due to high 
inter-observer variability [18]. Symptomatic plaques tend to 
produce more significant stenosis, be more hypoechoic, have 
a large juxtaluminal black area close to the lumen without a 
visible echogenic cap, and discrete white areas hyperechoic 
areas compared with asymptomatic plaques [19, 20]. These 
findings have been identified in cross-sectional studies of 
symptomatic and asymptomatic patients, in a large prospec-
tive study of asymptomatic patients and subsequently veri-
fied by comparing histology with in vivo ultrasound imaging 
[21].

Because the pixel data is large and fuzzy, derived from 
the spatial ultrasound images, and machines have a better 
learning ability to handle linear and nonlinear variations in 
plaque distribution, the recent trend in artificial intelligence 
(AI) has been used to characterize and classify [22] plaques 
using machine learning (ML). This ML solution requires 
computing the grayscale features manually [23–28], which 
are then trained using a training classifier to generate offline 
signatures and patterns. These are then used to transform the 
test pattern to predict its class risk [29, 30]. Such ML-based 
solutions are ad-hoc, slow, and not generalized [30], besides 
lacking reliability and stability.

Deep learning (DL) technology has dominated all walks 
of life, particularly in radiological imaging [31–33]. This 
technology provides an alternative to the ML strategies, 
especially: (i) the ability to generate a down-sampled rep-
resentation of the original pattern automatically (so-called 
feature maps), and (ii) dynamically adjust the variations in 
the grayscale contrast via the neural network layers of the 
DL architecture [34]. Lekadir et al. [35] developed a CNN 
model for the classification of the plaque components by 
extracting 90,000 patches from the 50 in-vivo ultrasound 
image and achieved a 0.90 correlation coefficient. The pur-
pose of this study is to develop and design an automated 
carotid plaque characterization and classification system 
into binary classes, namely symptomatic and asymptomatic 
types via the deep learning (DL) framework implemented 
on a supercomputer.

We hypothesize that symptomatic plaque has tissue 
characteristics such as (a) hypoechoic regions, having a low 
grayscale median (GSM) as a result of a large lipid core, low 
calcium or intraplaque haemorrhage (IPH), and (b) more 
chaotic (heterogeneous) representation in the ultrasound 
scans [16, 17, 28] because of the frequent presence of neo-
vascularization alternating with areas of collagen or lipid. 
This is contrary to asymptomatic plaques, which are often 
hyperechoic with higher GSM, because they have higher and 
diffuse collagen content, often with calcification and a small 
lipid core. We designed a novel carotid plaque tissue charac-
terization and classification system using DL components of 
artificial intelligence (AI) based on such a hypothesis. The 
design overcomes the ML weaknesses such as (i) manual 
feature extraction and (ii) classification. The classification 
system’s accuracy is determined using a K10 (90% train-
ing and 10% testing) cross-validation protocol. The charac-
terization of the plaque is accomplished by (a) computing 
the mean feature strength (MFS) at different DL layers [36] 
and (b) fractal dimension exhibiting quantification of the 
randomness in these plaque images [37]. Subsequently, we 
benchmark the DL system against the previously developed 
ML system (on the same cohort), and finally, the system 
speed is optimized using the supercomputer framework. A 
work of similar.

This study’s layout is as follows. Section 2 presents the 
patient demographics, data acquisition, and pre-processing. 
Section 3 depicts the AI architecture. Section 4 presents 
experimental protocol, AI parameters, and performance 
metrics. Section 5 shows the DL classification results. Sec-
tion 6 presents the plaque characterization in a deep learn-
ing framework. Section 7 presents the discussion. The study 
concludes in Sect. 8.
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Patient demographics, data acquisition, 
and pre‑processing

The main components of this section primarily consist of 
(i) patient demographics and exclusion criteria, (ii) ultra-
sound data acquisition, and (iii) plaque delineation and data 
augmentation.

Patient demographics and exclusion criteria

We included 346 referred consecutive patients (mean age 
69.9 ± 7.8 and 39% female); all these carotid duplex ultra-
sound scans were noted to have an internal carotid artery 
(ICA) stenosis of 50% to 99% (approval was obtained from 
the Institutional Ethics Committee, St. Mary’s Hospital, 
Imperial College, London, UK) by experts. Out of these 
346, 150 were asymptomatic with no neurological abnor-
malities. The remaining 196 had ipsilateral cerebral hemi-
spheric symptoms (amaurosis fugax (AF), transient ischemic 
attacks, or stroke with good recovery) related to carotid 
artery atherosclerosis. Overall, there were 196 distributions, 
including 88 strokes, 70 TIA, and 38 AF. A neurologist 
noted the history of patients and their physical examination 
[20]. Note that this patient data were used in our previous 
machine learning work [23, 38].

Exclusion criteria

As per European Carotid Surgery Trialists (ECST) Col-
laborative Group 1991, it was recommended that surgery 
was harmful in patients with mild stenosis (0%–29%). 
Later in 1996, ECST-Collaborative Group 1996 recom-
mended no benefit from surgery in patients with either 
30%–49% stenosis or 50%–69% stenosis. In 1998, ECST 
recommended the use of Carotid Endarterectomy (CEA) 
for most patients with 80% stenosis. Thus, subjects 
excluded from the study were those with cardioembolic 
symptoms or distant symptoms (6 months). As per ECST, 
patients with 70%–99% stenosis showed a reduction in 
overall stroke risk. It was reported in [23, 38] that sub-
jects having 70% to 99% stenosis and 50% to 69% stenosis 
highly benefited from CEA. The plaques that were less 
than 50% stenosis were eliminated from the study. This 
was because they were rarely associated with stroke, and 
therefore the inclusion of such plaque would have caused 
noise and bias. In this study, the process of characteriza-
tion of the plaque was not blinded, mainly because the 
sonographers performed routine testing for grading of 
plaques and stenosis. However, the classification process 
was blinded to the person who processed the images since 
they did not know which plaques were symptomatic and 
asymptomatic.

