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Abstract
The large number of available MRI sequences means patients cannot realistically undergo them all, so the range of sequences 
to be acquired during a scan are protocolled based on clinical details. Adapting this to unexpected findings identified early 
on in the scan requires experience and vigilance. We investigated whether deep learning of the images acquired in the first 
few minutes of a scan could provide an automated early alert of abnormal features. Anatomy sequences from 375 CMR scans 
were used as a training set. From these, we annotated 1500 individual slices and used these to train a convolutional neural 
network to perform automatic segmentation of the cardiac chambers, great vessels and any pleural effusions. 200 scans were 
used as a testing set. The system then assembled a 3D model of the thorax from which it made clinical measurements to 
identify important abnormalities. The system was successful in segmenting the anatomy slices (Dice 0.910) and identified 
multiple features which may guide further image acquisition. Diagnostic accuracy was 90.5% and 85.5% for left and right 
ventricular dilatation, 85% for left ventricular hypertrophy and 94.4% for ascending aorta dilatation. The area under ROC 
curve for diagnosing pleural effusions was 0.91. We present proof-of-concept that a neural network can segment and derive 
accurate clinical measurements from a 3D model of the thorax made from transaxial anatomy images acquired in the first 
few minutes of a scan. This early information could lead to dynamic adaptive scanning protocols, and by focusing scanner 
time appropriately and prioritizing cases for supervision and early reporting, improve patient experience and efficiency.
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Abbreviations
3D	� Three-dimensional
AUC​	� Area under curve
CMR	� Cardiovascular magnetic resonance
DCM	� Dilated cardiomyopathy
HCM	� Hypertrophic cardiomyopathy

LV	� Left ventricle
LVEF	� Left ventricular ejection fraction
LVEDVi	� LV end-diastolic volume
LVMi	� Left ventricular mass
ROC	� Receiver operating characteristic
RVEDVi	� Right ventricular end-diastolic volume

Background

CMR offers limitless scan planes and a large range of dif-
ferent sequences to characterize the heart in different ways, 
but this means that the acquisition process must be selec-
tive because not every patient can have every imaging plane 
scanned with every sequence. Efficient clinical practice 
therefore operates through standardized “protocols”, which 
list the sequences that are most likely to generate images 
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which confirm or refute important diagnoses for particular 
clinical scenarios [1].

However, sometimes the earliest images acquired dur-
ing the scan itself reveal unexpected findings which may 
(a) indicate that some previously protocolled images are no 
longer required or (b) indicate that further images should 
be acquired to confirm or refute a previously unsuspected 
diagnosis. Some sequences are best interpreted before gado-
linium contrast has been given, meaning that the opportunity 
to use them may be lost if the requirement for them is not 
spotted early.

In recent years, deep learning using neural networks has 
shown increasing performance in the classification and seg-
mentation of medical imaging data [2]. Recent work has 
shown similar precision to human techniques at tasks such as 
left ventricular (LV) segmentation [3–5]. These approaches, 
however, have focused on the segmentation of high-quality 
LV-dedicated sequences with ideal scan plane orientation.

Within the first couple of minutes of a CMR scan, a 
series of transaxial images are routinely acquired, com-
monly termed the “anatomy” sequences. In this study we 
investigate whether deep learning methods could analyze 
these early images to extract information that could (a) help 
a radiographer recognize the need to modify the ongoing 
protocol, (b) help identify cases that should be prioritized 
for medical supervision or early reporting.

Methods

Data extraction

We extracted 575 sequential CMR scans from 2 manufactur-
ers (Philips Healthcare, Amsterdam, Netherland & Siemens, 
Erlangen, Germany) performed across 2 centers. Inclusion 
criteria were adult scans in which a bright-blood transaxial 
anatomical sequence had been performed and a valid final 
report which included the following BSA-indexed (suffix 
i) measurements as a minimum: LV end-diastolic volume 
(LVEDVi), LV mass (LVMi) and RV end-diastolic volume 
(RVEDVi). We did not exclude scans with artefact, e.g. due 
to atrial fibrillation or breath-holding difficulties. We also 
extracted the following measures from the report where 
present: the diameter of the ascending aorta; the presence 
of hypertrophic cardiomyopathy (HCM), the presence of 
dilated cardiomyopathy (DCM) and the presence of pleural 
effusions.