Ultrasound data acquisition

The carotid scanning machine consisted of the following 
make and model: HDI 3000; Advanced Technology Labora-
tories, Seattle, WA, the USA having linear broadband width 
of 4–7 MHz (multi-frequency) transducer. Its resolution was 
20 pixels per mm. The scanning was conducted at Irvine 
Laboratory for Cardiovascular Investigation and Research, 
Saint Mary’s Hospital, UK. With 40 years of experience 
in carotid ultrasound and a vascular surgery area, Profes-
sor Andrew Nicolaides carried out all the ultrasound image 
analysis and is discussed in our previous study [23]. It con-
sisted of the following steps: (i) adjustment of the dynamic 
range of the US machine; (ii) the averaging of the frames; 
(iii) application of the time gain compensation (TGC), where 
the objective was to ensure that adventitia wall region of the 
anterior and posterior walls had similar brightness; (iv) the 
transfer function was kept linear while keeping the beam of 
the probe perpendicular to the lumen wall; (v) the depth (D) 
was adjusted to ensure that it had the largest plaque region 
in the image; (vi) Finally, the probe was calibrated in such a 
way that plaque close to adventitia was hyperechoic (bright 
region), which was ultimately used during the normalization.  

Plaque delineation and data augmentation

Plaque delineation

The plaque delineation protocol’s objective was to manu-
ally trace the region-of-interest, so-called plaque, in the 
carotid artery’s anterior and posterior walls. For tracing, we 
used “Plaque Texture Analysis software (PTAS)” (Iconsoft 
International Ltd, Greenford, London, UK) as adopted in 
previous studies [23, 38]. It offers two benefits: (i) one can 
normalize the images ensuring the median gray-level inten-
sity of blood is in the range of 0–5 (dark intensities), and that 
of the adventitia layer was in the range of 180–190 (bright 
intensities) and (ii) the PTAS delineation system was user-
friendly. This means post-normalization, the plaque could be 
outlined by the medical practitioner using a mouse, thereby 
saving it as a new file. Note that there were acoustic shadows 
for the calcified plaques, and they were not included in the 
delineation process. This way, the region of calcification and 
the plaque’s non-calcification components outside the acous-
tic shadow could be selected. Figure 1 shows exemplary cut 
sections of the manually delineated plaque.

Ultrasound plaque data augmentation

Because a deep learning system requires a relatively 
more extensive database (ranging from thousands to tens 
of thousands), we use a standardized protocol such as 
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"augmentation". In this process, we use the random geometric 
transformation of the delineated plaque, such as (i) flipping, 
(ii) skewing, and (iii) rotating. The original size of the cohort 
is 346 contains 196 symptomatic and 150 asymptomatic 
plaques. Using the above augmentation procedure, the new 
cohort size of 2311 consists of 1191 symptomatic plaques 
and 1120 asymptomatic plaques. A total of 196 symptomatic 
plaques were converted to 1191 (804 were newly unique aug-
mented to 1000, and then original 196 were added, yielding 
to 1,196. Five images were skewed and unacceptable; hence, 
they were removed from the cohort, leading to 1,191). A 
similar approach for the augmentation was adopted for the 
asymptomatic plaques. Thus, 150 plaques underwent augmen-
tation to reach 1000, followed by an addition of 150 origi-
nal plaques, leading to 1150. Since 30 skewed plaques were 
unacceptable, the finally tally consisted of removing these, 
accounting for 1120 asymptomatic plaques.

Artificial intelligence architectures

This section presents the two main pipeline architectures: 
Deep learning and Machine learning. Section 3.1 presents 
the DL architecture and Sect. 3.2 depicts ML architecture. 
The super computer specifications are presented in Sect. 3.3.

Characterization and classification stem out of the pre-
viously developed characterization system using machine 
learning (ML), applied to several applications based on 
signal and image processing such as arrhythmia [39], 
liver [40–43] breast tissue characterization [44] design of 
Thyroscan™ for thyroid tissue characterization [45–49], 
coronary plaque characterization [50], prostate tissue 
characterization using UroScan [51, 52], ovarian tissue 
characterization using GyneScan [53, 54], diabetes [55], 
skin cancer [56], left ventricle characterization [57], small 
vessel disease [58], and recently to carotid artery disease 
risk stratification using Atheromatic™ 1.0 [22, 27, 59, 
60]. The above application was all ML-based, and the fea-
tures in these methods were hand-crafted, and therefore 
required painful methods for feature extraction, feature 
selection, and optimization of the classification frame-
works. Our proposed system’s main novelty is designing 
the optimal DL architecture for tissue characterization and 
plaque classification. When combined, the complexity of 
the dataset and the hyperparameters play a vital role in 
selecting a number of convolution neural network (CNN) 
layers and the type of the layers [61] in a DL architecture.

Fig. 1  Left: Symptomatic. Right: Asymptomatic; Row 1, 3, 5, and 7 are Original carotid plaque scans; Row 2, 4, 6, and 8 are the plaque deline-
ated cut sections by the vascular surgeon (AN) after pre-processing
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Deep learning architecture

Our group has developed DL architectures before, which 
has taken up to 22 layers, which are typically meant to 
accept large sample sizes (considered in thousands) and to 
have bigger sized (W×H) images [40]. Since our cohort, 
size and image size are both moderate (i.e. 346 images and 
size varying from 55 × 43  pixel2 to 593 × 107  pixel2 without 
augmentation or cohort size of 2311, with augmentation). 
We chose a 13 layered CNN architecture having five con-
volution layers (CL), five average pooling layers (APL), 
two dense layers (DenL-1, DenL-2) and, one dropout layer 
as shown Fig. 2. We fine-tuned the hyper-parameters by 
changing the number of layers, type of layers, dropout rate, 
momentum rate, and learning rate. The last layer consists 
of the softmax layer that computes the categorical cross-
entropy loss function (E) between the two classes symp-
tomatic and asymptomatic and is mathematical as given 
in Eq. 1 as:

where p is the predicted probability of the plaque belonging 
to a particular class estimated using DL and y is the binary 
indicator for observed class, and "*" represents the product. 
The number of output features from the convolution process 

(1)E = − (y ∗ log(p)) + [(1 − y) ∗ log(1 − p)]

[36] given in Eq. 2, and the number of output features from 
the average pooling feature maps (APFM) given in Eq. 3.

where nin and nout are the numbers of input and output fea-
tures, respectively, representing each CL. M is the convo-
lution kernel size, P is the convolution padding size, S is 
the stride size (expressing the kernel movement), aout is 
the number of output features, w is the input feature map’s 
width, and f is the kernel size. Table 1 shows the three col-
umns depicting the name of the layers, the size of the feature 
maps, and the parameters used during training (per epoch). 
The DL system requires that the input size be the same. 
Therefore we converted the cut sections images to same-
sized images by padding zeros but ensured that they do not 
get used during the DL process. Further, to consider the cut 
sections’ grayscale pixels, we use a "mask image" of the 
same size as the cut section. This masked image is used for 
ensuring that the DL uses only the grayscale pixels of the 
cut sections.

(2)nout =

[
nin + (2 ∗ P) −M

S

]

+ 1

(3)aout =

(
w − f

s

)

+ 1

Fig. 2  The conceptual view of deep learning architecture consists of five CL, five APL, two DenL, and one flattened layer. The dotted line in the 
middle shows the missing three CL and three APL layers (courtesy of AtheroPoint™, Roseville, CA, USA)
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Machine learning architecture

We benchmark the DL model against the popular ML mod-
els by comparing the attributes such as texture features, 
area-under-the-curve, and accuracy. Figure 3 shows the 
global architecture of the ML model. ML models’ efficiency 
depends on the feature extracted and selected. We extracted 
histogram, Haralick, and Hu-moment features from the ultra-
sound scans, then we fed these features to linear discriminant 

analysis (LDA), k- nearest neighbors (k-NN) with K10 cross-
validation protocol [62, 63].

Supercomputer specifications for DL architecture

We implemented our DL model using Tesla’s NVIDIA-
DGX v100-1. It contains 8 NVIDIA Tesla V100 graphi-
cal processing unit (GPU) accelerators connected through 
NVIDIA NVLink. All the GPUs are connected to form a 
cube-mesh network. This configuration is efficient on GPU 
load sharing. This is considered a state-of-the-art system in 
DL, and it provides unmatched performance for training. 
High-performance NVLink GPU interconnect improves the 
scalability of the DL-based training [64].

Statistical methods

ROC analysis

The final predicted labels are then compared against gold 
standards for performance evaluation using the receiving 
operating characteristics (ROC) and area-under-the-curve 
(AUC) using MEDCALC 17.0. Then p-values will be com-
puted using T-test to highlight the significance of the pre-
dicted results.

Power analysis

We follow the standardized protocol for estimating the total 
samples needed for a certain threshold of the margin of error. 
The standardized protocol consisted of choosing the right 
parameters while applying the “power analysis.” Adapting 
the margin of error (MoE) to be 5%, the confidence interval 
(CI) to be 95%, the resultant sample size (n) was computed 
using the Eq. 4. Where z* represents the z-score value (1.64) 
from the table of probabilities of the standard normal distri-
bution for the desired CI, and p ̂ represents the data propor-
tion (0.5). Plugging in the values, we obtain the number of 

Table 1  CNN with 13 layers (dropout layer not included) with train-
able parameters

Sn C1 C2 C3
Name of the layer Feature map size Trainable parameter

R1 2D Convolution 
Layer-1

(240, 240, 256) 7168

R2 2D Average Pooling 
Layer-1

(120, 120, 256) 0

R3 2D Convolution 
Layer-2

(120, 120, 128) 295,040

R4 2D Average Pooling 
Layer-2

(60, 60, 128) 0

R5 2D Convolution 
Layer-3

(60, 60, 64) 73,792

R6 2D Average Pooling 
Layer-3

(30, 30, 64) 0

R7 2D Convolution 
Layer-4

(30, 30, 32) 18,464

R8 2D Average Pooling 
Layer-4

(15, 15, 32) 0

R9 2D Convolution 
Layer-5

(15, 15, 16) 4624

R10 2D Average Pooling 
Layer-5

(7, 7, 16) 0

R11 1D Flatten 784 0
R12 1D Dense-1 128 100,480
R13 Dropout Layer 128 0
R14 1D Dense-2 2 258
R15 Total Trainable Parameters 499,826

Fig. 3  Global ML architecture (courtesy of AtheroPoint™, Roseville, CA, USA)
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samples 268 (as a baseline). Since the total number of sam-
ples in the input cohort consisted of 346 ultrasound scans, 
we were 29.1% higher than the baseline requirements.