The CMR scans were then randomly assigned to differ-
ent datasets, each serving a specific purpose (Fig. 1; Study 
Design). 200 scans were assigned to the “testing dataset”. 
This dataset was used to report the final accuracy of the 
system and was not shown to the neural network at any stage 
of its training. The remaining 375 scans were assigned to 

the “training & validation dataset”. This dataset was used 
to train the neural network. 75% of these scans were used to 
directly train the neural network (the “training dataset”), and 
25% were used to continually appraise the performance of 
the network during development (the “validation dataset”).

Ethical approval was gained from the Health Regulatory 
Agency (Integrated Research Application System identifier 
243,023).

Data processing and labelling

The axial anatomical images were isolated from each scan. 
The acquisition parameters for these sequences are shown in 
Appendix 1. 1500 slices were then chosen at random, across 
the training and validation sets and were then labelled by 
clinicians using custom-designed software to draw around 
the following anatomical features, if present: ascending 
aorta, aortic arch, descending aorta, left atrium, left ventri-
cle, pericardial effusion, pleural effusion, right atrium and 
right ventricle. Each slice was then resampled to 560 by 560 
pixels, with zero-padding for non-square acquired images.

Neural network design and training

The neural network design chosen was an adapted version of 
the HRNet architecture [6]. Modifications were made so the 
network could receive single-channel (grayscale) images and 
output 9 feature maps, corresponding to the possible identi-
ties of each pixel (aorta, left atrium, left ventricular wall, 
left ventricular cavity, pulmonary artery, pleural effusion, 
right atrium, right ventricular cavity) or a final ‘other’ (back-
ground) class. The network was trained until the validation 
loss plateaued (23 epochs), and the training process was 
augmented with random rescaling, rotation, shearing and 
translation. Loss was calculated over batches of 20 images 
by using the categorical cross-entropy loss function, and 
weights were updated using the Ranger optimizer (a com-
bination of RAdam [7] and Lookahead [8]) with a learning 
rate of 0.001. The optimizer, choice of data augmentations 
and learning rate were tuned with reference to the valida-
tion loss. Programming was performed using the Python 
programming language with the Pytorch framework [9]. 
Training was performed on 2 GeForce RTX Titan graphical 
processing units (NVIDIA, Santa Clara, California).

3D heart model reconstruction

The segmentation predictions of the neural network were 
converted into predictions of parameters such as cardiac 
chamber sizes by analyzing each slice within the axial ana-
tomical planning sequence and then re-assembling them into 
a 3D heart model (Fig. 2). Specifically, each slice was fed 
into the neural network to yield a prediction of the identity 



1035The International Journal of Cardiovascular Imaging (2021) 37:1033–1042	

1 3

of each pixel (left ventricle, pleural effusion, etc.). The 
slices were then resized according to the viewport informa-
tion embedded in the DICOM file and the thickness of the 
slice, before combining the stacked series of slices into a 
3D model through trilinear interpolation. This model was 
then analyzed by calculating the volume of each structure 
present to give a value in ml. These were then scaled for 
body surface area to yield a value in ml/cm3. Finally, these 
volumes were adjusted to the “final” analyzed volumes by 
fitting a linear regression model separately for each scan-
ner manufacturer: this allowed a bias to be introduced to 
account for the different acquisition parameters between 
the two manufacturers. Models were fitted for estimating 
LVEDVi, RVEDVi, LVMi, BSA-indexed LV mass-to-vol-
ume ratio, and BSA-indexed ascending aortic diameter. This 
allowed compensation for any systematic error associated 
with the use of differences in sequences employed by dif-
ferent manufacturers.

For each measure, published BSA-indexed cut-offs 
were used to classify abnormal cases: LVEDVi > 94 ml/m2 

for LV dilatation, RVEDVi > 98 ml/m2 for RV dilatation, 
LVMi > 83.5 g/ml for LV hypertrophy [10], and > 0.84 for 
an abnormal LV mass-to-volume ratio [11].

Endpoints and statistical analysis

The segmentation performance of the neural network was 
assessed using the Dice coefficient, defined as:

where for each class, TP refers to true positives (pixels clas-
sified by both the network and expert as of that class), FP as 
false positives (pixels classified by the network as that class, 
incorrectly) and FN as false negatives (pixels classified by 
the network as not that class, incorrectly).

The diagnostic performance of the network was reported 
for continuous outcomes using Pearson’s r, along with the 
accuracy, sensitivity and specificity. Cohen’s Kappa (κ) was 
also reported as a measure of accuracy resistant to class 

Dice =
2 ⋅ TP

2 ⋅ TP + FP + FN

Source MRI studies
575 studies across 2 MRI manufacturers

Test set
200 studies

Training & Validation set
375 studies

Training

Evaluation of diagnostic performance:
LV & RV volumes

LV mass & mass-to-volume ratio
HCM & DCM pick-up

Pleural effusions
Ascending aorta dimensions

SEGMENTATION
NETWORK
DEVELOPMENT

DATA 
COLLECTION

DIAGNOSTIC
ASSESSMENT

Evaluation of
segmentation performance

Dice coefficient

Axial anatomical 
planning 

sequences

Cardiac 
chambers

Great vessels
& pleural effusions

SEGMENTATION NETWORK

SOURCE DATA

Model training

Training set
289 studies
1156 slices
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86 studies
344 slices

3D THORAX RECONSTRUCTION

WOLFATADNGISEDYDUTS

Fig. 1   Study design flow chart and data flow. The aim of this study 
was to use artificial intelligence (AI) to create a 3D model of the 
thorax for each patient using the anatomy images acquired within 
the first few minutes of a cardiac MRI scan. This could be used to 
make measurements and provide useful diagnostic information within 
minutes of a scan starting. The study comprised 575 studies across 2 
manufacturers, which were split into a training and testing set. The 

training set was used to train an AI which could segment each slice 
of the anatomy sequence. Then, each scan in the testing set was ana-
lyzed to allow creation of a 3D model of a patient’s thorax. This 3D 
model was then analyzed. 3D = 3-dimensional. DCM = dilated cardio-
myopathy. HCM = hypertrophic cardiomyopathy. LV = left ventricle, 
RV = right ventricle
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imbalance. For categorical outcomes, we reported the area 
under the curve (AUC) for the receiver operating character-
istic (ROC), along with the accuracy and Cohen’s Kappa for 
the optimal cut-off. Statistical analysis was performed using 
R software (R Foundation, Vienna, Austria) [12].

Results

Dataset

The baseline characteristics across the training & validation 
dataset and the testing dataset are shown in Table 1.

1500 slices underwent segmentation labelling, 1156 of 
which were within the training set and 344 within the testing 
set. Table 2 outlines the contents of the slices.

Segmentation performance

The mean Dice coefficient across all categories for the test-
ing set was 0.910. The category-wise Dice coefficients are 
shown in Table 2 and ranged between 0.809 for the LV cav-
ity to 0.929 for the aorta.

Examples of the human-supplied labels and the predic-
tions of the neural network are shown in Fig. 3. In contrast, 
the slice where the neural network made the greatest seg-
mentation error is shown in the Appendix.

Diagnostic model performance

By combining every slice from a scan’s axial anatomic plan-
ning sequence, we were able to construct a 3D model of a 
patient’s thorax (Fig. 2) from which calculations could be 

SSTTEEPP  22
Segment every slice

SSTTEEPP  33
Combine into 3D model

Anterior view

Posterior view

SSTTEEPP  11
Acquire low-resolution axial stack

……

NNeeuurraall  nneettwwoorrkk IInntteerrppoollaattiioonn

Fig. 2   Reconstruction of a 3D heart is possible by segmenting each 
slice within the axial anatomy stack. The slices can be combined 
through trilinear interpolation into a 3D model of the cardiac cham-

bers and great arteries. This model can be used to make anatomical 
measurements, such as end-diastolic volumes and vessel diameters
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made of chamber size but also for presence of abnormal 
features, such as pleural effusions.