Mean statistical performance

If ηDL
K10(c) represents the accuracy of the DL method using 

K10 protocol for the combination c, η̅DL
K10 represents the 

mean of the C combinations, and σK10
DL represents the cor-

responding standard deviation, then these can be mathemati-
cally expressed as:

Following the similar notation for the ML-based strategy, 
we can compute the mean and standard deviation as follows:

The ML mean and standard deviation computation was 
conducted for two different kinds of validation data sets.

Experimental protocol, AI parameters, 
and performance metrics

Cross‑validation protocol

Our experimental protocol consists of determining classi-
fication accuracy using a cross-validation (CV) paradigm 
that uses the K10 protocol (90% training and 10% testing). 
We run the CV protocol on both the datasets (default 346 
plaques and augmented 2311 plaques).

Deep learning parameters

The following parameters are considered for training and 
testing the DL system: total epochs: 10,000, learning rate: 

(4)n =

[

(z∗)
2
×

(
p̂(1 − p̂)

MoE2

)]

(5)�DL
K10

=

∑C=10

c=1
�DL
K10

(c)

C

(6)
�DL
K10

=

���
�

∑C=10

c=1

�
�DL
K10

(c) − �
DL

K10

�

C − 1

(7)η
ML

K10
=
ΣC = 10
c = 1

ηML
K10

(c)

C

(8)
σML
K10

=

√√√√
√ΣC = 10

c = 1

[
ηML
K10

(c) - η
ML

K10

]2

C - 1

0.001, batch size: 32, regularization (L2): 0.001, and drop 
out: 0.5, optimizer: Adam.

Our DL lab experience [65] shows that during train-
ing, the total iterations for one combination is nearly 
10,000–20,000. Since the image size was moderate, we 
empirically took a stable value of 10,000 epochs. Typically, 
the learning rate and regularization values are the same as 
adopted in the industry, which is 0.001 and 0.001, respec-
tively. The batch size is 32 for training since the total data 
size was 311 (90% of 346) or 2080 (90% of 2311) for ten 
combinations of the K10 protocol.

Performance metrics

If ηDL
K10(c) represents the accuracy of the DL method using 

K10 protocol for the combination c, η̅DL
K10 represents the 

mean of the C combinations, and σK10
DL represents the cor-

responding standard deviation, then these can be mathemati-
cally expressed as Eqs. 9, 10.

Following the similar notation for the ML-based strategy, 
we can compute the mean and standard deviation as follows 
Eqs. 11, 12.

The ML mean and standard deviation computation was 
conducted for two different kinds of validation data sets.

Results

There are two sets of experimental results. First is our DL 
system’s performance evaluation (PE) using cross-validation 
protocol, and second, plaque characterization based on the 
two hypotheses. Section 5.1 presents the PE, while Sect. 5.2 
discusses the characterization. Lastly, we validated our DL 
architecture by adapting the most widely used facial biom-
etric data set.

(9)�DL
K10

=

∑C=10

c=1
�DL
K10

(c)

C

(10)
�DL
K10

=

���
�

∑C=10

c=1

�
�DL
K10

(c) − �
DL

K10

�

C − 1

(11)η
ML

K10
=
ΣC = 10
c = 1

ηML
K10

(c)

C

(12)
σML
K10

=

√√√√
√ΣC = 10

c = 1

[
ηML
K10

(c) - η
ML

K10

]2

C - 1
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Deep learning data analysis and benchmarking 
against machine learning

DL classification accuracy with and without augmentation

We implemented the DL architecture using 13-layered 
CNN consisting of the last layer as the softmax layer, as 
shown earlier in Fig. 2. The output layer gives us the prob-
ability that the predicted risk belongs to either sympto-
matic or asymptomatic classes, categorically (binary) esti-
mated. The K10 protocol shows the best accuracy and AUC 
(computed using MEDCALC 17.0) of 86.17% and 0.86 
(p-value < 0.0001) without augmentation, while 89.7% and 
0.91 (p-value < 0.0001) with augmentation, respectively. To 
better understand the model performance, we compute every 

combination’s real-time accuracy at the end of the 500th 
step value.

Benchmarking of deep learning against machine 
learning

Benchmarking protocol consists of a comparison of a DL 
system against the ML system on the same cohort. Further, 
we compare our novel DL system against the previous ML 
system published using the same plaque data [20, 35]. Using 
the K10 cross-validation protocol for both AI methods, the 
results can be seen in Fig. 4. While the accuracy of the ML 
system was 84.05%, the DL accuracy was.