BSA-indexed left ventricular end diastolic volume 
(LVEDVi) predicted by the network on the testing set cor-
related with the measures from the final report (R2 = 0.76, 
p < 0.0001, Fig. 4). The network was 90.5% accurate in iden-
tifying LV dilatation (κ = 0.75), with a corresponding sensi-
tivity of 84.3% and specificity of 92.6%. Within the testing 
dataset, 10 studies were from patients with dilated cardio-
myopathy, and the network correctly identified 9 (90%) of 
these as abnormal (95% CI 59.6% to 98.2%).

BSA-indexed right ventricular end diastolic volume 
(RVEDVi) predicted by the network on the testing set cor-
related with the measures from the final report (R2 = 0.53, 
p < 0.0001, Fig. 4). The network was 85.5% accurate in 
identifying RV dilatation (κ = 0.62), with a corresponding 
sensitivity of 80% and specificity of 87.1%.

BSA-indexed left ventricular mass (LVMi) predicted by 
the network on the testing set correlated with the measures 
from the final report (R2 = 0.74, p < 0.0001, Fig. 5). The 
network was 85% accurate in identifying LV hypertrophy 
(κ = 0.64), with a corresponding sensitivity of 78.9% and 
specificity of 87.4%. LV mass:volume ratio predicted by the 
network on the testing set correlated with the measures from 
the final report (R2 = 0.5, p < 0.0001, Fig. 5). The network 
was 71% accurate in identifying a raised LV mass:volume 
ratio (κ = 0.41), with a corresponding sensitivity of 68.9% 
and specificity of 74.4%. Within the testing dataset, 10 stud-
ies were from patients with hypertrophic cardiomyopathy, 
and the network correctly identified all (100%) of these as 
abnormal (95% CI 72.3% to 100%).

Only 54 of the 200 testing dataset cases provided ascend-
ing aorta diameters. BSA-indexed ascending aorta diameters 
predicted by the network on the testing set correlated with 
the measures from the final report (R2 = 0.82, p < 0.0001, 
Fig. 6). The network was 94.4% accurate in identifying 
ascending aortic dilatation (κ = 0.79), with a corresponding 
sensitivity of 100% and specificity of 93.6%.

The ROC curve AUC for diagnosing pleural effusions by 
quantifying pleural fluid was 0.906 (see online Appendix).

Discussion

This study is a proof-of-concept, that accurate important 
diagnostic information can be derived from axial anatomy 
images obtained at the start of a CMR scan. These results are 
consistent across two different scanner manufacturers. This 

Table 1   Characteristics of the included studies in the training and 
testing sets. Values are mean (standard deviation) for continuous vari-
ables, and count (percentage) for categorical variables

LVEF left ventricular ejection fraction, LVEDVi Body-surface area-
indexed left ventricular end-diastolic volumes, RVEDVi Body-surface 
area-indexed right ventricular end-diastolic volumes, LVMi Body-
surface area-indexed right ventricular end-diastolic volumes, HCM 
hypertrophic cardiomyopathy, DCM dilated cardiomyopathy

Training and valida-
tion set

Testing set

Number of studies/patients 375 200
Manufacturer
Siemens 221 125
Philips 154 75
Male 229 (61.1) 115 (57.5)
Age (years) 55.7 (17.8) 56.7 (17.5)
LVEF (%) 55.6 (17.5) 55.7 (17.8)
LVEDVi (ml/m2) 81.4 (34.6) 81.0 (38.1)
RVEDVi (ml/m2) 80.1 (25.9) 78.8 (26.6)
LVMi (g/m2) 77.6 (30.8) 76.4 (33.2)
Ascending aorta (mm/m2) 17.1 (4.2) 16.8 (4.1)
HCM 25 (6.7) 10 (5.0)
DCM 22 (5.9) 10 (5.0)
Pleural effusions 88 (23.5) 42 (21.0)