86.17% (w/o augmentation), 89.7% (w/ augmenta-
tion) (as shown in Fig. 4 (a)). The corresponding AUC 

Fig. 4  a Bar charts showing the accuracy comparison between (i) 
machine learning (light gray), (ii) Deep learning w/o augmenta-
tion (DL w/o Aug) (dark gray color) and (iii) deep learning w/ aug-
mentation (DL w/ Aug) (black color). b ROC curves showing AUC 
comparison: ML (0.83, p-value < 0.0001) vs. DL w/o Aug (0.86, 

p-value < 0.0001) systems showing an improvement of 3.61%. c ROC 
curves showing AUC comparison: ML (AUC: 0.83, p-value < 0.0001) 
vs. DL w/ Aug (AUC: 0.91, p-value < 0.0001) showing an improve-
ment of 8%.
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for ML and DL systems was 0.83 (p-value < 0.0001) 
and 0.86 (p-value < 0.0001) (w/o augmentation), 0.91 
(p-value < 0.0001) (w/ augmentation) respectively. Note 
the important point is that the methodology for design and 
implementation for ML requires exact steps, unlike DL sys-
tems. The offline training system was optimized, each time 
the features were manually computed. We will discuss the 
key differences in the discussion section further.

Validation of the DL and ML systems

Because the gold standard of the plaque images is based 
on the clinician’s experience and lightning conditions 
under which the images are manually characterized, the 
DL systems are always vulnerable to slight variations inac-
curacies. Therefore to further test the DL architecture, we 
used the most-widely "biometric facial data" [42] with a 
robust categorical gold standard. This database consisted 
of 1440 images with 72 classes, having 20 samples per 
class. Since the DL model consisted of two classes in the 
output layer, we changed the DL model output layer to 72 
nodes for BFD experimental only. By applying the K10 pro-
tocol, the system’s accuracy was 99.84% with AUC 0.99 
(p-value < 0.0001). This was benchmarked using the ML 
system, yielding an accuracy of 97.9% and an AUC of 0.95 
(p-value < 0.0001), almost comparable to the DL method. 
We validated the proposed model performance with a diag-
nostics odds ratio (DOR); it was observed that the DOR of 
DL was higher than ML.

Plaque characterization in a deep learning 
framework

Characterization of plaque requires to establish the (a) inten-
sity distribution and (b) roughness (or chaotic behaviour) of 
the plaque area. We hypothesize that images of symptomatic 
and vulnerable plaques are (a) more hypoechoic (darker) and 
(b) have a more patchy (chaotic) representation of grayscale 
compared with asymptomatic plaques [66, 67]. Given this 
hypothesis, we must observe and justify these two features 
as part of the characterization process. Further, we must also 
determine if these can differentiate between symptomatic 
and asymptomatic plaques. Our computation shows GSM 
for symptomatic (25.67 ± 26.27) is higher than GSM for 
asymptomatic (3.53 ± 10.38) by ~ 86% (CI: 24.33 to 29.91, 
(p-value < 0.0001). It has a higher standard deviation and 
needs an automated method based on DL to characterize 
the plaque. This section is developed on establishing the two 
crucial components of the hypothesis.

Hypothesis 1: intensity distribution

The CNN has 13 layers, where the first eight layers are low-
level features (CL-1, APL-1, CL-2, APL2 CL-3, APL-3, 
CL-4, and APL-4). Since asymptomatic plaque has higher 
collagen/high calcium (hyperechoic) content, the first eight 
layers must catch the textured plaque’s bright surface. On the 
contrary, the low-level features (LLF) will not catch the high 
lipids/low calcium of symptomatic plaque. As we penetrate 
the deep layers of CNN (from the 9th layer to the 13th layer), 
CNN should have the ability to catch high lipid/low calcium 
(hypoechoic) features of the symptomatic plaque as part of 
high-level features (HLF).

Fig. 5  a Mean feature strength for every 13 layers CNN model’s output layer. b MFS at the final output of the DenL-2 layer of the CNN model. 
Note that the dropout layer is not included
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The feature map’s strength was used to characterize 
the intensity distribution, an accurate representation of 
the plaque type (symptomatic vs. asymptomatic). These 
strengths are nothing but the maps of the plaque features 
and must correspond as "feature maps." To represent this in 
a deep learning framework, we compute these feature maps 
for both data sets (symptomatic and asymptomatic). This is 
accomplished by running the classic CNN model for both 
symptomatic and asymptomatic deck and computing the 
strengths at all layers’ output points.

Quantification of feature maps at different DL 
stages

We hypothesized the DL-2 layer would give the strength of 
the feature maps of the model. The strength of our model’s 
feature maps in the K10 protocol is shown in Fig. 5a. The 
2D FM is then converted to 1D FM for the rest of the two 
DL layers. Such vectors are computed for all the images for 
each class (symptomatic and asymptomatic). The strength 
of both classes is compared by quantifying the vector length 
corresponding to each of the classes. The separation of the 
classes can be seen, picked up by the DL system shown in 
Fig. 5b.

Justification of higher MFS of symptomatic plaques 
against MFS of asymptomatic plaques

Another way to justify as to why MFS (symptomatic 
plaques) > MFS (asymptomatic plaques), one can under-
stand the intensity distribution of the lobes of the histograms 
of these plaques. Shown below in Fig. 6a, b are the sympto-
matic and asymptomatic histograms, depicting the lobes A1, 
A2 for symptomatic, and lobes B1 and B2 for asymptomatic. 
Note that side lobes of A1 and A2 are also considered while 
computing the main lobes’ area. This means lobe A1 extends 
from the grayscale range 0–200, and lobe A2 extends from 
200 to 255. Giving the same reasoning, lobes B1 and B2 are 
being depicted. The areas of these symptomatic lobes A1, A2, 
A1 + A2, and asymptomatic lobes B1, B2, and B1 + B2 are 
shown in table Table 2. As can be seen, the symptomatic lobe 
areas are more significant than the asymptomatic lobe areas by 
32.86%, 31.05%, and 32.73%, respectively. This justifies the 
deep learning model’s ability to show the MFS of the symp-
tomatic class to be higher than the MFS of the asymptomatic 
class. This further validates the deep learning architecture 
design in terms of the number of layers of CNN. Note that the 
number of plaques in symptomatic and asymptomatic plaques 
is 196:150. On computing the lobe area per plaque (as seen in 

Fig. 6  Histogram distribution of a symptomatic b asymptomatic classes

Table 2  Strength of 
the histogram lobes for 
symptomatic vs asymptomatic 
in the form of area

Bold values indicate the final results

R1 Symptomatic plaque area Asymptomatic plaque area Quantify

Lobes Bin range Area  (pix2) Lobes Bin range Area  (pix2) Difference

R2 A1 0–200 4,256,297 B1 0–200 2,857,284 32.86%
R3 A2 200–255 341,801 B2 200–255 235,670 31.05%
R4 A1 + A2 All Bins 4,598,098 B1 + B2 All Bins 3,092,954 32.73%
R5 Area/Plaque All Bins 23,459 Area/Plaque All Bins 20,619 32.73%
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the row R5), symptomatic dominates compared to asympto-
matic by 32.73%, which further attests to our hypothesis.

Visual representation of the visual feature maps 
using non‑augmented data as example

A feature map from every layer is computed after training 
the model by loading the trained weight file. Collected all 

the filters mean output of 3 channels (RGB). Figures 7b and 
c represent an example feature map in layer 3 containing 
64 filters. That is a grid of filter output with four rows and 
16 columns (16 × 4 = 64). We use all the images from the 
training data for symptomatic (176 images) and asympto-
matic (135 images) classes for mean value computation. We 
computed the mean feature map view of the symptomatic 
and asymptomatic class. In Fig. 7b and c, the purple block 

Fig. 7  a Layers of the DL architecture (courtesy of AtheroPoint™, Roseville, CA, USA), b sample feature maps for symptomatic class, and c 
sample feature maps for asymptomatic class
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is a filtered image, and the features learned by the model at 
layer three shown in turquoise color, texture features of the 
grayscale images shown in the yellow band.

Hypothesis 2: chaotic distribution

The second hypothesis is well established in the literature. 
It states that the plaque assumes more randomness (chaotic 
or heterogeneous) in symptomatic patients than asympto-
matic, as explained in the introduction. One elegant way 
of quantifying the plaque randomness is by representing 
the plaque as a chaotic behavior using Mandelbrot’s funda-
mental equation of chaotic measurement so-called Fractal 
Dimension (FD) and symbolized as capital D. With this as 
an assumption, we, therefore, compute the FD for sympto-
matic and asymptomatic class pools. If the FD of sympto-
matic is higher than the FD of asymptomatic, our hypothesis 
holds on the plaque’s characterization assumption leading to 
the validity of DL-based classification. Using Mandelbrot’s 
equation, we, therefore, follow the standardized equation and 
algorithm to compute the D for both pools, and this can be 
seen in Fig. 8

(13)D =
log(N)

log(r)

D is the dimensionless quantity of self-similar objects, N is 
the number of boxes that cover the pattern, and r is the mag-
nification. Note here that log is taken as a Napier log to the 
base "e." The D value for symptomatic and asymptomatic 
are 1.45 (derived from 176 images) and 1.36 (derived from 
135 images), having [CI: 0.05 to 0.09], respectively, validat-
ing that D (Symptomatic) > D (Asymptomatic).

Atheromatic plaque segregation index using deep 
learning

This index aims to see how DL perceives the separation 
between the symptomatic and asymptomatic classes. We 
thus pass the training data sets through the DL system to 
compute the mean feature strength (MFS) as presented 
before. This MFS is computed for both symptomatic and 
asymptomatic data sets, and the percentage difference is 
considered the Atheromatic Plaque Segregation Index [23]. 
The separation further justifies the classification accuracy 
of ~ 90%. Atheromatic plaque separation index (APSI) is 
mathematically given in Eq. 14, computed using ML and 
DL strategies, as shown in Table 3.

(14)APSIAImodel
K10

(% ) =

(||MFS AF − MFSAS
||

MFS AF

)

∗100

Fig. 8  Fractal dimension (D) analysis of a symptomatic class b asymptomatic class. Here the AI model represents ML or DL, K10 is the CV 
protocol, and MFS AF and  MFSAS represent the MFS for symptomatic and asymptomatic, respectively

Table 3  Atheromatic Plaque Separation Index (APSI) using ML and DL systems

Bold values indicate the final results

Types of 
artificial
intelligence

Mean feature 
strength for
symptomatic (AF)

Mean feature strength for 
asymptomatic (AS)

Atheromatic plaque segregation 
index
(APSI)

Deep learning 56.89 ± 25.80 20.39 ± 25.80 APSIK10
DL = 64.15% (p-value < 0.0001)[CI: 0.48–0.23]

Machine learning 72.38 ± 25.93 35.7 ± 25.93 APSIK10
ML = 50.67% (p-value < 0.0001)[CI:0.67–0.38]
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The Table 3 shows that the APSI of the DL model is 
higher compared to the ML model. In the DL model, the fea-
ture learning is balanced between the two classes, whereas 
in the ML, it is not balanced.