Table 2   Slices included in the 
training and testing sets

Values are n (%). The Dice coefficient reflects the accuracy of the neural network on the validation set

Feature True presence within a slice Network perfor-
mance (Dice coef-
ficient)Training set (n = 1156) Validation set (n = 344)

Aorta 1059 (91.6) 316 (91.9) 0.929
Left atrium 404 (34.9) 116 (33.7) 0.925
LV cavity 558 (48.3) 151 (44.1) 0.809
LV wall 587 (50.8) 167 (48.6) 0.884
Pulmonary artery 182 (15.8) 65 (18.9) 0.907
Pleural effusion 347 (30.9) 128 (37.2) 0.890
Right atrium 481 (41.6) 139 (40.4) 0.924
RV cavity 616 (53.3) 178 (51.7) 0.910
Background 1156 (100.0) 344 (100.0) 0.995
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system could allow technicians performing the scan to be 
signposted to unexpected pathology, help direct optimized 
image acquisition for the remainder of the scan, prioritize 
supervision of scans by reporters, and prioritize scans for 
urgent reporting.

Earlier & automated diagnosis – a comparison with previ-
ous approaches.

Neural networks are now rivalling and surpassing 
humans for cardiac chamber segmentation and quantifica-
tion [3, 4]; a situation in which images are acquired in a 

dedicated conventional manner for all patients. However, 
the aim of our study was different in two ways.

First, the network in this study has the potential to 
identify extra-cardiac diagnoses such as aortic dilatation 
and pleural effusions. Being able to identify findings may 
allow an adaptive approach to scanning protocols which 
avoids recalling patients for additional images and even 
gives technicians performing the scan reassurance that 
additional images are not required.

Fig. 3   A Human label and the 
AI’s segmentation correspond-
ing prediction. The figure 
showed a comparison between 
the human labels of a particu-
lar axial anatomical planning 
slice, and those predicted by the 
network for that slice

Human opinion Computer predic�on

Axial anatomy slice

Neural
Network

Expert
Labelling

Difference appraised with 
Dice coefficient
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Second, previous studies have aimed to improve absolute 
quantification of chamber size and function and have there-
fore been trained to process the high-quality cine imaging 

which reporting clinicians currently use. Such sequences 
differ from the anatomical stack generated and processed in 
this paper in several important ways.

Accuracy of automated ventricular volume measurements derived from from axial anatomy images

R2 : 0.76
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Fig. 4   The relationship between the neural network’s chamber size 
predictions versus those extracted from the final report. Predictions 
are shown for BSA-indexed left ventricular end-diastolic volume 
(LVEDVi) and BSA-indexed right ventricular end-diastolic volume 

(RVEDVi). Green zones and red zones symbolize areas of the plot 
where the neural network agrees and disagrees with the values from 
the full scan, respectively. Patients with known dilated cardiomyopa-
thy (DCM) are shown as crosses on the LVEDVi plot
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Fig. 5   The relationship between the neural network’s left ventricular 
mass predictions versus those extracted from the final report. Predic-
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the neural network’s prediction of the left ventricular end diastolic 
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the neural network agrees and disagrees with the values from the full 
scan, respectively. Patients with known hypertrophic cardiomyopathy 
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First, the dedicated sequences’ scan planes are ideally ori-
entated with respect to the patient’s heart to ensure radial func-
tion is within rather than through the plane of imaging and 
minimizes partial voluming. Second, the dedicated sequences 
are acquired with less spacing, allowing more voxels per ven-
tricle. Third, the dedicated sequences take considerably longer 
to acquire: they are acquired over 8–15 s per slice, of which 
there may be up to 10 slices per sequence [3].

In contrast, the entire axial anatomical sequences can be 
acquired in 3–4 breath holds. However, they are of relatively 
large slice thickness, and are orientated axially with no refer-
ence to the patient’s heart. Given this, the ability to acquire 
accurate diagnostic information early on in the scan has 
the potential to triage the application of further sequences 
during the scan. For example, patients found to have LVH 
and pleural effusions on axial anatomy images may have a 
diagnosis of cardiac amyloid in which pre-contrast T1 maps 
would be useful [13]. Dedicated aortic imaging may be too 
laborious for routine use on each patient but could be reli-
ably targeted to those who need it by our work.