Discussion

Our work is one of the first kinds in classifying sympto-
matic vs. asymptomatic carotid plaques using deep learning 
architecture. Our implementation consisted of 13-layered 
CNN architecture with and without augmentation. The CNN 
model yields the probability of the predicted risk belong-
ing to categorical symptomatic or asymptomatic classes. 
Using the K10 protocol, the system showed accuracy and 
AUC of 86.17% and 0.86 (p-value < 0.0001) without aug-
mentation, and 89.7% and 0.91 (p-value < 0.0001) with 
augmentation, respectively. We showed an improvement of 
3.61%, when comparing ML vs. DL w/o augmentation (0.83, 
p-value < 0.0001 vs. augmentation 0.86, p-value < 0.0001), 
and an improvement of 8%, when comparing ML and 
DL w/o augmentation (0.83, p-value < 0.0001 vs. 0.91, 
p-value < 0.0001). The main cause of the AI model’s success 
is the ability to select the low-level and high-level features 
representing the carotid plaque using the combination of 

convolution layers and average pooling layers followed by 
the dense layer combination based on neural network. Fur-
ther, our system consisted of less number of weights, which 
gave an added advantage in terms of speed and stability [65].

Our DL model exhibited better accuracy and AUC com-
pared to machine learning and demonstrated an accuracy 
increase of 6.0% (p-value < 0.0001) compared with the pre-
viously published work [23, 38]. We validated the DL sys-
tem by running the algorithm on the facial biometric data 
[68] set, yielding 99% accuracy. We further validated the DL 
system using the widely accepted animal data set (ASSIRA) 
[69], yielding 97.56% accuracy.

A note on unbalanced dataset 
between symptomatic and asymptomatic plaques

Our dataset consisted of two classes of lesion types, sympto-
matic (196 Images) and asymptomatic (150 Images) plaques, 
and there was a slight imbalance in the class size. This was 
because they were obtained from consecutive patients 
referred for ultrasound scanning. We used two different 
strategies to avoid overfitting: (i) L2 regularisation in the 
dense layer of the DL system and (ii) probability of dropout 
layer in control. The probability of the dropout layer was 
0.5 and this helped in preventing overfitting. This helped in 

Table 4  Benchmarking table showing previous classification paradigms

Bold values indicate the final results
 +Fisher Discrimination Ratio; *Discrete wavelet Transformation; #Chronological order; < NG > Not given

SN C1 C2 C3 C4 C5 C6 C7 C8
Reference/Year# Plaque Data size Feature extracted Type of classifier ML 

vs
DL

ACC. (%) AUC 
(p-value)

R1 Christodoulou et al. (2003) 
[70]

Plaque Only 230
(-)

Texture SOM
KNN

ML 73.1
68.8

0.753
0.738
 < NG > 

R2 Acharya et al. (2011) [23] Plaque Only 346
(Cyprus)

Texture SVM ML 83  < NG > 
(p = 0.0001)

R3 Acharya et al. (2012) [71] Plaque Only 346
(Cyprus)

DWT* SVM ML 83.7  < NG > 
(p < 0.0001)

R4 Acharya et al. (2013) [60] Plaque Only 146 (Portugal) Trace transform
and Fuzzy texture

Fuzzy
Classifier

ML 93.1  < NG > 
(p < 0.0001)

346 (UK) SVM With RBF ML 85.3  < NG > 
(p < 0.0001)

R5 Gastounioti et al. (2014) 
[72]

Plaque w/o Cut Section 56 US Image FDR+ SVM ML 88.0 0.90
 < NG > 

R6 Skandha et al
(2020) [73]

Plaque Only 2000 US
Images

Automatic CNN DL 95.66 0.956
(p < 0.0001)

R7 Proposed DL w/o
Augmentation

Plaque Only 346
(Cyprus)

DL automated
Features

CNN
(13 layers)

DL 86.17 0.86
(p < 0.0001)

R8 Proposed DL 
w/augmentation

Plaque Only 2318
(Cyprus
Augmented)

DL
automated
Features

CNN
(13 layers)

DL 89.7 0.91
(p < 0.0001)
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maintaining the weights for balancing in each layer of the 
DL system.

Benchmarking against techniques available 
in the literature

We benchmarked our model with the existing study (repre-
senting from R1 to R5). Table 4 contains the eight attrib-
utes, namely reference/year (author with the year), plaque 
(represents input type), data size (represents the size of the 
cohort), feature extracted, type of classifier, ML vs. DL, 
ACC (accuracy in %), and AUC (area-under-the-curve) with 
the p-values.

Christodoulou et al. [70] (R1) extracted texture-based fea-
tures using statistical methods in the carotid ultrasound scans 
(CUS). The authors fed these features to self-organizing map 
(SOM) and k-NN classifiers and achieved an accuracy of 
73.1%, 68.8%, and AUC of 0.753 and 0.738, respectively. 
For this study, the authors’ used plaque cut sections. Acha-
rya et al. [23] extracted texture features from the delineated 
plaque using 346 CUS. SVM classifier was adapted yielding 
an accuracy of 83% (p-value = 0.0001). The same group in 
[71] showed texture and discrete wavelet transform (DWT) 
features derived from 346 delineated plaque cut sections 
using CUS. Using the SVM model with the RBF kernel, 
the author achieved an accuracy of 83.7% (p < 0.0001). 
In [60], the authors adopted two different cohorts, having 
sizes 346 and 146, taken from the UK and Portugal. Trace-
transform and texture-based features were computed and fed 
to the fuzzy SVM classifier models, yielding an accuracy 
of 93.1% and 85.3%, respectively. Gastounioti et al. [72] 
developed several CAD schemes on 56 patients’ ultrasound 