Implications for reporting prioritization, 
supervision and patient safety

A system providing automated diagnosis during the earli-
est stages of a cardiac MRI scan would not only be useful 

for ensuring scans are correctly protocolled but would also 
allow physicians to prioritize the supervision and reporting 
of those scans most likely to be abnormal.

Patients with pleural effusions, for example, may have 
limited tolerance for lying flat in the scanner. Their identi-
fication at the earliest stages of could increase vigilance of 
these more vulnerable patients, and alteration of sequences 
to allow smaller breath holds, motion-corrected free-breath-
ing sequences and accelerated protocols to minimize scan 
time.

Scans shown to contain unexpected pathologies may also 
be flagged for expedited review and reporting by physicians. 
For example, an outpatient screening CMR scan in a low 
risk patient might be identified as demonstrating unexpected 
marked LV dilatation with pleural effusions. Such patients 
at risk of decompensation and could be identified for early 
reporting and follow-up.

Study limitations

The neural network described in this study is not 100% accu-
rate. Even the most accurate measurement (ascending aortic 
diameter) is only 94% accurate on our dataset. However, the 
correlation between the neural network’s predictions and the 
true measurements for the measures examined ensure that 
the extreme biological values associated with disease are 

Fig. 6   The relationship between 
the neural network’s BSA-
indexed ascending aortic diam-
eter predictions versus those 
extracted from the final report. 
Green zones and red zones sym-
bolize areas of the plot where 
the neural network agrees and 
disagrees with the values from 
the full scan, respectively

Accuracy of automated ascending aorta diameter measurement
derived from axial anatomy images
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more consistently correctly identified by the network (100% 
of hypertrophic cardiomyopathy cases, 90% of dilated car-
diomyopathy cases).

It is difficult to ascertain to what extent the errors in the 
neural network’s predictions are due to inaccurate segmenta-
tion by the network, versus limitations inherent to estimating 
volumes using anatomy sequence slices. The latter could be 
estimated by calculating volumes using expert labels across 
the testing dataset, although this would require every myo-
cardial slice in these data to be labelled. Whilst this dataset 
would be many times larger than the current dataset used to 
train the network, we hope to address this question in the 
future.

Furthermore, previous studies have shown the coefficient 
of variation is over 10% for estimating left ventricular vol-
umes, even when assessed by the same doctor in the same 
patient using dedicated left ventricular sequences [3]. In this 
study, we have compared the performance of this network 
against human observers behaving clinically, and therefore 
this 10% variation inherently sets an upper ceiling on the 
correlation coefficient obtainable by the network—it cannot 
correlate with the human observers better than the human 
observers correlate with themselves.

With all deep learning studies, there is concern that the 
findings in this study may not generalize to a wider popula-
tion [14]. This can be due to a phenomenon of “overfitting”, 
where the neural network is highly accurate at processing 
images on which it was trained but performs much less well 
on unseen “real world” examples. To try and mitigate these 
concerns, we took several approaches. First, the performance 
is reported on a test set which was only assessed after train-
ing the neural network. Second, the dataset we assembled 
was from two different hospitals across multiple reporting 
physicians. Third, the dataset comprises scans across both 
Siemens and Philips scanners, with the correlation plots 
showing similar accuracies for both manufacturers. Finally, 
we are releasing the neural network with this manuscript for 
use online, so that its performance can be assessed by any 
interested academic or clinician.

Conclusion

This proof-of-concept study demonstrated that a neural net-
work can accurately reconstruct a 3-dimensional model of 
the heart and major vessels from transaxial anatomy images 
acquired in the first few minutes of a CMR study. Our system 
is able to accurately quantify cardiac chamber size, aortic 
diameter and presence of pleural effusions. We have made 
trained neural networks publicly available for use.
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