carotid plaque scans for classification using the SVM model 
and extracted features using Fisher Discrimination Ratio, 
yielding an accuracy of 88%. Recently, Skandha et al. [73]. 
characterized and classified the delineated plaques from the 
UK database (the same 346 patients as taken in [60]) using 
3-D optimized deep convolution neural networks (DCNN) 
consisting of 11 layers, yielding an accuracy of 95.66%. 
Our proposed study adopted a different set ML and DL 
paradigm on the same UK database yielding an accuracy 
of 86.17% (w/o augmentation) and 89.7% (w/ augmenta-
tion), respectively. The corresponding AUC was 0.86 and 
0.91 (p < 0.0001), respectively. The idea behind design of 
another DL and ML model was to compare and contrast with 
already existing DL models. Table 4 summarizes our DL 
model against previous works [23, 60, 70–73].

A special note on supercomputer hardware 
comparison to the local machine

We studied the impact of hardware resources on in-depth 
learning methodology. We adopted the supercomputer DGX 
V100, located in Bennett University (BU), Gr. Noida, India. 
The table below (Table 5) gives the specifications of the 
supercomputers. An essential point of difference between 
the local computer and the DGX model are (a) architecture 
(Dual 20 core vs. single core) and (b) clock speed (8.8 GHz 
vs. 2.6 GHz). Using this updated hardware, we compared the 
speed of training on a supercomputer with the local com-
puter. Supercomputer (with 8 GPU) took 2 min per epoch 
during the DL training, while it took 28 min on the local 
computer.

Strengths, weakness, and extensions

We successfully demonstrated the classification of symp-
tomatic and asymptomatic plaque using 13 layers of CNN 
architecture. This study is the first of its kind to adopt a 
supercomputer paradigm for the classification of sympto-
matic and asymptomatic plaque images. The system was 
validated using two established data sets. As our institu-
tion has multiple investigators using the supercomputer, we 
could use 6 out of the 8 GPUs available while running our 
protocols.

Despite the strengths of the system, there are certain 
limitations. A DL framework’s training system is always 
challenging due to the many iterations (or epochs) required. 
Since the number of combinations was ten and three kinds 
of data sets, arranging these tasks on a shared supercomputer 
was challenging. The pilot study shows encouraging results.

Since the AI field is continuously changing, more model-
ling and computer-aided diagnosis systems can be exploited 
and tried in this framework [6, 74]. Because the dataset’s 
size was not very large, one could further improve accuracy 

Table 5  Supercomputer Specifications (Courtesy of Bennett Univer-
sity, Gr. Noida, India)

Attribute Local Computer DGX V100 (BU)

Processor Type Intel Core i7-9750H CPU Intel XenonES-2698 v4
Processor Speed 2.6 GHz 8.8 GHz
Architecture 1 Core Dual 20-Core
RAM 8 GB 128 GB
Graphics Card Not Included Nvidia DGX128 GB
TFlops Quad Core 8 × Tesla V 100 GPU 

with 960 TFlops
CUDA cores 1536 400,600
Tensor Cores 0 5,120 cores
Clock Speed 12 GB/sec 900 GB/sec
Visual
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by augmentation. Additionally, AI methods using transfer 
learning could be adapted to prevent repetitive training. As 
part of the extension, effort can fuse US plaque with MRI 
for cross-modality validation using standardized registra-
tion methods [75] in the big data framework [76]. Lastly, 
the plaque characterization can be compared against higher-
order spectra [39] and role of different US scanners [57].

Conclusion

This is the first study of its kind to characterize and classify 
carotid plaques into symptomatic and asymptomatic catego-
ries using a deep learning paradigm and implemented on 
a supercomputer. The deep learning system accuracy and 
AUC was 89.7% and 0.91 (p-value < 0.0001), respectively, 
showing an improvement of 6.0% compared with previous 
methods. Using the hypothesis that symptomatic plaque is 
heterogeneous and has a more chaotic representation by 
ultrasound, we demonstrated tissue characterization using 
(a) mean strengths of the feature map and (b) Mandelbrot’s 
fractal dimension. We used the Atheromatic separation index 
to demonstrate the class separation. The system was devel-
oped on the supercomputer with 8 GPU configurations and 
took less than two seconds per image during the online test 
patient prediction. The system validated against two widely 
accepted datasets showing consistent results for the DL 
architecture.
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Appendix

See Tables 6 and 7.

Table 6  Symbol table

Sn C1 C2
Symbol Description

R1 E Categorical cross-entropy
R2 p Predicted probability of a class in DL
R3 y Binary indicator
R4 nin Number of input features to CL
R5 nout Number of output features from CL
R6 K Convolution kernel size
R7 P Convolution padding size
R8 S Stride size
R9 aout Number of output features from APL
R10 W Width of the input feature map to APL
R11 F Size of the kernel
R12 ηDL

K10(c) Accuracy of DL at c
R13 C Number of the combinations in K10 

protocol
R14 ηK10

−DL Mean accuracy of the DL
R15 ηML

K10(c) Accuracy of ML at c
R16 ηK10

−ML Mean accuracy of ML
R17 σDL

K10 Standard deviation of DL
R18 σML

K10 Standard deviation of ML
R19 D Fractal dimension
R20 N Number of boxes that covering the pattern
R21 r Magnification
R22 APSIK10

AImodel Atheromatic plaque separation index
R23 MFS AF Mean Feature Strength for AF class
R24 MFSAS Mean Feature Strength for AS class
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